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Abstract. When studying underwater acoustic exploration, tracking and positioning, the target signals
collected by hydrophones are often submerged in strong intermittent noise and environmental noise. In this
paper, an algorithm that combines empirical mode decomposition and wavelet transform is proposed to achieve
the efficient extraction of target signals in the environment with strong noise. First the calibration of baseline
drift is performed on the algorithm, and then it is decomposed into different intrinsic mode functions via
empirical mode. The wavelet threshold processing is conducted according to the correlation coefficient of each
mode component and the original signal, and finally the signals are reconstructed. The simulation and
experiment results show that compared with the conventional empirical mode decomposition method and
wavelet threshold method, when the signal-to-noise ratio is low and there exist high-frequency intermittent
jamming and baseline drift, the combined algorithm can better extract the target signal, laying the foundation
for direction-of-arrival estimation and target positioning in the next step.
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1 Introduction

Since the 21st century, ocean has played an increasing
important role in the development of mankind, and
industries such as marine resource acquisition and marine
transportation have developed rapidly. Among ocean
technologies, passive sonar detection technology is a key
technology for humans to better exploit and utilize ocean,
which has become an important research field [1–3]. As for
sonar technology, underwater acoustic signal receiving and
processing technology is an important content [4]. The
acquisition and processing of acoustic signal determines the
development of sonar technology, thus affecting the
exploitation of marine resources. At present, vector
hydrophone is a research focus, whose basic concept is to
confirm the azimuth information of underwater target by
collecting vector information such as acoustic pressure
information and vibration speed of the sound field. The
vector hydrophones that are mostly studied and develop
rapidly include co-vibration vector hydrophone, optical
fiber vector hydrophone and MEMS vector hydrophone
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[5–7], whose sensors with higher sensitivity and smaller
structure are suitable for multi-platform operation with
stable performance [8]. Due to the complex underwater
environment, the collected underwater acoustic informa-
tion often contains a lot of noise, and the signal is
sometimes completely submerged in the noise, so it is
critical to reduce the noise of the signal. The signal
characteristics are not obvious in the strong noise
background with low signal-to-noise ratio [9], so the
Fourier transform signal processingmethod used has a poor
processing effect in the actual strong noise environment.
2 Noise reduction principle and combined
algorithm

The collected signal usually contains a lot of noise, so noise
reduction is important for the extraction of underwater
acoustic signals. In practices, noise reduction is critical for
target detection and orientation. In order to improve the
accuracy of target detection and orientation, it is necessary
to enhance the noise reduction ability [10]. In the noise
reduction process, the signal-to-noise ratio, root mean
square error (RMSE) and signal-to-noise ratio gain (G) are
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Fig. 1. Algorithm flow diagram.
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mainly used to measure the performance of the algorithm.
The expressions are shown in equations (1)–(3).
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G ¼ SNRout � SNRin ð3Þ
where SNRout is the output signal-to-noise ratio, S is the
signal power, and N is the noise power. The actual
calculated value isXn, the true value is bXn, and the number
of observations is L. The larger the output signal-to-noise
ratio, the stronger the algorithm’s anti-interference ability,
the better the target resolution ability, and the better the
algorithm’s noise reduction performance. The smaller
the root mean square error, the more stable the algorithm.
The higher the signal-to-noise ratio gain, the better the
performance of the processing algorithm.

2.1 EMD method

The Empirical Mode Decomposition (EMD) method is a
signal decomposition method proposed by Huang, which
has an excellent effect of processing non-stationary signals
[11]. During EMDprocessing, the signal is first decomposed
into a series of intrinsic mode components and a margin
[12], and then the effectivemode is reconstructed to achieve
signal denoising optimization. It is mainly used to identify
the natural mode of vibration based on the time scale
features contained in the data, so as to realize the
decomposition of the data. The intrinsic mode function
must meet two conditions: (a) within the signal range, the
number of extreme point and zero-crossing points are equal
or differ by one at most; (b) at any point in time, the mean
value between the upper and the lower envelope deter-
mined by the maximum value and minimum value
respectively is zero. The expression is shown in equation
(4).

x tð Þ ¼
Xn
i¼1

imfi tð Þ þ r tð Þ ð4Þ

where imfi (t) represents the ith intrinsic mode component,
r(t) represents the trend component, and n indicates the
number of layers of adaptive decomposition.

2.2 Wavelet threshold processing

The wavelet analysis is to perform the Fourier transform
based on the original collected signal, and then realize the
multi-scale detailed analysis of the signal via processing
such as expansion and translation [13,14]. Wavelet
denoising is performed through shortwave to remove noise.
Wavelet transform can remove signal correlation, and noise
has a tendency to whiten after wavelet transform, so it is
more conducive to denoising than time domain; The core of
wavelet transform is primary function, and the selection of
primary function determines the result of signal analysis.
Hence, the selection of primary function is critical. In
practice, the appropriate wavelet primary function is
selected according to characteristics of signal and denoising
requirements. In this paper, the “db4” wavelet primary
function is selected, and the threshold denoising is to
process the coefficients of each layer after wavelet
decomposition that are greater and less than a certain
threshold. Based on experience, the soft threshold denois-
ing rule is selected for signal processing, where the
improved soft threshold function and threshold expression
are as follows

buj ¼
sign uj
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where buj is the threshold function, m is the threshold, N is
the data length, and j is the wavelet processing
decomposition coefficient.

2.3 Extraction method of weak underwater acoustic
signal based on the combination of wavelet transform
and EMD

According to the characteristics of EMD decomposition
method and wavelet transform, the flow diagram of the
proposed combined algorithm is shown in Figure 1. The
basic processing flow of the algorithm is:



Fig. 2. Time domain and frequency domain waveforms of the
signal.
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Fig. 3. EMD signal decomposition time domain and frequency
The collected original signal is taken as the input signal to
perform calibration of baseline drift to remove the DC
offset component in the signal;
domain diagram.
–
 EMD is adopted to decompose the preprocessed signal to
calculate multiple intrinsic mode components;
–
 The useful mode component is judged by the correlation
coefficient between the intrinsic mode component and
the original signal. The larger the correlation coefficient,
the higher the effective component of the signal. In this
paper, 0.5 is selected as the judgment threshold of
correlation coefficient;
–
 Under the conditions of pre-selected wavelet primary
function and threshold rules, perform wavelet de-noising
on the noise component to obtain the signal after the
second processing;
–
 The second output signal is reconstructed again, and
finally the best estimate of the target signal is extracted.

This algorithm is based on EMD decomposition
transform and wavelet threshold processing. By combining
the advantages of the two, the signal is nested multiple
times to obtain the best estimate of the target signal.

3 Simulation and experiment result analysis

This experiment uses MATLAB and its signal processing
toolbox function to verify and simulate the algorithm
proposed in this paper [15]. Firstly, the impact of high-
frequency intermittent signals on the extraction of target
signals under different signal-to-noise ratios are taken into
consideration. Assume that the signal-to-noise ratio is 0 db,
the target signal is a 60Hz sinusoidal signal, and the high
frequency intermittent interference is 250Hz sinusoidal
signal, which are superimposed to the received signal by
hydrophones at different times. The total length of the data
is 0.5 seconds, and the sampling rate is 10 kHz. The time
domain and frequency domain results of the signal are
shown in Figure 2. The left side is the time domain signal,
the horizontal ordinate is the sampling time, and the
vertical ordinate is the voltage magnitude. The right side is
the signal frequency domain diagram, the horizontal
ordinate is the frequency, and the vertical ordinate is
the frequency spectrum of the signal, that is, themagnitude
after Fourier transform. The first line is the original target
signal, the second line is the waveform diagram of the high-
frequency intermittent signal, and the third line is the
signal diagram after Gaussian white noise and the
intermittent signal are superposed.

Secondly, the calibration of baseline drift is performed
on the signal, the signal is calibrated to the zero position,
and the DC offset component is removed. Then the
preprocessed signal containing noise and interference is
decomposed by EMD, and it is adaptively decomposed into
11 layers. The decomposition structure is shown inFigure 3.
Each layer represents a different frequency band signal. It
can be seen that the first two orders of intrinsic mode
components contain Gaussian noise, and the third and
fourth order modes are mainly high-frequency intermittent
signals. The other high-order signals are all extremely low
frequency noise signals. By calculating the correlation
coefficient between each IMF component and the original
signal, the information component contained in each mode
can be determined. The correlation function values are
shown in Table 1.

It can be seen from Table 1 that the maximum
correlation coefficient (cc) is 0.535, indicating that the
original signal contained in IMF6 has the most principal
components, so this information component is mainly
maintained, and other components have larger noise
components. Wavelet threshold processing is performed



Table 1. Correlation coefficient between intrinsic mode
and original signal.

Modal layered IMF1 IMF2 IMF3 IMF4

cc 0.501 0.296 0.303 0.399
Modal layered IMF5 IMF6 IMF7 IMF8
cc 0.128 0.535 0.041 0.021
Modal layered IMF9 IMF10 IMF11 /
cc 0.015 0.024 0.001 /

Fig. 4. Time-domain and frequency-domain diagrams of intrin-
sic mode components after wavelet processing.

Table 2. Performance comparison under different input
signal-to-noise ratios.

SNR0 SNR RMSE G

−15 −4.187 1.145 10.813
−10 −0.206 0.724 9.794
−5 2.953 0.503 7.953
0 7.733 0.41 7.733
5 11.613 0.33 6.613

10 18.494 0.31 8.494
15 26.612 0.26 11.612

Table 3. Performance comparison of different methods.

Algorithm Proposed algorithm EMD WTD

SNR 7.733 1.616 1.088
RMSE 0.41 0 1.347 1.393

Fig. 5. Effective signal.
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on the intrinsic mode components of noise or interference
with smaller correlation coefficients. The wavelet basis
selected “db4”wavelet, the wavelet order is 5 layers, and the
mode components of the output signal after wavelet
threshold processing are shown in Figure 4. Further, the
signal is reconstructed to obtain a signal with high
performance after filtering. The reconstructed signal is
shown in Figure 5.

Finally, we analyse the performance of this algorithm
under the condition of varying signal-to-noise ratio. It can
be seen from Table 2 and Figure 6 that as the input signal-
to-noise ratio increases, the output signal-to-noise ratio
increases; at the same time the root mean square error
decreases and the signal-to-noise ratio gain increases.
It shows that the algorithm proposed in this paper is
feasible to reduce noise with the presence of high-frequency
intermittent signal interference and white noise interference.

The method proposed in this paper is compared with
EMDmethod and the wavelet threshold denoising method.
The performance comparison results are shown in Table 3.
The combined method in this paper has better denoising
performance and small root mean square error. Therefore,
the method proposed in this paper is effective for the
extraction of intermittent signals.

The actual underwater acoustic signal measured by
B&K8104 hydrophone is used for noise reduction. The
actual target is 315Hz and 500Hz, and the others are
interference and noise components. The method is applied
to the test results of the actual field test. Figure 7 is the
original test signal, and Table 4 is the correlation
coefficients of each mode.

It can be seen that there are many signal components in
IMF2 and IMF3. Then the algorithm proposed in this
paper is used for signal processing, and the results are
shown in Figure 8. The actual processing results show that
the method can correctly process the actual signal, which
has the significance of practical engineering application.



Fig. 6. Root mean square error curve under different signal-to-
noise ratio.

Fig. 7. Original test signal.

Table 4. Correlation coefficient between intrinsic mode
and original signal.

Modal layered IMF1 IMF2 IMF3 IMF4

cc 0.216 0.722 0.617 0.107
Modal layered IMF5 IMF6 IMF7
cc 0.016 0.003 0.0006

Fig. 8. Time-domain and frequency-domain diagrams of intrin-
sic mode components after wavelet processing.
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4 Conclusion

In this paper, the combined algorithm of EMD decomposi-
tion and wavelet transform is used to reduce the noise in
the received signal in the underwater acoustic noise
environment. Firstly, the calibration of baseline drift is
performed, and then the EMD is decomposed into different
intrinsic mode functions. The wavelet threshold processing
is performed according to correlation coefficient of each
mode component and the original signal. Finally, the signal
is reconstructed. In this way, the useful part of the signal is
effectively retained. The feasibility of the method proposed
in this paper is verified by simulation. High-frequency
intermittent signals and noise signals can be well extracted
and removed, which provides the guarantee for the
subsequent processing of underwater acoustic orientation
algorithm. However, due to the time-varying and com-
plexity of the underwater acoustic environment during
practical testing, the performance of the algorithm in this
paper under complex hydrological conditions requires
further verification and improvement.
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