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Abstract. In scientific metrology practise the application of Monte Carlo simulations with the aid of the
GUM Supplement 2 (GS2) technique for performing multivariate uncertainty analyses is now more prevalent,
however a key remaining challenge for metrologists in many laboratories is the implicit assumption of Gaussian
characteristics for summarizing and analysing measurement model results. Whilst non-Gaussian probability
density functions (PDFs) may result from Monte Carlo simulations when the GS2 is applied for more com-
plex non-linear measurement models, in practice results are typically only reported in terms of multivariate
expected and covariance values. Due to this limitation the measurement model PDF summary is implicitly
restricted to a multivariate Gaussian PDF in the absence of additional higher order statistics (HOS) informa-
tion. In this paper an earlier classical theoretical result by Rosenblatt that allows for an arbitrary multivariate
joint distribution function to be transformed into an equivalent system of Gaussian distributions with mapped
variables is revisited. Numerical simulations are performed in order to analyse and compare the accuracy of the
equivalent Gaussian system of mapped random variables for approximating a measurement model’s PDF with
that of an exact non-Gaussian PDF that is obtained with a GS2 Monte Carlo statistical simulation. Results
obtained from the investigation indicate that a Rosenblatt transformation offers a convenient mechanism to
utilize just the joint PDF obtained from the GS2 data in order to both sample points from a non-Gaussian
distribution, and also in addition which allows for a simple two-dimensional approach to estimate coupled
uncertainties of random variables residing in higher dimensions using conditional densities without the need
for determining parametric based copulas.

Keywords: metrology uncertainty / GUM Supplement 2 / Monte Carlo / non-Gaussian PDF / Rosenblatt
transformation / pressure balance

1 Introduction

1.1 Research motivation

The original Guide to the Uncertainty of Measurement
(GUM) [1] utilizing an algebraic sensitivity coefficient
and mixed frequency and Bayesian statistics approach
has found widespread utilization in metrology practise for
uncertainty analysis, but is however only strictly valid for
linearised measurement models. An uncertainty analysis
of non-linear models without any limiting approximations
may instead be achieved with the application of the
Monte Carlo simulation (MCS) technique using the
GUM Supplement 1 (GS1) [2] and GUM Supplement
2 (GS2) [3] approaches for univariate and multivariate
models which supersede the original GUM technique.

* Corresponding author: ramnav@unisa.ac.za

When the GS1 and GS2 are utilized a fully Bayesian
statistics framework is utilized for modelling consistency,
whilst newer mathematical refinements to modernise and
update the original GUM are being further developed as
discussed by Bich et al. [4].
As a result both the GS1 and GS2 techniques are

considered suitable for application to generalized and non-
linear measurement models which are problematic for the
original GUM in its earlier form, where a key limitation
in the application of both the GS1 and the GS2 is in the
reporting of the summaries of the MCS simulation results
for a measurement model’s uncertainty if this deviates
from a univariate or multivariate Gaussian distribution.
In the case of the GS1 the use of extended lambda dis-

tributions (ELDs) as developed by Harris et al. [5] has
achieved good success, and has subsequently been applied
to non-Gaussian univariate models such as that for a gas
pressure balance as discussed by Ramnath [6]. The case
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for non-Gaussian multivariate models is more complex but
is in principle directly amenable with the use of multi-
variate copulas as originally developed by Possolo [7] for
metrology uncertainty analysis problems. This approach
has subsequently been implemented using parametrized
vine copulas for an oil pressure balance problem as dis-
cussed by Ramnath [8] in order to demonstrate the utility
of this approach for summarizing a non-Gaussian joint
PDF in mechanical metrology applications.
Consequently, although the use of copulas thus presents

an attractive theoretical tool for directly summariz-
ing arbitrary joint PDFs, either with parametrized vine
copulas as outlined by Nagler and Czado [9] or with non-
parametrized empirical beta copulas as outlined by Segers
et al. [10], the construction and utilization of copulas is
still a mathematically complex and challenging applica-
tion in the absence of readily available software routines
and technical guidelines for many practising metrologists.
As a result the formulation of a higher dimensional

joint PDF into an equivalent readily reported system of
mapped variables which follow a Gaussian distribution
with expected values and variances using a Rosenblatt
based transformation, thus presents a potentially sim-
pler and more convenient approach for many practising
metrologists for analysing GS2 data which may poten-
tially exhibit non-Gaussian characteristics if a functional
form of the joint PDF is available.

1.2 Research contributions

This paper focuses on using numerical simulations in order
to investigate and compare the accuracy of a mathemat-
ically equivalent sequential system of mapped Gaussian
PDFs with that of an exact non-Gaussian trivariate joint
PDF, that is obtained with representative synthesized
GS2 MCS statistical data of a pressure balance.
Techniques for conveniently constructing the equivalent

system which is composed of univariate marginals and
conditional multivariate distributions that are generated
with a Rosenblatt transformation of mapped random vari-
ables from the GS2 MCS data are demonstrated using
proposed developed numerical schemes. Mechanisms for
sampling from non-Gaussian distributions are developed
and validated by working out the Kullback-Leibler diver-
gence between the actual non-Gaussian joint PDF and the
equivalent system of Gaussian PDFs.
Finally, alternative techniques for estimating the uncer-

tainties of the model results directly in terms of the con-
ditional densities from the mapped measurement model
variables without the utilization of copulas are demon-
strated for practical metrology problems that may be
encountered in high accuracy calibrations and laboratory
inter-comparisons.

2 Literature review

2.1 Non-Gaussian PDFs in metrology studies

The conventional practise in reliability and quality engi-
neering studies as an overlapping field of metrology

uncertainty analysis is to approximate a multivariate PDF
in terms of statistical moments.
One approach by Acar et al. [11] uses the addi-

tive decomposition approach by Rahman and Xu [12]
to approximate a univariate function Y = f(X) for
an input X = [X1, . . . , XN ]T as a summation of one-
dimensional functions such that the approximation Ŷ (X)

is Ŷ (X) =
∑N
j=1 Y (µ1, . . . , µ(j−1), Xj , µ(j+1), . . . , µN ) −

(N −1)y(µ1, . . . , µN ) where µj , j = 1, . . . , N are the mean
values of the random variables Xj . For this approach
each of the independent random variables follows an
underlying probability distribution gj(Xj) and the prob-
lem is equivalent to the conventional metrology problem
of determining the uncertainty of a measurand model
specified as Y = f(X) using the GS1, where the prin-
ciple difference is that Higher Order Statistics (HOS)
information may be incorporated.
The application of HOS moments may also be extended

to approximating the joint PDF for multivariate functions
Y (X) i.e. for a measurement model of the form Y =
f(X) where Y = [Y1, . . . , Ym]T is a vector of outputs as
discussed by Bretthorst [13] using the maximum entropy
method of moments (MEM). The application of the MEM
has however until very recently been constrained by the
following five key issues in metrology studies, namely:

– The data samples themselves are not used but rather
the statistical moments which is not consistent with
a Bayesian approach

– The number of statistical moments and associated
Lagrange multipliers are unknown

– There is no consistent optimization search algorithm
– There is no consistent approach to assign uncertain-
ties to the Lagrange multipliers in accordance with
a Bayesian framework

– There is no consistent approach to assign uncer-
tainties to the PDF in accordance with a Bayesian
framework

The above combination of issues have subsequently
recently been resolved for metrology uncertainty anal-
ysis of measurement systems using a combined maxi-
mum entropy and Bayesian statistics approach developed
by Armstrong et al. [14]. This new MaxEnt/Bayesian
approach can therefore now in principle be applied to the
MCS method either for problems in which there is a heavy
computational cost, or alternately for highly non-linear
problems for which non-Gaussian PDFs may be present.
Investigations performed by Armstrong et al. [14] indicate
that the MaxEnt/Bayesian method is able to correctly
recover the measurement model’s PDF for Gaussian, non-
Gaussian and lognormal distributions for sample sizes
larger than M > 60 simulation events when using sixth
order HOS moments.
This more recent work may thus be contrasted with

many earlier metrology studies using the GS2 method
that were specifically restricted to second order statistical
moments i.e. a first order expected value and a sec-
ond order covariance. In the conventional GS2 approach
although HOS information is implicitly encoded and
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readily available within the MCS data typically denoted
as Ω, a multivariate Gaussian PDF for a measurement
model is nevertheless always implicit based on maximum
statistical entropy reasons if only second order statistical
moments are available. This joint PDF summary approach
in the GS2 is therefore common both to models with a low
computational intensity such as algebraic based models
that may generate a high number of Monte Carlo simu-
lation events, as well as to measurement systems with an
intrinsic high computational intensity such as finite ele-
ment method (FEM) and finite volume method (FVM)
based models that may only generate a small number
of Monte Carlo simulation events due to limited com-
putational resources, since only second order statistical
moments are reported for summarizing the joint PDF.
Computationally intensive models such as those gov-

erned by FEM and/or FVM based partial differential
equation solutions in mechanical and electrical metrology
systems generally make an implicit working approxima-
tion to justify a Gaussian distribution when only the
expected value ỹ vector as a first order statistical moment
and the covariance Uỹ matrix as a second order statis-
tical moment for a measurement model y = f(x) are
available, due to the finite number of simulation events
that are available due to limited computational resources.
An additional implicit assumption of a Gaussian PDF is
also utilized for many low computational intensity models
that could generate a larger number of Monte Carlo sim-
ulation events since both GUM supplements are presently
explicitly restricted to only utilizing first and second order
statistical moments. Due to this limitation the GS2 whilst
theoretically allowing for the possibility of non-Gaussian
PDFs within a Bayesian statistics modelling framework
as encoded within Ω, and which may in principle be used
to generate HOS information, is therefore unable to offer
any specific technical guidance on how to utilize HOS
information for modelling, summarizing and analysing
non-Gaussian characteristics in uncertainty analysis work.
If a metrologist thus allows for the possibility of a mea-

surement model that may exhibit a non-Gaussian PDF
that cannot adequately be approximated with a Gaussian
PDF, it then logically becomes necessary to either model
and summarize non-Gaussian PDFs either directly with
multivariate copulas, or indirectly with models that
utilize HOS information such as third, fourth and higher
order statistical moments, or alternately to completely
avoid approximations altogether but to simply utilize the
actual joint PDF obtained from the MCS GS2 data Ω.
In this latter approach, an equivalent system that can

model and summarize the non-Gaussian characteristics
using mapped random variables of transformed Gaussian
PDFs as statistical ‘building blocks’ from the actual joint
PDF, thus presents an appealing theoretical alternative
for summarizing and analysing a non-Gaussian joint PDF.

2.2 Review of Rosenblatt transformation method

The development of the transformation that maps ran-
dom variables from a general and possibly non-Gaussian
distribution with coupling effects between the random

variables, to an equivalent system of new mapped random
variables that follow Gaussian distributions was originally
discovered by Rosenblatt [15].
In the classical paper by Rosenblatt [15] X =

[X1, . . . , Xn]T ∈ Rn was a random vector with a cumula-
tive distribution function F (X1, . . . , Xn) such that a new
random vector Z = [Z1, . . . , Zn]T was generated using a
transformation T such that Z = T(X). This transforma-
tion was specified such that the corresponding random
variables z1, . . . , zn were

z1 = P (X1 6 x1)

z2 = P (X2 6 x2|X1 = x1)

...
zn = P (Xn 6 xn|X1 = x1, . . . , Xn−1 = x(n−1)) (1)

Subsequent studies by Lebrun and Dotfoy [16] using
results from more recent copula developments established
the equivalence between the original Rosenblatt transfor-
mation and later refinements such as the generalized Nataf
transformation. As a result in this paper we will restrict
the investigation to the classical Rosenblatt transforma-
tion which maps from the original distribution to a system
of Gaussian distributions.
The Rosenblatt transformation using a more modern

approach by Lebrun and Dotfoy [16] is defined as a
composition of two transformations such that if X ∈
Rn is a continuous random variable defined by univari-
ate marginal cumulative distribution functions and its
corresponding copula C, then the Rosenblatt transfor-
mation denoted as TR is defined by a composition of
two sequential transformations such that U = TR(X) =
TR2 ◦ TR1 (X).
The first transformation TR1 : (X ⊆ Rn) → (Y ⊆ Rn)

maps the original variate points x ∈ X into
a corresponding space of points y ∈ Y where
the transformation TR1 (X) = Y is defined as
Y = [FX(x1), . . . , FX(xn|x1, . . . , x(n−1))]T. In this
approach FX(xj |x1, . . . , xj−1) is the conditional cumula-
tive distribution function (CDF) for a random variable
xj for j = 1, . . . , n and it follows from standard statistical
theory that any conditional CDF automatically follows
a rectangular PDF i.e. FX(xj |x1, . . . , xj−1) ∼ R[0, 1] for
j = 1, . . . , n.
The second transformation is TR2 : (Y ⊆ Rn) →

(U ⊆ Rn) where U = TR2 (Y ) and is defined as U =
[Φ−1(Y1), . . . ,Φ−1(Yn)]T where Φ−1 denotes the inverse
normal transformation, formally defined as Φ−1(x) =√

2erf−1(2x − 1) where erf(x) denotes the error function
as discussed by van Albada and Robinson [17]. In this
second transformation it logically follows that the final
transformed variable follows a Gaussian PDF such that
Uj = Φ−1(Yj) ∼ N(µ = 0, σ2 = 1) for j = 1, . . . , n, due to
the explicit choice of a mapping function.
The essential utility of the Rosenblatt transforma-

tion is therefore that it allows for a random variable
v that has some arbitrary distribution Pv(v) to be
mapped to the cumulative distribution which is
always uniformly i.e. rectangularly distributed on
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the interval R[0, 1], and then the uniform distribution
is in turn mapped to a standard normal distribution
such that TR1 : (v ∼ Pv(v)) → (F ∼ R[0, 1]) and then
TR2 : (F ∼ R[0, 1])→ (u ∼ N(µ = 0, σ2 = 1)).
Since it is clear that the distributions always refer

to X the subscript in the conditional distribution
FX(xj |x1, . . . , x(j−1)) may be dropped for notational
brevity in the rest of the paper so that the transformed
variables may then be combined and the Rosenblatt trans-
formation TR2 ◦ TR1 (X) in the present context may then
simply be written as

u1 = Φ−1 (F (x1))
u2 = Φ−1 (F (x2|x1))

...
un = Φ−1

(
F (xn|x1, x2, . . . , x(n−1))

)
 (2)

If the normal distribution Φ is applied to all
of the mapped Gaussian variables i.e. Φ(uj) =
Φ(Φ−1F (xj |x1, . . . , xj−1) for j = 1, . . . , n an equivalent
system of mapped variables corresponding to TR1 (X) that
follow a rectangular distribution may be written as

r1 = F (x1)
r2 = F (x2|x1)
...

rn = F (xn|x1, x2, . . . , x(n−1))

 (3)

Noting that uj = Φ−1
(
F (xj |x1, x2, . . . , x(j−1))

)
with

equation (2) and rj = F (xj |x1, x2, . . . , x(j−1)) with equa-
tion (3) are mathematically interchangeable since a known
mapping and inverse mapping function exist between
these random variables, it may be concluded that either
system may be used to specify a Rosenblatt transforma-
tion. This is due to the fact that the normal distribution Φ
and inverse normal distribution Φ−1 may be used to con-
veniently map between the random variables rj and uj
such that uj = Φ−1(rj) and rj = Φ(uj) for j = 1, . . . , n.
The above system of conditional CDFs that underpin

the Rosenblatt transformation are connected to the equiv-
alent decomposition of an arbitrary joint PDF in terms of
conditional PDFs such that

f(x1, . . . , xn) = f(x1)× f(x2|x1)× f(x3|x1, x2)

× · · · × f(xn|x1, . . . , xn−1). (4)

In the above equation the order of the decomposition
is arbitrary and the equation may equivalently be writ-
ten in the case of a trivariate joint PDF f(x1, x2, x3)
as f(x1, x2, x3) = f(x3)f(x2|x3)f(x1|x3, x2) with similar
generalizations to higher dimensional joint PDFs.
Referring to the above system it may be seen that if

a random sample for uj , j = 1, . . . , n is generated from
a standard normal distribution N(µ = 0, σ2 = 1) then
the corresponding random variable for v may be obtained
from solving the equation Φ(u) = F (v). As a result a joint
PDF f(x1, . . . , xn) with an arbitrary and potentially non-
Gaussian distribution may with the aid of the Rosenblatt
transformation be modelled as an equivalent system of

Gaussian distributions using the underlying conditional
distributions.
Extensions for a generalized Rosenblatt transformation

that allow for mappings of arbitrary distributions where
uj does not necessarily follow an underlying Gaussian
distribution with N(µ = 0, σ2 = 1) are also theoretically
possible as discussed by Chang [18], but are not considered
further in this paper since this is conceptually straightfor-
ward if the first step rj = F (xj |x1, . . . , xj−1) ∼ R[0, 1] has
been obtained and another mapping function Ψ : r → u is
specified.
From a literature search it may be observed that the

inverse cumulative distribution function for a normal dis-
tribution Φ−1 is readily available in both commercial as
well as open source software packages. As an example in
the commercial package Matlab [19] Φ−1 is computed as
u = icdf(’Normal’, p, A) where p is a probability and
A = [mu, sigma] is an input of the distributions param-
eters which in the case of a normal distribution is simply
the mean µ and standard deviation σ, whilst in the open
source package GNU Octave [20] Φ−1 is computed as u =
norminv(p, mu, sigma).
Since Φ−1 is relatively straightforward to calculate

the practical application of utilizing a Rosenblatt trans-
formation as specified by equation (3) for a metrology
uncertainty analysis of non-Gaussian PDFs obtained with
a GS2 simulation, then reduces to the following two
conceptual and functional steps, namely:

– Selecting a convenient technique/software for cal-
culating the numerical values of the conditional
distributions F (xj |x1, . . . , xn) from the MCS data

– Selecting a convenient technique/software for alge-
braically summarizing the conditional distributions
F (xj |x1, . . . , xn) from the previous numerical data

3 Mathematical models

3.1 Generating MCS GS2 data

In a GS2 approach multivariate Monte Carlo data are
generated for a model that may have an explicit form
Y = f(X) where X = [X1, . . . , XN ]T is a model input
and Y = [Y1, . . . , Ym]T a model output, or an equivalent
implicit form h(Y ,X) = 0 for generality as discussed by
Harris et al. [5] if the model cannot be simplified to an
explicit form. The inputX has a corresponding joint PDF
gX(ξ) where ξ = [ξ1, . . . , ξN ]T is a random variable, whilst
the output Y has a corresponding joint PDF gY (η) where
η = [η1, . . . , ηm]T is a random variable.
Regardless of the form of the model if a GS2 technique

is implemented for M Monte Carlo simulation events by
solving yr = f(xr) or h(yr,xr) = 0 for r = 1, . . . ,M for
sampled random inputs x1, . . . ,xM then corresponding
random outputs y1, . . . ,yM will be generated from the
solution of the model. The outputs y1, . . . ,yM may then
be conveniently grouped as a m×M dimensional matrix
Ω to represent the MCS model output data. Changing
symbols and writing the matrix as Ω = [x1, . . . ,xM ]T

for M Monte Carlo simulation events where each random
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variable has a dimension of m× 1 without loss of general-
ity for notational convenience we consider the MCS data
to take the general form

Ω = [x1, . . . ,xM ] . (5)

In a conventional GS2 approach the matrix Ω con-
tains all the encoded information of the simulation and
the expected value x̃ and covariance matrix Ux̃ are cal-
culated. If the only known information is x̃ and Ux̃ then
according to maximum statistical entropy theory the PDF
will be a multivariate Gaussian distribution in the absence
of HOS information such as statistical moments, although
the HOS information is theoretically already encoded in
Ω for finite order moments.
The information encoded in the MCS data represented

by Ω, may therefore after suitable statistical post-
processing be represented as a joint PDF f(x1, . . . , xn)
if Ω is processed either using scaled histograms as
discussed by Oliphant [21] or alternately with kernel
density estimate (KDE) approaches as discussed by
Scott [22].
A mathematically equivalent representation of the

joint PDF is the CDF F (x1, . . . , xn) which is related
to the joint PDF by the equation f(x1, . . . , xn) =
∂nF (x1,...,xn)

∂x1···xn
. The CDF may in turn also be defined in

terms of the joint PDF by the equation F (x1, . . . , xn) =∫ x1

−∞ · · ·
∫ xn

−∞ f(t1, . . . , tn) dt1 · · · dtn.
As a result either the joint PDF f(x1, . . . , xn) or equiv-

alently the CDF F (x1, . . . , xn) are both automatically
known if the MCS GS2 data in Ω is appropriately pro-
cessed using standard statistical techniques, however the
key remaining challenge is in summarizing and analysing
a non-Gaussian joint PDF for metrology problems which
is the focus of this paper.

3.2 Calculating marginal distributions

In order to implement the Rosenblatt transformation
in equation (3) it is first necessary to calculate the
marginal distributions F (x1), . . . , F (xn) and then the con-
ditional distributions F (xj |x1, . . . , xj−1) for j = 2, . . . , n
which in turn rely on the earlier marginal distribution
calculations.
Noting that the terms F (xj), j = 1, . . . , n are univari-

ate distributions it is observed that these functions may
simply be calculated using earlier work by Willink [23]
with the aid of extended lambda distributions (ELDs)
if the MCS data Ω is available. The use of such ELDs
which are based on fourth order statistical moments was
later adapted and extended by Harris et al. [5] using
parametrized families of quantile functions and monotonic
splines for greater accuracy if higher statistical moments
are necessary. Other possible lambda distributions apart
from ELDs include a combined generalized lambda
distribution (GLD) and a generalized beta distribution
(GBD) to account for problematic skewness issues in
a normal GLD approach, where the combination of
these approaches is known as an EGLD which was
originally developed by Karian et al. [24]. An EGLD

may determined using four parameters λ1, λ2, λ3, λ4 that
are specified in terms of optimizations using statistical
moments if the univariate x-data points are supplied
as an input. Since EGLDs may take slightly different
forms many researchers opt to utilize the Freimer-
Mudholkar-Kollia-Lin generalized lambda distribution
(FMKL-GLD) which is the most common EGLD function
which takes the general form F−1(u;λ1, λ2, λ3, λ4) =
λ1 + λ−12 [λ−13 (uλ3 − 1)− λ−14 ((1− u)λ4 − 1)].
In the FMKL-GLD univariate model scheme all of the

parameters are free where the only restriction is that
λ2 > 0. An additional constraint that may be posed
to have finite kth statistical moments is to impose the
additional restriction that min(λ3, λ4) > −1/k. From a
review of the literature a maximum likelihood method as
discussed by Corlu and Meterelliyoz [25] is generally pre-
ferred and may conveniently be obtained using the readily
available open source software package fitgbd that has
recently been developed by Wang [26].
A possible disadvantage of a more complicated curve

fit such as a FMKL-GLD is that the optimization to
determine the optimal values for λ1, λ2, λ3, λ4 may be
more difficult to obtain than using simpler approaches
such as a least squares regression, and hence require more
advanced approaches such as maximum likelihood estima-
tion (MLE) schemes that are not necessarily available to
practicing metrologists.
For this reason in many earlier metrology stud-

ies univariate curve fits for the marginal distributions
F (x1), . . . , F (xn) typically utilized the more standard
ELD form of Willink [23] which takes the simpler form
for the quantile function as

Q(ρ) =

{
d+ (c/b)[aρb − (1− ρ)b + 1− a], b 6= 0
d+ c[a log(ρ)− log(1− ρ)], b = 0

. (6)

The above ELD equation is based on fourth order sta-
tistical moments and may be used to fit the data for the
marginal distribution F (x1) by sampling a random point
ρ where 0 6 ρ 6 1 corresponding to ρ = Φ(u1) if u1 is
a sampled point from U ∼ N(0, 1) and then working out
the corresponding random variable x1 from the equation
x1 = Q(ρ). A similar approach may also be used for all
of the remaining marginal distributions F (x2), . . . , F (xn)
so that all of the marginal distributions F (xj) are mod-
elled using parameters aj , bj , cj , dj for j = 1, . . . , n. In all
of the above lambda distribution schemes it is generally
assumed that a unimodal behaviour is present i.e. there
is a ‘single peak’ of the random variable with an element
of skewness and kurtosis. In the event that a more com-
plicated behaviour is present with multiple peaks then
univariate splines as developed by Harris [5] may instead
be utilized.
If the underlying MCS data Ω is not available, or if

a parameter based functional fit using fourth order sta-
tistical moments is inadequate, and only the joint PDF
f(x1, . . . , xn) is known then the marginal distributions,
either with single or multiple peaks, may instead be
calculated directly from the joint PDF with the HOS
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information using the fundamental equation such that

f(xj) =

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x1, . . . , xn)

× du1 · · · duj−1duj+1 · · · dun. (7)

3.3 Calculating conditional distributions

Since f(x1, . . . , xn) or F (x1, . . . , xn) are assumed to be
known for a MCS data set Ω which may be Gaussian
or non-Gaussian, the only remaining requirement to con-
vert the problem into the standard form specified by
equation (3) is to calculate the conditional distributions
F (xj |x1, . . . , xj−1) for j = 2, . . . , n since the marginal dis-
tribution corresponding to the case for j = 1 has already
been specified in the previous section. Two approaches are
possible, namely an indirect approach that uses copulas,
and a direct approach which uses numerical and symbolic
integrations of the joint PDF.
The indirect approach which utilizes copulas to calcu-

late the conditional distribution makes use of a result
by Nagler [27] and just the MCS data Ω. In this
approach the conditional univariate/multivariate distribu-
tion is specified using the copula C from F (x1, . . . , xn) =
C(F (x1), . . . , F (xn)) such that

F (x|v) =
∂C(F (x|v−j), F (vj |v−j))

∂F (vj |v−j)
. (8)

In the above formula v = [v1, . . . , vk]T, vj is any conve-
nient arbitrary element of v e.g. vj = v1 or vj = vk, v−j =
v\{vj} i.e. the vector v with the element vj removed, and
the copula is constructed with F (x|v−j) = z1 as a first
argument and F (vj |v−j) = z2 as a second argument i.e.
the copula C(z1, z2).
For conditional univariate/univariate distributions the

above formula simplifies to

F (x, v) =
∂C(Fx(x), Fv(v))

∂v
. (9)

When these formulae are applied to equation (3) it fol-
lows that the conditional distributions may be calculated
as

F (x2|x1) =
∂C(F (x2), F (x1))

∂F (x1)
(10)

F (xj |x1, . . . , xj−1)

=
∂C(F (xj |x1, . . . , xj−2), F (xj−1|x1, . . . , xj−2))

∂F (xj−1|x1, . . . , xj−2)
,

j = 3, . . . , n (11)

Noting that the conditional in equation (11) for an
index j is defined in terms of the previous conditional
for j − 1 and that equation (10) has an explicit expres-
sion for j = 2 it may be observed that equation (10)
and equation (11) then allow for all the conditionals for
j = 2, . . . , n to be calculated. As a result the calculation of

conditional distributions reduces to fitting bivariate cop-
ulas for C(z1, z2) for specified marginals z1 and z2, and
conditional variate data.
Different approaches to fitting bivariate copulas are

possible, all of which essentially reduce to parameter opti-
mizations for choices of bivariate copula families, however
the simplest approach is to use the open source R software
package VineCopula by Nagler et al. [28] which performs
the optimization with the following R code:

C12 <- BiCopSelect(u1, u2, familyset = NA)
# c(1, 2, 3, 4, 5, 6, 7)

At the present time of writing, although some other
routines in Matlab and Python for fitting copulas are
available, the R-based VineCopula package is considered
the most advanced and practical software package for
fitting and estimating copulas for multivariate data.
In the above code fragment u1 and u2 are the marginals

for random variables x1 and x2 calculated as u1 = F (x1)
and u2 = F (x2) and C12 is an object that contains the
properties of the bivariate copula which may be used
specify its mathematical equation by looking up the prop-
erties of the object and in the software package’s reference
documentation.
Although forty different choices of parameter based

bivariate copula may be fitted with the VineCopula pack-
age not all of these copula families are fully supported.
As a result from a practical implementation perspective
it is sometimes necessary to restrict the best copula fit to
the first seven standard copulas which are fully supported
viz. the independence Archimedean, Gaussian, Student-t,
Clayton, Gumbel, Frank, Joe, and BB1 copulas by specify-
ing the selection as familyset = c(1,2,3,4,5,6,7). The
effect of this restriction is that the most accurate choice
of copula may not be fitted due to the combination of the
mathematical complexity of the copula’s functional form
and the associated numerical challenges with performing
the parameter optimization fit.
In the event that a supported standard bivariate copula

is fitted and its parameters determined, then the partial
derivatives ∂C(u1,u2)

∂u1
and ∂C(u1,u2)

∂u2
may be calculated for

specified values of u1 and u2 using the following code:

dC12du1 <- BiCopHfunc1(u1val, u2val, C12)
dC12du2 <- BiCopHfunc2(u1val, u2val, C12)

Whilst the above indirect approach is conceptually sim-
ple it is critically reliant on the use of the VineCopula
software library, and may therefore not be accessible to
metrologists who are not familiar with and proficient in
programming with the R-language for statistical comput-
ing. As a result to cater for a variety of metrologists who
may utilize other software languages and packages it is
thus beneficial to utilize a direct approach for generality.
The direct approach utilizes numerical/symbolic inte-

grations of the joint PDF f(x1, . . . , xn) which is assumed
to be known in a form that is amenable to calculations,
where f(x1, . . . , xn) may be obtained from results using
scaled histograms or KDE schemes from the MCS data Ω
as previously discussed.
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In order to calculate the conditional distributions
F (xj |x1, . . . , xj−1) it is first necessary to calculate the
conditional density f(xj |x1, . . . , xj−1). This may be
achieved by first assuming that f(x1, . . . , xn) is known
so that

f(x1, . . . , xj)

=

∫ ∞
−∞
· · ·
∫ ∞
−∞

f(x1, . . . , xj , uj+1, . . . , un)

× duj+1 × · · · × dun, 1 6 j 6 n. (12)

The above result may then be used to calculate the
conditional density such that

f(xj |x1, . . . , xj−1) =
f(x1, . . . , xj)

f(x1)× · · · × f(xj−1)
. (13)

The conditional distribution is then finally calculated
from the conditional density such that

F (xj |x1, . . . , xj−1) =

∫ xj

−∞
f(uj |x1, . . . , xj−1) duj . (14)

In the above formula for F (xj |x1, . . . , xj−1) no sim-
plifying assumptions are utilized, and the conditional
distributions implicitly utilizes all of the HOS informa-
tion inclusive of potential non-Gaussian characteristics if
the joint PDF f(x1, . . . , xn) has been correctly determined
from the GS2 data Ω obtained from a MCS.
As a result, the conditional distribution may be conve-

niently calculated either symbolically or numerically using
any convenient software package such as Matlab, Octave,
Python or R if the joint PDF f(x1, . . . , xn) is known
without the necessity of utilizing specialist statistical
packages.

3.4 Comparing GS2 and Rosenblatt PDFs

In order to compare two different PDFs, fX(x) corre-
sponding to the GS2 based exact non-Gaussian joint PDF
and fY (x) corresponding to the Rosenblatt equivalent
joint PDF, the Kullback-Leibler divergence defined as

DKL(X,Y ) =

∫
Rn

fX(x) log

{
fX(x)

fY (x)

}
dx (15)

is used as a measure to estimate the ‘distance’ or deviation
between the two PDFs.
If the joint PDFs are equal every such that fX(x) =

fY (x) for all points x ∈ Ω it then follows that
log(fX(x)/fY (x)) = log(1) = 0. As a result when this
function is integrated for all points x ∈ Ω it follows that
DKL(X,Y ) = 0. If on the other hand the functional eval-
uations are not equal every where then DKL(X,Y ) 6= 0.
As a result the closer DKL(X,Y ) is to zero then the
better the ‘fit’ is between the two different joint PDFs.

4 Numerical simulations

4.1 Generating a MCS GS2 non-Gaussian dataset

Earlier work by Ramnath [8] studied a bivariate pressure
balance model of the form A = A0(1 + λP ) where A is
the effective area of the pressure balance, λ is a distor-
tion coefficient and P is an independently varied applied
pressure in the range 50 6 P/[MPa] 6 500. In this model
the parameters A0 and λ are coupled to each other and a
bivariate PDF gA0,λ(ηA0 , ηλ) is used to model the charac-
teristics of the pressure balance. This physical pressure
balance model may be extended to a three parameter
model of the form

A = A0(1 + λ1P + λ2P
2) (16)

as discussed by Yadav et al. [29] where the parameters
A0, λ1 and λ2 are coupled in a trivariate joint PDF
gA0,λ1,λ2

(ηA0
, ηλ1

, ηλ2
), however relatively few experimen-

tal data sets are available of pressure balances which
exhibit strongly non-Gaussian characteristics. In the ear-
lier work by Ramnath [8] the experimental data-set
exhibited weakly non-Gaussian characteristics i.e. the
non-Gaussian joint PDF could be roughly approximated
with a Gaussian joint PDF for a reduced level of accuracy,
and as a result there exists a general research gap in the
area of metrology uncertainty analysis for summarizing
and analysing non-Gaussian joint PDFs that cannot be
adequately approximated with Gaussian joint PDFs.
In order to avoid the unnecessary complexity of solving

for a full measurand model which may potentially pro-
duce a multivariate weak non-Gaussian distribution in this
paper we therefore opt to instead directly model a joint
PDF using an Azzalini multivariate skew-normal (AMSN)
distribution. The AMSN which was developed by Azza-
lini and Capitanio [30] is denoted as Y ∼ SNk(ξ,Ω,α)
and is utilized in this paper in order to specifically
ensure a strongly non-Gaussian distribution that cannot
be adequately summarized and approximated with a GS2
multivariate Gaussian joint PDF. Under these circum-
stances the actual non-Gaussian joint PDF for a random
variable y ∈ Rk is defined as

gY (y) = 2φk(y − ξ; Ω)Φ(αTω−1(y − ξ)). (17)

In the above equation ξ, Ω and α are parameters for
the AMSN where ξ is a center for the distribution, Ω is a
covariance matrix, and α is a shape parameter.
Open source software routines have subsequently been

developed by Azzalini [31] to easily and conveniently
sample from the AMSN distribution if the equivalent
quantities for the mean µ, covariance Ω and shape param-
eters α are provided. The use of these open source routines
thus allows for a convenient approach to generate syn-
thetic non-Gaussian Monte Carlo data in order to build
up Ω for subsequent analysis in order to construct either
f(x1, . . . , xn) or F (x1, . . . , xn).
Simulations in this paper are performed for a skew-

normal SN3 distribution in order to artificially emulate
a pressure balance model that has a non-Gaussian joint
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Table 1. Parameters for a generating a non-Gaussian pressure balance joint PDF model using a multivariate skew-
normal distribution .

µ1 µ2 µ3 r12 r13 r23 σ1 σ2 σ3 δ1 δ2 δ3

1.961926 2.611996 6.409901 0.26 0.12 0.06 0.05µ1 0.035µ2 0.04µ3 0.4 1.0 0.6

PDF equation where the three-dimensional measurement
model has the form A = A0(1 + λ1P + λ2P

2), where the
random variables are x1 = ηA0 , x2 = ηλ1 and x3 = ηλ2 so
that the joint PDF gA0,λ1,λ2(ηA0 , ηλ1 , ηλ2) is represented
as f(x1, x2, x3) for notational brevity and simplicity.
The parameters for the corresponding SN3 function are
reported in Table 1 where the covariance matrix is built
up in terms of the correlation coefficients such that
Σij = rijσiσj .
Using the data in Table 1 then allows for the construc-

tion of the mean µ = [µ1, µ2, µ3]T, covariance Σ, and
shape parameter [δ1, δ2, δ3]T so that the Monte Carlo data
dataOmega = Ω and corresponding joint PDF dataf =
f(x) data may be generated by running the following
computer code in a RStudio version 1.2.5001 developer
environment using a R version 3.6.1 code base running in
Microsoft Windows 10 as shown below:

library(EMMIXskew)
n <- 15000
dataOmega <- rdmsn(n, p, mean, cov, del)
dataf <- ddmsn(y, n, p, mean, cov, del)
write.table(dataOmega,

file = paste(getwd(),’/Omega.txt’, sep = ""),
append = FALSE, sep = " ", dec = ".",
row.names = FALSE, col.names = FALSE)

write.table(dataf,
file = paste(getwd(),’/Density.txt’, sep = ""),
append = FALSE, sep = " ", dec = ".",
row.names = FALSE, col.names = FALSE)

In the above code fragment EMMIXskew is the library
developed by Azzalini [31] that must first be loaded in
order to call the functions rdmsn that samples random
points from the distribution and ddmsn that conveniently
calculates the probability density function values for the
corresponding sampled points.
Considering the synthetic MCS non-Gaussian data set,

the variable x1 emulates a scaled random variable of
zero-pressure area ηA0 , the variable x2 emulates a scaled
random variable of the first distortion coefficient ηλ1 , and
the variable x3 emulates a scaled random variable of the
second distortion coefficient ηλ2 . Typical physical units
for these physical parameters are A0 = O(10−6m2), λ1 =
O(10−12Pa−1) and λ2 = O(10−24Pa−2) if the applied
pressure is in the range 50 6 P/[MPa] 6 500 as reported
by Ramnath [32] in later studies. As a result the phys-
ical meaning of the synthetic data that is generated
with the AMSN is that the Monte Carlo data corre-
sponds to random variables which have scaled units of
x1/[mm2], x2/[ppm/MPa] and x3/[(ppm/MPa)2] respec-
tively for a pressure balance measurement model of the
form A = x1(1 + x2P + x3P

2).

Fig. 1. Volumetric isosurfaces visualization of the actual GUM
supplement 2 non-Gaussian joint PDF obtained from synthetic
sampled Monte Carlo simulation data-points generated from a
three-variable Azzalini multivariate skew-normal joint PDF.

For the example shown n = 15000 random multivari-
ate points are sampled from the AMSN distribution and
the corresponding Ω and f(x) data are saved to text
files omega1.txt and density1.txt. The actual non-
Gaussian joint PDF is visualized in Figure 1 using an
isosurface volumetric perspective with 8 isodensity levels
from the minimum to maximum joint PDF values. In this
figure, the skew and asymmetric behaviour due to the
non-Gaussian distribution behaviour may be qualitatively
but subjectively observed.
Referring to the non-Gaussian joint PDF plot it is

observed that the points are clustered near the ‘bottom
left’ as seen by the darker colors and are then “stretched”
towards the ‘upper right’. This non-Gaussian behaviour
may be visually contrasted with the corresponding Gaus-
sian approximation as shown in Figure 2 also for 8
isodensity levels from the minimum to maximum joint
PDF values, from which it is observed that the points are
clustered in the ‘middle region’, and are symmetrically
“stretched” in an equal manner towards the ‘bottom left’
and ‘upper right’ respectively as a symmetric ellipsoid. An
additional observation is that the Gaussian approximation
“cuts-off” part of the joint PDF for the same range of x1,
x2 and x3 points as the regions are ‘equally stretched’
out in both directions, whereas the original non-Gaussian
exhibits an ‘unequal stretching’. Consequently when com-
paring the two visualizations of the actual non-Gaussian
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Fig. 2. Volumetric isosurfaces density visualization of the
approximate GUM supplement 2 Gaussian joint PDF obtained
from synthetic Monte Carlo data sampled from a Gaussian dis-
tribution using second order statistical moments based expected
value and covariance information.

and approximate Gaussian joint PDFs, it may be observed
and concluded that the Gaussian joint PDF with low order
second order statistical moments i.e. an expected value
ỹ vector and covariance Uỹ matrix cannot adequately
approximate a non-Gaussian joint PDF.
The equivalent Rosenblatt transformation system con-

structed with N = 15000 sampled points from the
marginal and conditonal density equations outlined later
in the paper is shown in Figure 3. In this plot it is clearly
observed that whilst there are minor fluctuations in the
isodensity values in different regions of points x ∈ Ω
due to the stochastic nature in which both the GS2
and Rosenblatt systems were generated that the overall
characteristics of the GS2 system in Figure 1 is broadly
equivalent to that of the Rosenblatt system in Figure 3 as
both systems exhibit strong non-Gaussian characteristics.
Both the exact and equivalent non-Gaussian characteris-
tics of the GS2 and Rosenblatt systems when contrasted
with the GS2 Gaussian approximation constructed with
the expected value and covariance in Figure 2 are found
to exhibit differences. As a result it may be qualitatively
observed that the traditional GS2 approach for summariz-
ing a multivariate distribution with second order statisti-
cal moments using a multivariate Gaussian, is problematic
and inaccurate if there is a strong non-Gaussian behaviour
in the actual data.
These numerical results are suggestive that it may be

advantageous for a metrologist to first test for multivari-
ate normality in order to decide whether a multivariate
Gaussian distribution is adequate instead of automat-
ically assuming this condition by only specifying the
first order statistical moment in ỹ and the second order
statistical moment in Uỹ. In the event that such tests
determine that a Gaussian distribution is problematic

Fig. 3. Volumetric isosurfaces density visualization of the
equivalent Rosenblatt transformation system.

then the alternative would be to construct the Rosenblatt
transformation system so this could instead be utilized
to appropriately model and analyse a joint PDF where
second order statistical moments are inaccurate.
Noting that in a practical metrology uncertainty anal-

ysis such as a laboratory primary standard calibration or
a laboratory inter-comparision, where additional quanti-
tative statistical tests are necessary to make an objective
assessment as to whether the distribution is sufficiently
strongly non-Gaussian, a choice of quantitative test to
objectively check for multivariate normality then becomes
necessary in order to decide whether the non-Gaussian
joint PDF may be approximated with a Gaussian joint
PDF.
Different quantitative types of statistical tests to check

for normality of univariate data are available and include
the Shapiro-Wilk, D’Agostino K-squared, and Anderson-
Darling tests amongst others as discussed by Ghasemi
and Zahediasl [33], with related extensions for multivari-
ate data. In this paper we opt to test for multivariate
normality using the approach originally proposed by Mar-
dia [34] for simplicity. The Mardia normality approach
tests for multivariate skewness and kurtosis, and is cho-
sen for its simplicity and ready availability in the open
source R-package MVN package by Korkmaz et al. [35].
Quantitative results when this normality test is applied

to the GS2 data-set from Figure 1 are summarized in
Figure 4 and similarly for the Rosenblatt transfomation
system in Figure 5. In this statistical summary it may
be observed that both distributions do not satisfy the
Mardia skewness and kurtosis normality tests i.e. neither
the actual GS2 nor the equivalent Rosenblatt data can
be approximated with a three-dimensional Gaussian dis-
tribution. This information objectively and quantitatively
demonstrates that the GS2 data fails both the normal-
ity criteria checks as the p-values are significantly below
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Fig. 4. Statistical summary of multivariate non-Gaussian characteristics of the GUM supplement 2 Monte Carlo data using the
Mardia normality test.

the cut-off thresholds that requires p > 0.05 in order to
satisfy the normality criteria. Referring to these results
an additional benefit that may be noted when using the
standard Mardia test with the MVN package, is that
this statistical test also in addition reports on the nor-
mality of the marginal distributions of f(x1), f(x2) and
f(x3) in the case of a joint PDF f(x1, x2, x3) using the
Shapiro–Wilk test. A consequence of this is that cau-
tion should also be exercised in attempting to model
the marginal distributions with extended lambda distri-
butions (ELDs) as ELDS are generally utilized to model
weakly non-Gaussian distributions that do not deviate too
far from univariate Gaussian distributions. This result
is suggestive that the distributions may need to be
modelled either with parametrized high order statistical
moments or alternately with non-parametrized kernel den-
sity estimates if there is a strong non-Gaussian nature in
the distribution.
Referring to these additional results it is observed that

all of the marginal distributions also do not pass the nor-
mality tests since all of p-values are again significantly

smaller than 0.001, where a value of p > 0.05 is similarly
required in order for the marginal distribution to be con-
sidered sufficiently Gaussian in nature. As a result, it may
be concluded that the GS2 non-Gaussian joint PDF data
under consideration cannot be approximated with a mul-
tivariate Gaussian distribution, and hence a measurement
uncertainty analysis must either directly utilize the non-
Gaussian joint PDF or alternately indirectly utilize the
same data in an equivalent and more convenient form for
further analysis.
Due to the complexity of the joint PDF under consid-

eration for generality a functional form for f(x1, x2, x3)
must be specified in order to determine the marginal
distribution F (x1), and the associated conditional dis-
tributions F (x2|x1) and F (x3|x1, x2) for mathematical
completeness. Since the data x1,x2,x3, and f(x1, x2, x3)
are known for discrete points from the MCS data Ω and
exhibit strong non-Gaussian characteristics, this may be
conveniently achieved using a KDE approach which avoids
low order statistical moment inaccuracies with any appro-
priate software choice such as Matlab, Octave, Python or
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Fig. 5. Statistical summary of multivariate non-Gaussian characteristics of the Rosenblatt transformation system Monte Carlo
data using the Mardia normality test.

R for which KDE software routines and best practises are
readily available.

4.2 Calculating a Rosenblatt transformation system

The GS2 non-Gaussian data Ω as visualized in terms
of its joint PDF f(x1, x2, x3) in Figure 1 has a cor-
responding GS2 Gaussian joint PDF approximation as
shown in Figure 2. This approximation which only uti-
lizes the expected value ỹ and covariance Uỹ obtained
from Ω may be utilized to observe the differences in den-
sity variations over the domain. When these quantitative
differences are obtained with the aid of the Marsia multi-
variate normality tests from the previous section, it may
be concluded that the variations are too severe for a Gaus-
sian approximation to be utilized as the GS2 data exhibits
strong non-Gaussian characteristics. As a result only the
actual non-Gaussian joint PDF data will be considered,
contrasted and compared with the equivalent Rosenblatt
transformation based joint PDF data.

In order to proceed with the analysis the information
in Ω must first be post-processed in order to calculate
the marginal distributions for F (xj) and the conditional
distributions for F (xj |x1, . . . , xj−1) for j = 1, 2, 3 in order
to work out the corresponding values of the Rosenblatt
transformations. Expanding out it follows that

r?1 = F (x?1) (18)
r?2 = F (x?2|x?1) (19)
r?3 = F (x?3|x?1, x?2). (20)

The application of the Rosenblatt transformation
method then reduces to finding appropriate values of
x?1, x

?
2, x

?
3 that solve the above system of conditional

distribution equations for specified random variables
r?1 , r

?
2 , r

?
3 ∼ R[0, 1] using equation (14), for which explicit

forms of these equations are derived in the Appendix.
This can be sequentially achieved by first solving

equation (18) which produces the x?1 value, then using
the known values of x?1 in equation (19) which produces
the x?2 value, and then finally using the known values of
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x?1 and x?2 in equation (20) to produce the x?3 value so
that [x?1, x

?
2, x

?
3]T corresponds to a sampled point from the

f(x1, x2, x3) distribution. This process may be extended
in a straightforward manner for higher-dimensional
systems of random variables x ∈ Rd in measurement
models for GS2 Monte Carlo simulation studies where a
joint PDF f(x1, . . . , xd) for 3 6 d ∈ N is known.

4.3 Calculation of the Kullback-Leibler divergence

Once all of the solved values of x?1, x?2, x?3 have been
obtained for a sufficiently large number of points then a
new joint PDF fY (x) may be constructed as visualized in
Figure 3 in order to compare it with the original joint PDF
fX(x) as shown in Figure 1. This information may be
processed by calculating the Kullback-Leibler divergence
DKL(X,Y ) specified in equation (15) in order to obtain
a quantitative indication of the accuracy of the equivalent
Rosenblatt transformation system of the original non-
Gaussian joint PDF. If the scalar value of DKL(X,Y )
which is obtained by integrating over the hyper-volume
that envelopes all of the generated variables that were
used in the construction is sufficiently close to zero, then
the equivalence of the original non-Gaussian fX(x) and
the equivalent Rosenblatt system of mapped variables will
have been established.
In order to evaluate the Kullback-Leibler divergence it

is necessary to perform a multivariate integral of the form∫
ξ∈Ω φ(ξ) dξ over the space of the random variables. Due
to the complexity of the underlying integrand function
φ this may be more conveniently and simply achieved
through the use of a Monte Carlo integration scheme such
that ∫

V

φ(ξ) dξ = V ×
∑N
i=1 f(xi)

N
. (21)

In the above equation N is a number of points within
the hyper-volume V that is defined by the collection of all
the points x ∈ Ω such that V is calculated as

V =

d∏
i=1

[max(xi)−min(xi)] (22)

where xi is the random variable for a dimension obtained
from x = [x1, . . . , xd]

T and d is the number of dimensions.
When this is implemented a final value of DKL(X,Y ) =
0.045199 results where X denotes the actual GS2 dis-
tribution and Y denotes the equivalent Rosenblatt
transformation system distribution.
Since DKL ≈ 0 even for a relatively small number of

n = N = 15000 Monte Carlo sampled points from the
underlying distributions it may reasonably be concluded
that the mapped Gaussian variables obtained from the
Rosenblatt transformation is indeed equivalent to the orig-
inal non-Gaussian GS2 distribution. This observation thus
provides quantitative proof of the validity of the numerical
scheme used to construct the conditional densities using
equation (12), equation (13) and equation (14), and also

in addition provides a convenient mechanism to sample
from non-Gaussian multivariate distributions.

4.4 Analysis of Rosenblatt transformations

Although a mechanism of sampling from a non-Gaussian
joint PDF f(x) is a convenient result by itself, a further
additional benefit of the Rosenblatt transformation is that
it allows for the study of uncertainties of random variables
based on the coupling effect of other random variables
without the need for a complicated determination of the
underlying copula. This effect may be investigated by not-
ing that the original joint PDF may be decomposed as
f(x1, x2, x3) = f(x1)f(x2|x1)f(x3|x1, x2) and as a result
when the conditional densities f(x2|x1) and f(x3|x1, x2)
are calculated they may then be used to obtain estimates
for the corresponding variations in x2 and x3 respectively.
Although the variation in x1 is immediately determined

by the marginal distribution f(x1), it is not immedi-
ately obvious which values of x1 to utilize in f(x2|x1)
for the variation of x2, and similarly which combination
of values of x1 and x2 to utilize in f(x3|x1, x2) for the vari-
ation of x3. Motivated by the earlier discussion of fitting
extended lambda distributions for univariate distributions
it is noted that quartiles and quantiles can offer a conve-
nient initial choice of limits in the random variables in
order to study their coupling effect on the uncertainties of
the other random variables.
By standard statistical convention, there are three quar-

tiles in any univariate distribution, namely Q1 which splits
the lowest 25% of the data from the highest 75%, Q2

which simply gives the median value that splits the data
in half by seperating the lower 50% and upper 50% of
the data, and finally Q3 which splits the highest 25%
of the data from the lowest 75% of the data. Quan-
tiles function in a similar manner and split the data
into five equal portions, and as a result this suggests
that in general percentiles may offer a convenient mecha-
nism to test the “spread” in uncertainty for the previously
calculated conditional density distributions f(x2|x1) and
f(x3|x1, x2). Due to the variety of choices of possible
percentiles to consider we restrict the selection to the
25%, 50% and 75% percentiles for brevity, noting that
any choice of percentile may be utilized in a conditional
density function. Referring to the earlier Mardia normal-
ity tests in Figure 5 it follows that x(25%)

1 = 2.079300,
x
(50%)
1 = 2.235216, x(75%)

1 = 2.433417, x(25%)
2 = 2.926692,

x
(50%)
2 = 3.290420, and x(75%)

2 = 3.784753 respectively.
When the above choices of limits are incorporated into

the Rosenblatt transformed system a set of a marginal
density curve for f(x1) in Figure 6, and conditional den-
sity curves for f(x2|x1) in Figure 7 and f(x3|x1, x2) in
Figure 8 respectively, may be generated in order to deter-
mine the “spread” in uncertainties for u(x1), u(x2) and
u(x3) under different operating conditions. This combi-
nation of marginal and conditional densities in terms
of simple xy-graphs may then be used to estimate the
“spread” of likely values of the random variables for differ-
ent regions within Ω without the attendent difficulties of
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Fig. 6. Visualization of the Rosenblatt marginal density f(x1).

Fig. 7. Visualization of the Rosenblatt conditional density
f(x2|x1).

Fig. 8. Visualization of the Rosenblatt conditional density
f(x3|x1, x2)

constructing the copulas and attempting to visualize the
coupling effects in higher dimensional spaces.
One particular example of how the Rosenblatt sys-

tem presents advantages is for the representative pressure

balance problem data-set that was studied when the zero-
pressure area ηA0 = x1 is known with a greater confidence
so that this influences the likely uncertainty of the dis-
tortion coefficent ηλ = x2. In this particular case for
a trivariate joint PDF where ηA0

= x1, ηλ1
= x2 and

ηλ2 = x3, the conditional densities such as f(x2|x(50%)
1 )

and f(x3|x(50%)
1 , x

(50%)
2 ) may be used to study the likely

effect on the uncertainties of u(x2) = u(λ1) and u(x3) =
u(λ2). Similarly, the effect of prior known informa-
tion from for example earlier instrument calibrations
and/or inter-comparison reports may be used as inputs
into conditional densities in order to analyse variations
in uncertainties.
This functionality thus presents potential new advan-

tages to metrologists for performing advanced uncertainty
analyses of laboratory measurement standards and inter-
comparisons which was not previously possible for GUM
Supplement 2 based Monte Carlo simulations which exhib-
ited non-Gaussian characteristics, and for which it was
previously difficult to investigate conditional probabilities
for metrology based uncertainty calculations. A potential
additional benefit of the new conditional density approach
that is implicit within the Rosenblatt transformation sys-
tem is that it becomes easier to determine possible “double
peaks” that may affect uncertainties by inspecting the xy-
graphs, where this information was previously “hidden” in
the higher dimensional space.

5 Discussion

This paper reported on research work that performed
a mathematical analysis with corresponding numerical
simulations in order to investigate the practicality of
utilizing a mathematically equivalent sequential system
of mapped Gaussian PDFs for modelling, summarizing
and analysing a non-Gaussian joint PDF in metrology
uncertainty analysis studies.
Techniques for conveniently constructing the

Rosenblatt transformation system based univariate
marginal density and multivariate conditional densities
for non-Gaussian distributions with a direct integration
approach were therefore considered and investigated in
this paper. Results with this approach where the joint
PDF was constructed with a kernel density estimate
(KDE) modelling scheme of the original GUM supplement
2 data were found to offer a convenient, practical and
accurate approach. When this approach was extended it
was further determined that it also offered a convenient
mechanism for sampling from non-Gaussian distributions.
An additional benefit of a KDE approach over lambda

distribitions for fitting functions was observed when the
variables exhibited multiple peaks and strongly deviated
from Gaussian distributions, for which conventional low
order statistical moment based lambda distributions have
difficulties addressing but which are straightforward for
KDE schemes.
Based on the approach developed an alternative tech-

nique for estimating the uncertainties of the model results
directly in terms of the conditional densities without
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the utilization of constructed copulas was considered
using representative quartiles and expected values of
the random variables. This approach presents a new
novel method for metrologists for analysing non-Gaussian
PDFs in practical measurement uncertainty problems that
may be encountered in high accuracy calibrations and
laboratory inter-comparisons.

6 Conclusions

Based on the investigation reported in this paper the
following conclusions were determined:

– The Rosenblatt transformation offers a convenient
mechanism for decomposing a multivariate distri-
bution into an equivalent system of marginal/con-
ditional distributions that can be used to con-
veniently sample points from higher-dimensional
non-Gaussian joint PDFs

– A direct numerical integration of the joint PDF
that is approximated with a kernel density esti-
mate (KDE) is recommended for calculating both
the marginal and conditional densities

– The marginal and conditional densities may conve-
niently be used to estimate uncertainties in higher-
dimensional multivariate non-Gaussian distributions
using sequences of two-dimensional xy-graphs with-
out the need for constructing parameter and/or
empirical based copulas.

7 Influences and implications

Based on the research reported in this paper the following
influences and implications were determined:

– Metrologists are no longer constrained in summariz-
ing and approximating GUM Supplement 2 measure-
ment uncertainties as multivariate Gaussian distri-
butions if non-Gaussian characteristics are present

– More accurate and non-linear/multi-modal measure-
ment uncertainty effects for metrology applications
may now be directly considered using kernel den-
sity estimate based schemes without prior linear/
uni-modal behavior approximations that was previ-
ously necessary with low order statistical moment
models such as lambda distributions.

This work was performed with funds provided by the Depart-
ment of Higher Education, Science and Technology (DHEST) on
behalf of the South African government for research by public
universities.

Appendix A: Derivation of conditional joint
PDFs

Assume that the joint PDF f(x1, x2, x3) is known and
can be computed using either interpolations from scaled
histograms or a kernel density estimate function for-
mulation. It immediately follows that the marginal

distributions are

f(x1) =

∫ ∞
−∞

∫ ∞
−∞

f(x1, u2, u3) du2 du3 (A.1)

f(x2) =

∫ ∞
−∞

∫ ∞
−∞

f(u1, x2, u3) du1 du3 (A.2)

f(x3) =

∫ ∞
−∞

∫ ∞
−∞

f(u1, u2, x3) du1 du2. (A.3)

The bivariate joint PDF f(x1, x2) may be obtained by
integrating out the effect of x3 such that

f(x1, x2) =

∫ ∞
−∞

f(x1, x2, u3) du3. (A.4)

The conditional joint PDF f(x2|x1) is then

f(x2|x1) =
f(x1, x2)

f(x1)
. (A.5)

The conditional joint PDF f(x3|x1, x2) is then

f(x3|x1, x2) =
f(x1, x2, x3)

f(x1)f(x2)
. (A.6)

In the above formulae when these formulae
are numerically approximated all of the densities
should be normalized such that

∫∞
−∞ f(x1) dx1 = 1,∫∞

−∞ f(x2|x1) dx2 = 1 and
∫∞
−∞ f(x3|x1, x2) dx3 = 1 in

order to ensure mathematical consistency so that 0 6
F (x1), F (x2|x1), F (x3|x1, x2) 6 1 ∀[x1, x2, x3]T ∈ Ω.
As a result the conditional joint distributions are then

calculated in terms of the previous conditional densities
as

F (x1) =

∫ x1

−∞
f(u1) du1 (A.7)

F (x2|x1) =

∫ x2

−∞
f(u2|x1) du2 (A.8)

F (x3|x1, x2) =

∫ x3

−∞
f(u3|x1, x2) du3. (A.9)

The above mathematical equations are sufficiently gen-
eral to be utilized in any appropriate numerical integration
technique using either commercial or open source software
packages.
One particular choice using open source software rou-

tines is to implement the above formulae using the Python
scipy based KDE function gaussian kde which may be
used to calculate the kernel density estimates for one,
two and three dimensions depending on the context. If
the GS2 data has previously been saved in a text file
Omega.txt from another simulation, then the marginal
density f(x1) and the joint PDF f(x1, x2, x3) may then
be conveniently constructed using the following Python
computer code:
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data = np.loadtxt(’Omega.txt’)
Omega = data
X1 = Omega[:, 0]
X2 = Omega[:, 1]
X3 = Omega[:, 2]
d1 = stats.gaussian_kde(X1)
def f1(x1):

q = d1(x1)
return q[0]

d123 = stats.gaussian_kde(Omega.T)
def f123(x1, x2, x3):

q = d123([x1, x2, x3])
return q[0]

The above formulation when produced using the
stats.gaussian kde function from the Python statistics
package is useful as it simplifies the programming effort
required and allows for a convenient function call to cal-
culate the density f(x1, x2, x3). Whilst a simplification
in the programming code implementation for produc-
ing a Rosenblatt transformation is certainly beneficial,
a downside is that this functional approach will tend
to slow down a computer code implementation due to
the overhead when calling the functions which is dis-
advantageous when sampling large numbers of random
variables.
A alternative approach is to use the existing statistical

functionality in R in order to calculate discrete values for
an underling mesh as shown below.

library(misc3d)
library(R.matlab)
n1 <- nclass.FD(omega[, 1])
n2 <- nclass.FD(omega[, 2])
n3 <- nclass.FD(omega[, 3])
dens <- kde3d(omega[, 1], omega[, 2],

omega[, 3], n = c(n1, n2, n3),
lims = c(min(omega[, 1]),
max(omega[, 1]),
min(omega[, 2]), max(omega[, 2]),
min(omega[, 3]), max(omega[, 3])))

v1 <- dens$x
v2 <- dens$y
v3 <- dens$z
g123 <- dens$d
f1 <- density(omega[, 1])
f2 <- density(omega[, 2])
f3 <- density(omega[, 3])
g1 <- approx(f1$x, f1$y,

v1, method = ’linear’, 0, 0, rule = 2)$y
g2 <- approx(f2$x, f2$y,

v2, method = ’linear’, 0, 0, rule = 2)$y
g3 <- approx(f3$x, f3$y,

v3, method = ’linear’, 0, 0, rule = 2)$y
writeMat(paste(getwd(),

’/datav1.mat’, sep = ""),
v1 = v1)

In the code fragment the Monte Carlo data after being
generated and loaded into the work space is processed
using the kde3d function in R in order to generate the

f(x) discrete points and saved to a mat file format. The
mat file may then be saved to file and loaded in GNU
Octave or Matlab in order to implement a pure numerical
implementation which depending on how the computer
code is generated may be significantly faster.
Once expressions have been obtained to formulate the

functional behaviour of the densities f(x1), f(x1, x2) and
f(x1, x2, x3), then the final Rosenblatt transformation
may be implemented using standard numerical analysis
techniques.
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