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Abstract
A theoretical model for computing the interstitial solute concentration and the
interstitial solute-induced stress field in a three-dimensional finite medium with any
arbitrary elastic fields was developed. This model can be directly incorporated into
two-dimensional or three-dimensional discrete dislocation dynamics simulations,
continuum dislocation dynamics simulations, or crystal plasticity simulations. Using this
model, it is shown that a nano-hydride can form in the tensile region below a
dissociated edge dislocation at hydrogen concentration as low as χ0 = 5 × 10−5, and
its formation induces a localized hydrogen elastic shielding effect that leads to a lower
stacking fault width for the edge dislocation. Additionally, the model also predicts the
segregation of hydrogen at �109(13 7 0)/33.4◦ symmetric tilt grain boundary
dislocations. This segregation strongly alters the magnitude of the shear stresses at the
grain boundary, which can subsequently alter dislocation-grain boundary interactions
and dislocation slip transmissions across the grain boundary. Moreover, the model also
predicts that the hydrogen concentration at a mode-I central crack tip increases with
increasing external loading, higher intrinsic hydrogen concentration, and/or larger
crack lengths. Finally, linearized approximate closed-form solutions for the solute
concentration and the interstitial solute-induced stress field were also developed.
These approximate solutions can effectively reduce the computation cost to assess the
concentration and stress field in the presence of solutes. These approximate solutions
are also shown to be a good approximation when the positions of interest are several
nanometers away (i.e. long-ranged elastic interactions) from stress singularities (e.g.
dislocation core and crack tip), for low solute concentrations, and/or at high
temperatures.
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Introduction
Interstitial solute atoms (such as carbon (C), hydrogen (H), oxygen (O), lithium (Li), etc.)
play an important role in controlling the physical and mechanical properties (e.g. yield
strength (Gavriljuk et al. 1998; Barrera et al. 2016; Cui et al. 2018), and phase composition
(Schwarz and Khachaturyan 2006)) of different metals and alloys. Despite many studies
over the years, understanding the effects of interstitial solute atoms on the mechanical
response of metals remains challenging. In particular, accurately predicting the solute
concentration distribution and the solute-induced stress field in real defected three-
dimensional (3D) finite volumes remains an unsolved problem. Developing a theoretical
framework to quantify the role of solid solution on the mechanical properties of metals
is thus a necessity in the process of understanding and predicting the response of metals
and alloys.
In 1949, Cottrell and Bilby developed a theory of yielding and strain ageing in iron

in which they explained that the segregation of C around dislocations lead to their pin-
ning (Cottrell and Bilby 1949). This was latter termed the “Cottrell atmosphere”. In 1982,
Barnett et al. studied the pinning force exerted by the solute atmosphere around edge dis-
locations (Barnett et al. 1982a; Barnett et al. 1982b). They used the Fermi-Dirac statistics
over the Boltzmann distributions to correctly calculate atomic solute fractions.
Wolfer and Baskes incorporated the effect of lattice dilatations caused by solute

atoms to derive the general solute distribution and the coherency stress field associ-
ated with the solute atoms trapped around an infinitely long edge dislocation (Wolfer
and Baskes 1985). Furthermore, Sofronis and Birnbaum accounted for the effect of the
elastic moduli changes due to solute atoms and used iterative finite element analy-
sis to calculate the stress field around edge dislocations under plane strain conditions
(Sofronis and Birnbaum 1995). Chateau et al. used the same technique to calculate
the stress field in the vicinity of a crack to study the solute-crack-dislocation elastic
interaction (Chateau et al. 2002).
On the other hand, Cai and his co-workers pointed out that it is not correct to include

the homogenized self-stresses of the solute atoms to calculate the equilibrium solute dis-
tribution. They reformulated the solute concentration by excluding the self-stress inside
existing inclusions (Cai et al. 2014). In their work, the coherency stress field induced
by the solute atoms around an infinitely long edge dislocation were solved using the
Papkovich-Neuber scalar potential. More recently, Gu and El-Awady adopted the solute
concentration formulation in Ref. Cai et al. (2014) and developed a three-dimensional
(3D) formulation for the solute-induced stresses in an infinite medium to quantify the
effect of hydrogen on dislocation dynamics in 3D (Gu and El-Awady 2018). This was then
extended by Yu et al. to a finite boundary value problem via the superposition principle
(Yu et al. 2019a), which enabled the study of the influence of H on junction formation (Yu
et al. 2019; Yu et al. 2019b).
The above studies are all based on deriving the solute concentration in an infinite medi-

ums, where the image interaction between solutes are not considered. Some studies do
solve for the image effect but for special geometries (e.g. cylindrical volumes Hirth et al.
(2017); Song et al. (2018)).
As discussed above, the applicability of the formulations developed in the existing

literature to calculate the solute concentration and solute-induced stress fields are lim-
ited to simple dislocation configurations in infinite media or finite media with specific
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geometries. Moreover, the evaluation of the solute-induced stress usually requires numer-
ical integrations, that typically have a high computation cost. In this paper, a numerical
scheme is presented to calculate the solute concentrations and solute-induced stress fields
in arbitrary three-dimensional finite volumes with arbitrary pre-existing stress fields. A
linearized closed-form solution is also developed to enable the efficient investigation on
the role of interstitial solute atoms on deformation mechanisms and subsequently the
mechanical properties of the material.

Mathematical formulation
Interstitial solute concentration in a finite medium

Consider the case of interstitial solute atoms in a finite isotropicmaterial,B. Let the purely
dilatational volume change induced by a solute atom be denoted by �V , while χ , c, and
μ0 be the solute mole fraction, solute volume concentration, and the reference chemical
potential, respectively. The solute volume concentration is related to the mole fraction
by c = cmaxχ , where cmax is the maximum solute volume concentration. In addition, the
chemical potential of solute atoms can be expressed as Sills and Cai (2018):

μ(x) = μ0 + kBT ln
χ(x)

1 − χ(x)
− σkk(x)�V/3 − 4G(1 + ν)

9(1 − ν)
�V 2cmaxχ̄ + ZEssχ(x),

(1)

where x is the position vector of any point in B, k is the Boltzmann constant, T is the
temperature, σkk(x) is the trace of the stress tensor σ (x), G is the shear modulus, ν is the
Poisson’s ratio, ¯( ) indicates the volume average over the entire volume (the volume aver-
age of a quantity f is defined as f̄ =

∫
B f dV∫
B dV ), Z is the number of nearest neighbors for a

solute site, and Ess is the interaction energy of two solute atoms residing at neighboring
sites. The five terms on the right hand side of Eq. (1) represent in order of appearance: (1)
the reference chemical potential; (2) the entropy associated with the solute concentration;
(3) the work against the hydrostatic stress in the volume; (4) the solute image interaction
energy; and (5) the solute-solute interaction energy arising from chemical and electronic
effects that are short ranged (Wagner 1971; Udyansky et al. 2009; Khachaturyan; Barouh
et al. 2014). Here, as a first order approximation, the solute image interaction energy
between solutes accounts only for the spatially homogeneous part (Cai et al. 2014).
First, consider the special case of the finite volume,B, being subject only to the imposed

traction, T0, and displacement, U0, boundary conditions, and in the absence of any crys-
talline defects (dislocations, twin boundaries, grain boundaries, etc.). Here, cracks and
notches are considered parts of the boundary conditions. In this case, the elastic field and
the stress tensor in B are denoted by ( )A and σA, respectively. Thus, according to Eq. (1),
the chemical potential in this case is

μA(x) =μ0 − σA
kk(x)�V/3 + kBT ln

χA(x)
1 − χA(x)

− η1χ̄
A + ZEssχA(x). (2)

The solute mole fraction in the defect-free state is taken as the reference mole fraction,
χA
0 , and is evaluated from Eq. (2) at chemical equilibrium (i.e. μA(x) = 0) to be:

χA
0 (x) =

[

1 + exp
(

μ0 − σA
kk(x)�V/3 − η1χ̄

A
0 + ZEssχA

0 (x)
kBT

)]−1

, (3)
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where η1 = 4G(1+ν)
9(1−ν)

�V 2cmax. The reference concentration is thus cA0 (x) = cmaxχ
A
0 (x).

Additionally, the solute mole fraction in a perfect crystal in the stress-free state, χ0, is an
intrinsic property of the material and is assumed uniform throughout the entire medium.
Thus, χ0 is defined as the intrinsic reference mole fraction and is evaluated from Eq. (3)
in the absence of any hydrostatic stress in the volume (i.e. σA

kk(x) = 0) to be:

χ0 =
[

1 + exp
(

μ0 − η1χ0 + ZEssχ0
kBT

)]−1
. (4)

For dilute solute concentrations and in the limit when σA
ij (x)/T � 1, both χ0 and χA

0 (x)
can be related by linearizing and combining Eqs. (3) and (4), as follows

χA
0 (x) − χ0 ≈ χ0(1 − χ0)

η1
(
χ̄A
0 − χ0

) + σA
kk(x)�V/3 − ZEss[χA

0 (x) − χ0]
kBT

. (5)

Integrating both sides of Eq. (5) over B, and recalling the definition of χ̄A
0 and σ̄A

kk , one
obtains:

χ̄A
0 − χ0 = χ0(1 − χ0)σ̄

A
kk�V

3 [kBT + ZEssχ0(1 − χ0) − η1χ0(1 − χ0)]
. (6)

Secondly, consider the same finite volume B subject to the same boundary conditions,
T0 and U0, but now in the presence of crystalline defects. The total elastic field in this
case is denoted by ˜( ). The solute equilibrium concentration in this case can be evaluated
by combining Eqs. (1) and (3), such that (Cai et al. 2014):

χ(x) =
[

1 + 1 − χ0
χ0

exp
(−η1(χ̄ − χ0) − σ̃kk(x)�V/3 + ZEss[χ(x) − χ0]

kBT

)]−1
.

(7)

For dilute solute concentrations and in the limit when σA
ij /T � 1, the following

linearized relationships may be derived for χ and χ̃ :

χ(x) − χ0 ≈ χ0(1 − χ0)
η1 (χ̄ − χ0) + σ̃kk(x)�V/3 − ZEss[χ(x) − χ0]

kBT
, (8)

and

χ̄ − χ0 = χ0(1 − χ0) ¯̃σkk�V
3 [kBT + ZEssχ0(1 − χ0) − η1χ0(1 − χ0)]

. (9)

Combining Eqs. (5) and (8), and using Eqs. (6) and (9), the excess solute concentration
can be shown to be:

χ(x) − χA
0 (x) = χ0(1 − χ0)�V

3 [kBT + ZEssχ0(1 − χ0)]

[
σ̃kk(x) − σA

kk(x)
]

+ η1χ
2
0 (1 − χ0)2�V

3 [kBT + ZEssχ0(1 − χ0)] [kBT + ZEssχ0(1 − χ0) − η1χ0(1 − χ0)]

( ¯̃σkk − σ̄A
kk

)
.

(10)
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The first term on the right-hand side of Eq. (10) is the contribution from the work
against the pre-existing elastic field and the solute-solute interaction, while the second
term corresponds to the contribution from the solute image interaction energy.
Accordingly, in the absence of any defects, the solute concentration in a finite volume

B subject to boundary conditions, T0 and U0, can be computed numerically from Eq. (3)
or approximated analytically by Eq. (5) for dilute solute concentrations and in the limit
when σA

ij /T � 1. Similarly, in the presence of defects, the solute concentration can be
computed numerically from Eq. (7) or approximated analytically by Eq. (10) for dilute
solute concentrations and σA

ij /T � 1.

The solute-induced stress field in a finite medium

The excess solute concentration, which is the difference between the true and the ref-
erence solute concentrations, induces an extra lattice distortion in the volume. This
is accompanied by a solute-induced elastic field, denoted by ( )I , in order to preserve
the coherency of the crystal lattice. The solute-induced elastic strain field, ε

I,el
ij , is the

difference between the solute-induced strain, εIij, and the eigenstrain, e∗ij, and is given
locally by:

ε
I,el
ij (x) = εIij(x) − e∗ij(x) = εIij(x) − 1

3

(
c(x) − cA0

)
�Vδij. (11)

Thus, the solute-induced stresses are

σ I
ij(x) = 2Gν

1 − 2ν
δijε

I,el(x) + 2Gε
I,el
ij (x), (12)

and the equilibrium equations for this solute-induced stress field are

σ I
ij,j(x) = 0. (13)

Substituting Eqs. (11) and (12) into Eq. (13), the equilibrium equations with respect to
the displacement field, uIi (x), become

∇2uIi (x) + 1
1 − 2ν

uIk,ki(x) = 1 + ν

1 − 2ν
2�V
3

(c(x) − cA0 (x)),i. (14)

Using the Papkovich-Neuber scalar potential B0(x) (Papkovich 1932; Neuber 1934), the
solute-induced filed can be shown from Eq. (14) to be (“Derivation of the solute-induced
stress field” section)

σ I
ij(x) = − G

2(1 − ν)
B0,ij(x) − 2G(1 + ν)

1 − ν

�V
3

δij
[
c(x) − cA0 (x)

]
. (15)

It should be noted that B0(x) is derived without the constraints of boundary conditions.
Therefore, a correction field is needed to satisfy the boundary conditions on B. This will
be discussed in the next section.
Using the solute concentrations derived in Eqs. (3), (4) and (7), the solute-induced stress

field, σ I
ij(x), can be evaluated numerically from Eq. (15). Since the linear elasticity theory

usually breaks down at the core of a defect, the solute atoms residing at those trapping
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sites typically contribute to the solute-induced core effects rather than the elastic inter-
actions. For the sake of clarity, we limit our analysis to the solute absorbed in normal
interstitial lattice sites in the small deformation theory.
In the limit of σA

ij /T � 1 and for dilute solute concentrations, the linearized solution
derived in Eq. (10) can be used to simplify the calculation of the solute-induced stress
field and to develop an analytical solution for σ I

ij(x). This analytical solution is derived for
plane strain problems and 3D problems in the following.

Approximate analytical solution for plane strain problems

For plane strain problems, the Airy stress function φ(x) is utilized (“Airy stress func-
tion” section). Here, σ̃kk(x)−σA

kk(x) and ¯̃σkk − σ̄A
kk can be shown to be harmonic functions

with respect to the Airy stress function, where

σ̃kk(x) − σA
kk(x) = (1 + ν) ∇2φ(x),

¯̃σkk − σ̄A
kk = (1 + ν) ∇2φ̄. (16)

Using Eq. (16), the scalar potential B0(x) can be shown to be:

B0(x) = − 4cmaxχ0(1 + ν)2(1 − χ0)�V 2

9 [kBT + ZEssχ0(1 − χ0)]
φ(x)

− 4cmaxη1(1 + ν)2χ2
0 (1 − χ0)2�V 2

9 [kBT + ZEssχ0(1 − χ0)] [kBT + ZEssχ0(1 − χ0) − η1χ0(1 − χ0)]
φ̄.

(17)

Combining Eqs. (17) and (37), the solute-induced stress field in plane strain problems
can be shown to be:

σ I
ij(x) = η2

[
φ,ij(x) − δij∇2φ(x)

] + η3
(
φ̄,ij − δij∇2φ̄

)
, (18)

where η2= 2G(1+ ν)2

9(1− ν)kBT
cmaxχ0(1−χ0)�V2, and η3= 2G(1+ν)2

9(1−ν)

cmaxη1χ20 (1−χ0)2�V2

9
[
kBT+ZEssχ0(1−χ0)

] [
kBT+ZEssχ0(1−χ0)−η1χ0(1−χ0)

] .

It should be noted that the components of the solute-induced stress tensor can be
related to the corresponding components of the stress tensor resulting from the imposed
boundary conditions and the pre-existing defects through the following relationships:

σ I
11(x) = −η2[ σ̃11(x) − σA

11(x)]−η3( ¯̃σ11 − σ̄A
11),

σ I
22(x) = −η2[ σ̃22(x) − σA

22(x)]−η3( ¯̃σ22 − σ̄A
22), (19)

σ I
12(x) = −η2[ σ̃12(x) − σA

12(x)]−η3( ¯̃σ12 − σ̄A
12).

Approximate analytical solution for three-dimensional problems

For general 3D problems with prescribed boundary conditions, σ̃kk(x) − σA
kk(x) and

¯̃σkk − σ̄A
kk are harmonic functions with respect to the Galerkin vector representations

(“Galerkin vector representation” section):

σ̃kk(x) − σA
kk(x) = (1 + ν) ∇2 (∇ · v(x)) ,

¯̃σkk − σ̄A
kk = (1 + ν) ∇2 (∇ · v̄) . (20)
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Accordingly, B0(x) can be determined from Eq. (36):

B0(x) = − 4cmaxχ0(1 + ν)2(1 − χ0)�V 2

9 [kBT + ZEssχ0(1 − χ0)]
∇ · v(x)

− 4cmaxη1(1 + ν)2χ2
0 (1 − χ0)2�V 2

9 [kBT + ZEssχ0(1 − χ0)] [kBT + ZEssχ0(1 − χ0) − η1χ0(1 − χ0)]
∇ · v̄.
(21)

The solute-induced stress field in 3D problems can thus be computed from Eq. (37), for
a given Galerkin representation of the pre-existing defects:

σ I
ij(x) = η2∇ · v,ij(x) − η2δij∇2 [∇ · v(x)] + η3∇ · v̄,ij − η3δij∇2 (∇ · v̄) , (22)

and the corresponding stress components are

σ I
11(x) = η2∇ · v,11(x) − η2∇2 [∇ · v(x)] + η3∇ · v̄,11 − η3∇2 (∇ · v̄) ,

σ I
22(x) = η2∇ · v,22(x) − η2∇2 [∇ · v(x)] + η3∇ · v̄,22 − η3∇2 (∇ · v̄) ,

σ I
33(x) = η2∇ · v,33(x) − η2∇2 [∇ · v(x)] + η3∇ · v̄,33 − η3∇2 (∇ · v̄) ,

σ I
12(x) = η2∇ · v,12(x) + η3∇ · v̄,12, (23)

σ I
23(x) = η2∇ · v,23(x) + η3∇ · v̄,23,

σ I
31(x) = η2∇ · v,31(x) + η3∇ · v̄,31.

The boundary value problem formulation
Given the imposed traction, T0, and displacement, U0, boundary conditions on the finite
volume, B, the boundary value problem (BVP) formulation can be expressed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · σ = 0, ε = ∇u

σ = 2Gν
1−2ν tr(ε

el)I + 2Gεel

εel = ε − 1
3 (c − cA0 )�V I

σ · n = T0 on ∂Bf

u = U0 on ∂Bu,

(24)

where n is the outer normal unit vector to the boundary ∂B.
As schematically shown in Fig. 1, by imposing the superposition method (Van der

Giessen and Needleman 1995), the elastic field in the finite volume can be decomposed
as follows:

u =ũ + uI,tot ,

ε =ε̃ + εI,tot , (25)

σ =σ̃ + σ I,tot .

In Eq. (25), ˜( ) represents the elastic field induced by both the imposed boundary
conditions and the presence of crystalline defects in B. It satisfies the following BVP:
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇ · σ̃ = 0 , ε̃ = ∇ũ

σ̃ = 2Gν
1−2ν tr(ε̃)I + 2Gε̃

σ̃ · n = T0 on ∂Bf

ũ = U0 on ∂Bu

(26)

The ˜( ) field is the superposition of the infinite-body field induced by the crystalline
defects and the corrective field accounting for the boundary conditions. For some types of
defects, the infinite-body fields are known analytically (e.g. dislocations (Hirth and Lothe
1982) and grain boundaries (Li 1972)). However, this is not the case for general defects
and those solutions should be obtained numerically.
Additionally, ( )I,tot in Eq. (25) represents the solute-induced field, which is related to the

excess solute concentration based on Eq. (12), and is determined by the following BVP:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ · σ I,tot = 0 , εI,tot = ∇uI,tot

σ I,tot = 2Gν
1−2ν tr(ε

I,el)I + 2GεI,el

εI,el = εI,tot − 1
3 (c − cA0 )�V I

σ I,tot · n = 0 on ∂Bf

uI,tot = 0 on ∂Bu

(27)

It should be noted that the ˜( ) field is used in Eq. (7) to evaluate the solute mole fraction
distribution, χ(x). On the other hand, the ( )A field in the defect-free state subject to the
same boundary conditions is needed in Eq. (3) to calculate the reference mole fraction,
χA
0 , and is defined by the following BVP:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇ · σA = 0 , εA = ∇uA

σA = 2Gν
1−2ν tr(ε

A)I + 2GεA

σA · n = T0 on ∂Bf

uA = U0 on ∂Bu

(28)

Furthermore, as illustrated in Fig. 2, the ( )I,tot field can be decomposed into two fields:
the ( )I field in an infinite volume generated by the excess solute concentration, and the
ˆ( ) field to enforce the actual boundary conditions on B. The ( )I filed can be numerically

Fig. 1 Decomposition of the defected body with interstitial solutes problem into the problem of a defected
body (the (̃ ) field) and the complementary problem of a body with solutes only (the ()I,tot field)
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Fig. 2 Decomposition of the problem of a body with solutes (the ( )I,tot field) into the problem of an infinite
volume with the solutes (the ( )I field) and the complementary problem for the body without the solutes (the
(̂ ) field)

evaluated from Eq. (15), or efficiently approximated by Eq. (19) for plain strain problems
or Eq. (23) for 3D problems.
The total elastic field is thus the superposition of the following three fields: the ˜( ) field,

the ( )I field, and the ˆ( ) field. In this case, the BVP for the ˆ( ) field is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇ · σ̂ = 0 , ε̂ = ∇û

σ̂ = 2Gν
1−2ν tr(ε̂)I + 2Gε̂

σ̂ · n = −TI on ∂Bf

û = −UI on ∂Bu

(29)

where the boundary conditions are determined by the ( )I field:

TI = σ I · n on ∂Bf

UI = uI on ∂Bu (30)

The BVP described by Eqs. (26), (28) and (27) can be solved using the finite difference
method (FDM) (Sadd 2009), finite element method (FEM) (Zienkiewicz and Taylor 2005),
or boundary element method (BEM) (Becker 1992). The solution can also be approxi-
mated in the case of dilute solute concentrations and when σA

ij (x)/T � 1 by applying the
linearized results in “The solute-induced stress field in a finitemedium” section. The com-
plete numerical and the approximated solution schemes are summarized schematically in
Fig. 3.
In particular, for plane strain problems with traction boundary conditions only (i.e.

∂B = ∂Bf ), the total solute-induced stress, σ I,tot
ij , and total stress, σ , are directly calculated

using Eq. (19), and:

σ
I,tot
ij = σ I

ij + σ̂ij = −η2(σ̃ij − σA
ij ).

σij = σ̃ij + σ
I,tot
ij = σ̃ij − η2(σ̃ij − σA

ij ). (31)
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Numerical examples
In this section, the formulation developed above is utilized to solve three demonstrative
numerical problems that are of general interest for understanding the effect of hydrogen
(H) on the response of metals. In all cases, the material properties of FCC Ni are adopted:
G = 134GPa, ν = 0.201, �V = 1.4Å3, a0 = 3.524 Å, Z = 12, Ess = −0.026 eV, and
atomic volume � = 10.77Å3. Additionally, H solutes are assumed to occupy octahedral
interstitial sites. The transient diffusion process is not modeled here and the H concentra-
tion is assumed to be in equilibriumwith the pre-existing stress field. All FEM calculations
are conducted using the MATLAB� PDE Toolbox™(a 2018) and the MATLAB FEM code
(Alberty et al. 2002).

Hydrogen segregation to dislocations and its effect on the dislocation stacking fault width

Dislocations in FCC metals typically split into two partial dislocations separated by a
stacking fault. The separation distance between the two partial dislocations, known as the
stacking fault width, has strong effects on dislocation mechanisms (e.g. glide and cross-
slip) and the mechanical properties of the crystal (Aubry and Hughes 2006). Atomistic
simulations show that H atoms affect not only the stress states, but also the stacking fault
energy (SFE) landscapes and subsequently the stacking fault width (Lu et al. 2002; Wen et
al. 2007; Tang and El-Awady 2012). This is the proposed mechanism for H-induced slip
planarity (Wen et al. 2007; Lu et al. 2001; Barnoush and Vehoff 2008) and H-assisted frac-
ture process (Song et al. 2010; Tarzimoghadam et al. 2017). In this section, the numerical
framework developed in “The boundary value problem formulation” section is used to
evaluate the effect of H on the stacking fault width of an infinitely long dissociated edge
dislocation.
Consider an infinitely long straight edge dislocation positioned at the center of a 2D

square simulation cell, with its Burgers vector being parallel to the simulation cell hori-
zontal direction. The edge dislocation line direction in this case is perpendicular to the
2D simulation cell plane. The perfect dislocation is assumed to decompose into two par-
tial dislocations, p1 and p2, that are separated by a stacking fault, as shown schematically
in Fig. 4. The repulsive elastic force between the two partials is denoted by fp, and the
H-induced elastic force between the partials is denoted by fH . These two forces are cal-
culated using the Peach-Koehler equations: f = (σ · b) × ζ , where σ is the corresponding
stress field, b is the Burgers vector, and ζ is the line direction of the dislocation. The
stress field of a partial dislocation was derived using the Peierls-Nabarro (PN) model

Fig. 3 Flowchart of the numerical scheme to calculate the stress field in a finite volume: (a) direct numerical
solution; and (b) approximate solution
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Fig. 4 Schematic diagram of an infinitely long disassociated edge dislocation in an infinite volume. The red
line represents the stacking fault and the blue “�” symbols represent the partial dislocations. The Burgers
vector is parallel to the x-direction and the direction of the different forces on the partial dislocation is shown.
The red line represents the stacking fault

(Hirth and Lothe 1982) and the H-induced stress field can be computed as discussed in
“The boundary value problem formulation” section. It should be noted that both fp and fH

vary as a function of the separation distance. Additionally, the stacking fault area gives rise
to a constant attractive force (per unit length) between the partials, fSF = γ ζ × (0, 0, 1),
where γ is the SFE. The partials are in equilibrium with each other when the elastic forces
on each partial balance the attractive SF force, i.e. fp + fH + fSF = 0 (Cai and Nix 2016).
The equilibrium separation distance between the partials (i.e. the stacking fault width) is
denoted by lsep. In the current analysis we assume that the elastic constants do not change
due to the presence of H. Additionally, the SFE is taken as γ = 0.16 J/m2 (von Pezold et
al. 2011).
The predicted separation distance atT = 300K as a function of χ0 is shown in Fig. 5a. In

the absence of H the predicted stacking fault width is 1.85nm, which is in good agreement
with that predicted from atomic relaxations of an ideal dislocation configuration obtained
from linear elasticity theory using embedded atom method (EAM) potential fitted to the
same SFE used in the current analysis (von Pezold et al. 2011). Furthermore, when H
is introduced in the simulation cell, the predicted stacking fault width does not change
for χ0 ≤ 2.5 × 10−5. In Fig. 5b, the equilibrium H concentration contours around the
dissociated dislocation for χ0 = 2.5×10−5 is shown and indicates that while there is some
segregation of H at each partial dislocation, the H-induced elastic force by this segregation
is negligible and has no effect on the dislocation stacking fault width.
On the other hand, when χ0 is increased further to 5×10−5, theH-induced elastic forces

increase, which leads to decreasing the stacking fault width to .55nm. Nevertheless, this



Gu and El-AwadyMaterials Theory             (2020) 4:1 Page 12 of 22

Fig. 5 a The stacking fault width as a function of χ0. b and c show the contours of the H concentration for
χ0 = 2.5 × 10−5 and χ0 = 5 × 10−5, respectively. The partial dislocations at their equilibrium positions are
marked by purple “�” symbols in (b) and (c)

width remains unchanged with further increase in χ0. The equilibrium H concentration
contours around the dissociated dislocation for χ0 = 5 × 10−5 is shown in Fig. 5c, and it
shows the formation of a nano-hydride (the region corresponding to χ ≈ 1) in the ten-
sile region below the dissociated dislocation. The elastic interaction between the hydride
and the partials, fH , is comparable to fp and fSF . Therefore, the formation of nano-hydride
induces a localized H elastic shielding effect even at such a low χ0. These predictions are
in excellent agreement with those from combining ab initio electronic structure calcula-
tions, semi-empirical embedded atom method potentials, and a lattice-gas Hamiltonian
(von Pezold et al. 2011).
It should be noted that the effect of H on the elastic moduli change is not considered in

the current analysis. Nevertheless, the elastic constants at high H concentrations can also
strongly influence the separation distance, and thus, should be accounted for in the future
to make more accurate predictions of the effect of H on the separation distance. This is,
however, beyond the scope of this paper.

Hydrogen segregation to grain boundaries

Grain boundaries (GBs) are planar defects that play an important role during hydrogen-
enhanced plasticity (e.g. slip transfer across grain boundaries that cause intergranular
fracture (Lee et al. 1990; Wang et al. 2016) and enhanced dislocation emission from
grain boundary sources at high deformation levels (Kuhr et al. 2016)). Additionally,
GB engineering can also lead to improved hydrogen embrittlement (HE) resistance
in metals (Kwon et al. 2018). In this section, we use the framework developed in
“The boundary value problem formulation” section to gain further insights on the role of
GBs on the HE resistance.
The GB structure can be described by the disclination structural unit model (DSUM)

(Li 1972). A GB is represented by a contiguous and alternating sequence of majority and
minority structural units with associated misorientation angles (Wang and Vitek 1986;
Hurtado et al. 1995). The stress field induced by the GB in an infinite medium is there-
fore calculated as the summation of the majority and minority structure units. Consider a
square bicryastal containing a centered �109(13 7 0)/33.4◦ symmetric tilt GB in the ver-
tical direction, as shown schematically in Fig. 6. This GB can be represented by a periodic
6 majority unit with a characteristic length 0.3938nm and 1 minority unit with a char-
acteristic length 0.2387nm. In all the following analysis the surfaces of the bicrystal are
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Fig. 6 Schematic of the bicrystal geometry showing a centered �109(13 7 0)/33.4◦ grain boundary

assumed traction-free. The problem is solved using the superposition method described
by Eq. (25).
The H concentration contour plots for different H mole fractions, different tempera-

tures, and different bicrystal edge lengths, are shown in Fig. 7. The H concentration as
predicted by the direct numerical solution of Eq. (7) is shown in the left column of Fig. 7
and is designated as the benchmark solution, while that predicted using the linearized
solution given by Eq. (10) is shown in the middle column of Fig. 7. The contour plots of
the relative errors between both cases are shown in the right column of Fig. 7.
These results indicate that H segregation to the GB dislocations is in good qualita-

tive agreement with molecular dynamics simulation results (Chandler et al. 2008). While
the benchmark solution and the linearized solution both predict similar H concentration
contours, the relative errors between both solutions are highest within a 1nm thick slab
around the GB plane. However, outside this local region both solutions converge with the
relative error being below 0.01.
Additionally, the predicted total H-induced shear stresses (i.e. σ I,tot

xy ) calculated numeri-
cally from Eq. (27) (the benchmark solution) as well as that calculated using the linearized
solution in Eq. (31) for different H mole fractions are shown in the left and middle
columns of Fig. 8, respectively. The relative errors between both solutions along the per-
pendicular direction to the GB and at different heights are shown in the right column of
Fig. 8. It is observed that the relative errors between both solutions are highest within
a 2nm thick slab around the GB plane, while outside this local region both solutions
converge.
Moreover, the results in Figs. 7 and 8 indicate that the relative errors for both the H

concentration and H-induced stress increase with decreasing temperatures, increasing
intrinsic reference H mole fractions, or with decreasing bicrystal sizes. Nevertheless, the
linearized solutions for H concentrations and H-induced stresses provide very reasonable
approximations in large simulation volumes, with low intrinsic reference mole fractions,
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Fig. 7 Contour plots of the normalized H concentration, χ/χ0, for as calculated from (left column) the direct
numerical solution of Eq. (7) and (middle column) the linearized solution given by Eq. (10), while the relative
error between both solutions is shown on the right column. The simulation parameters are: (a) χ0 = 0.001,
Lx = Ly = 26nm, and T = 1200K; (b) χ0 = 0.001, Lx = Ly = 26nm, and T = 300K; (c) χ0 = 0.05,
Lx = Ly = 26nm, and T = 1200K; and (d) χ0 = 0.001, Lx = Ly = 10.4nm, T = 1200K

at high temperatures, or at distances greater than a few Burgers vectors from the GB
dislocations.
Finally, it should be noted that the local stress state and any compositional and struc-

tural modifications in the GB can play a key role in characterizing slip transmissions
across grain boundaries (Lee et al. 1990; Wang et al. 2016) and establishing the conditions
for environment-induced intergranular fracture (Robertson et al. 2015). Along those lines,
Fig. 9 shows the contours of the GB dislocations-induced stresses, the H-induced shear
stresses and the total shear stresses in the bicrystal with χ0 = 0.005, Lx = Ly = 26nm,
and T = 300K. It is observed that the magnitudes of the shear stresses are strongly altered
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Fig. 8 Contours of σ I,tot
xy /G as calculated from: (left column) numerically using Eq. (27) and (middle column)

using the linearized solution in Eq. (31). The σ
I,tot
xy /G along the x-direction at different height as predicted

from both solutions is shown in the right column. The simulation parameters are: (a) χ0 = 0.001,
Lx = Ly = 26nm, T = 1200K, (b) χ0 = 0.001, Lx = Ly = 26nm, T = 300K, (c) χ0 = 0.05, Lx = Ly = 26nm,
T = 1200K, (d) χ0 = 0.001, Lx = Ly = 10.4nm, T = 1200K. The symbols in the right column are those using
Eq. (27), while the lines are those from the linearized solution in Eq. (31)

along the GB in the presence of H. The different changes of shear stresses due to the exis-
tence of H at different GB positions lead to varying capabilities to promote dislocation
slip transmissions across the GB. These results indicate that the current numerical frame-
work could be used to systematically study the H effect on slip transmissions, which is
beyond the scope of the current paper.
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Fig. 9 Contours of the: (left) normalized GB-induced shear stress σ̃xy/G, (middle) the H-induced shear stress

σ
I,tot
xy /G, and (right) the total shear stress σxy/G for χ0 = 0.005, Lx = Ly = 26nm and T = 300K. The inserts

show a zoomed-in view of the dashed box

Hydrogen concentration in a rectangular plate with a mode-I central crack under uniaxial

loading

Here, the H distribution is predicted in a rectangular plate having a mode-I central
crack under plain strain conditions as shown schematically in Fig. 10. The plate edge
lengths are Lx = 1μm and Ly = 2μm, and the crack length is Lc. The plate is
loaded uniformly in the y-direction under a constant axial stress σ0, and the tem-
perature is fixed at 300K. The overall stress field in the H-charged medium in the
absence of pre-existing defects is expected to be the same as that for the H-free
case (i.e. σij = σ̃ij = σA

ij ) since both cases are modeled by the same governing
equation, Eq. (24), and the elastic constants are assumed to be unchanged throughout the
whole plate.
The contours of the H concentrations in the plate for different intrinsic reference H

mole fractions, crack lengths, and imposed axial stresses are shown in Fig. 11 as pre-
dicted from the benchmark numerical solution of Eq. (7) (left column) and from the
linearized approximation given by Eq. (10) (middle column). The relative errors, defined
as |χ−χbenchmark|

χbenchmark
, between both solutions are shown in the right column. It is observed that

the maximum relative error when σ0 = 10MPa is well below 5 × 10−3, which implies
that Eq. (10) is a good approximation for small stress cases. However, the relative errors
increase when the imposed axial stress increases. Furthermore, it is observed that the rel-
ative errors near the crack tip (i.e. within a distance of 200nm) are typically higher than
those away from the crack tip. These relatively large errors suggest that the linearized
approximation may lose some degree of accuracy around the regions of large stress levels.
Nevertheless, the errors throughout the whole plate are small enough to be neglected in
this case.
Furthermore, Fig. 11 shows that H concentration at the crack tip increases with increas-

ing external loadings, higher intrinsic H concentration, or larger crack lengths. The larger
H concentration at the crack tip for larger crack lengths will promote further acceleration
of the crack. This is consistent with experimental reports that in the presence of H the
crack growth rate increases under cyclic loading (Matsuda et al. 2016).
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Conclusions and final remarks
Here a theoretical model for computing the solute concentration and solute
induced stress field in a three-dimensional finite medium with any arbitrary elas-
tic fields was developed. This method expands on a previous three-dimensional
model for solutes in an infinite medium with dislocation fields only (Gu and
El-Awady 2018). The developed model can be incorporated into two-dimensional
or three-dimensional discrete dislocation dynamics simulations (Gu and El-Awady
2018; Yu et al. 2019a; Yu et al. 2019b; El-Awady et al. 2016; Lavenstein and
El-Awady 2019), continuum dislocation dynamics simulations (Zhu and Xiang
2015), or crystal plasticity simulations (Castelluccio and McDowell 2017; Castel-
luccio et al. 2018). For instance, in the crystal plasticity model developed by
Castelluccio et al. (2018), the flow rule can be improved by introducing a weighted aver-
age of edge and screw dislocation densities since the solute effects are dependent on the
dislocation character.
The model was used to quantify the concentration of hydrogen solutes around an

edge dislocation in Ni and the effect of hydrogen on the stacking fault width, hydro-
gen segregation at a �109(13 7 0)/33.4◦ symmetric tilt grain boundary and the effect
of hydrogen-induced stresses on the local stress concentration near the grain bound-
ary, and the hydrogen segregation at a mode-I central crack and the dependence of the
concentration on the crack length. The result suggests that a nano-hydride forms in the
tensile region below the dissociated edge dislocation at hydrogen concentration as low as
χ0 = 5×10−5. The formation of such nano-hydrides induces a localized hydrogen elastic
shielding effect on the dislocation partials that leads to the formation of a lower stacking

Fig. 10 Schematic diagram of a rectangular plate with a mode-I central crack
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Fig. 11 Contours of the normalized H concentration χ/χ0 as calculated from the benchmark numerical
solution of Eq. (7) (left column) and from the linearized approximation given by Eq. (10) (middle column). The
relative errors between both solutions are shown in the right column. The simulation parameters are: (a)
χ0 = 0.001, Lc = 0.5μm, σ0 = 10MPa, (b) χ0 = 0.001, Lc = 0.5μm, σ0 = 100MPa, (c) χ0 = 0.01, Lc = 0.5μm,
σ0 = 10MPa, (d) χ0 = 0.001, Lc = 0.75μm, σ0 = 10MPa. In all cases, Lx = 1μm and Ly = 2μm. The horizontal
black line represents the crack

fault width. These results are in excellent agreement with those from the combination of
ab initio electronic structure calculations, semi-empirical embedded atommethod poten-
tials, and a lattice-gas Hamiltonian (von Pezold et al. 2011). Additionally, the analysis
show the segregation of hydrogen at the grain boundary dislocations. This segregation
strongly alters the magnitude of the shear stresses at the grain boundary, which can alter
dislocation-grain boundary interactions and subsequently dislocation slip transmissions
across the grain boundary. Finally, the hydrogen concentration at a mode-I central crack
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tip is shown to increases with increasing external loadings, higher intrinsic hydrogen
concentrations, or larger crack lengths. The larger hydrogen concentration can promote
further acceleration of the crack, which is consistent with experimental reports that in the
presence of H the crack growth rate increases under cyclic loading (Matsuda et al. 2016).
A linearized approximated closed-form solution was also derived. The linearized

closed-form solution can also effectively reduces the computation cost to assess the con-
centration and stress field in the presence of solutes, which enables large scale simulations
on the effect of solutes. The linearized closed-form solution is also shown to be a good
approximation of the numerically solved solute concentration and solute-induced stress
field when the positions of interest are several nanometers away (i.e. long-ranged elastic
interactions) from stress singularities (e.g. dislocation cores and crack tips), for low solute
concentrations, and/or at high temperatures. On the other hand, the linearized solution
fails when dealing with short-range interactions (e.g. dislocation junction formation and
destruction, dislocation jog-formation, etc.) or when dealing with materials at high solute
concentrations.
In addition, it is important to note that the volume change induced by a solute atom

is not always purely dilatational as has been assumed in the current formulation. Thus,
a more general expression of the work required to insert a solute atom, Wsol, is needed.
In this case, to rigorously solve the solute-induced stress field, numerical methods (e.g.
anisotropic truncated kernel method (Jiang et al. 2017)) are required to solve the following
Papkovich-Neuber scalar potential (for an infinite medium):

∇2B0 = − 4(1 + ν)cmax�V
3

·
{[

1 + 1 − χ0
χ0

exp
(
Wsol − ZEssχ

kBT

)]−1
− χ0

}

. (32)

While the solute effect on elastic moduli is neglected in the current analysis, the pres-
ence of high local solute concentration will have an influence on the elastic moduli (Wen
et al. 2011). To take this effect into account, the elastic interactions arising from the local
modulus changes per unit volume 1

2 (C
′
ijkl −Cijkl)ε̃ijε̃kl should be included in the equation

of chemical potentials, where Cijkl and C′
ijkl are locally-changed elastic constants in the

absence and presence of solute atoms, respectively (Sofronis and Birnbaum 1995). The
elastic moduli change due to the solute concentration induces additional inheterogeneity
in the stress field, which in turn affects the solute concentration. To find the equilibrium
solute concentration, this problem needs to be solved iteratively.
Finally, another simplification adopted in the current model is that the image effect

on the solute atom is spatially homogenized. The complete evaluation of the piece-wise
image effects requires the solution on specific boundary geometries (Hirth et al. 2017;
Song et al. 2018).

Appendix
Derivation of the solute-induced stress field
Since the right-hand side of Eq. (14) is the gradient of the excess solute concentration
(Gurtin 1973), the displacement solution can be represented using a scalar potential B0:

uIi = − 1
4(1 − ν)

B0,i. (33)
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Substituting Eq. (33) into Eq. (14), the following Poisson’s equation is obtained

∇2B0,i = −4(1 + ν)

3
�V (c − cA0 ),i. (34)

When c(x) 	≡ cA0 , Eq. (34) is valid if the following relation holds :

∇2B0 = −4(1 + ν)

3
(c − cA0 )�V . (35)

Substituting Eq. (10) into Eq. (35), one obtains

∇2B0 = − 4cmaxχ0(1 + ν)(1 − χ0)�V 2

9 [kBT + ZEssχ0(1 − χ0)]

(
σ̃kk − σA

kk

)

− 4cmaxη1(1 + ν)χ2
0 (1 − χ0)2�V 2

9 [kBT + ZEssχ0(1 − χ0)] [kBT + ZEssχ0(1 − χ0) − η1χ0(1 − χ0)]

( ¯̃σkk − σA
kk

)
.

(36)

If σ̃kk and ¯̃σkk are harmonic functions, Eq. (36) can be directly solved by canceling out
the Laplace operators in both sides. The solute-induced stress field is then expressed as

σ I
ij(x) = − G

2(1 − ν)
B0,ij − 2G(1 + ν)

1 − ν

�V
3

δij
[
c(x) − cA0

]
. (37)

Airy stress function
It was first proposed by Maxwell (1870) and then rigorously proved by Rostamian (1979)
that all elasticity solutions admit the following Maxwell stress function representation:

σij = εimnεjkl�mk,nl, (38)

where � is the Maxwell stress function being a symmetric second-order tensor whose all
off-diagonal elements are set to zero, i.e.

�ij =
⎡

⎢
⎣

�11 0 0
0 �22 0
0 0 �33

⎤

⎥
⎦ . (39)

The Airy stress function φ, is a two-dimensional representation of the Maxwell stress
function where �11 = �22 = 0 and �33 = φ(x1, x2), such that

σ11 = φ,22, σ22 = φ,11, σ12 = −φ,12,

σ33 = ν∇2φ, σ23 = σ31 = 0. (40)

Galerkin vector representation
The Galerkin vector, v = (v1, v2, v3), is a potential function used to represent the
displacement vector, u, which is given by Galerkin (1930)

2Gu = 2(1 − ν)∇2v − ∇ (∇ · v) . (41)

The completeness of this representation is shown by Gurtin (1973).
Using the Galerkin vector representation, the stress components can be expressed as

σ11 =2(1 − ν)∇2v1,1 + ν∇2 (∇ · v) − (∇ · v),11 ,
σ22 =2(1 − ν)∇2v2,2 + ν∇2 (∇ · v) − (∇ · v),22 ,
σ33 =2(1 − ν)∇2v3,3 + ν∇2 (∇ · v) − (∇ · v),33 , (42)

σ12 =(1 − ν)∇2 (
v1,2 + v2,1

) − (∇ · v),12 ,
σ23 =(1 − ν)∇2 (

v2,3 + v3,2
) − (∇ · v),23 ,

σ31 =(1 − ν)∇2 (
v3,1 + v1,3

) − (∇ · v),31 .
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