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Abstract
Remanufacturing reduces final wastes to sinks, extraction of virgin materials and pollution
from production processes by reinstating products taken back by end-users to satisfy part of
overall demand. Product returns are delayed and possibly limited in periods of fast growth and
excessive in the aftermath. Varying growth/demand and volatile take back by consumers and
industrial end-users introduce uncertainty, regarding quantity and quality of returns. As
remanufacturing expands, escalating competition for acquisition of high quality returns exac-
erbates uncertainty. Production planning and control for efficient remanufacturing depends on
reliable prediction of quantity and quality of returns. A method is developed for prognosis of
product return quantity and quality grades, as reflected by vintage flows. It is anchored on a
law relating stock and end-of-life level, under random losses and arbitrary end-of-life distri-
bution. Efficacy is tested via a model that describes stock and flows in reuse/remanufacturing,
allowing for varying demand, random stock losses, random product returns with time-varying
distributions and time-varying utilisation of product returns. Realisations are obtained by
Marko-chain Monte-Carlo simulation. Inherently integral in nature, using scaled data and
founded on rigorous balances, the method enables prognosis of returns and age-vintage flows,
under realistic conditions, including unknown nonlinearities and non-stationarities. It features
improved performance (mean absolute error less than one half) compared to leading methods
in-use that employ black-box models with error-driven parameter adaptation (e.g. regression).
Efficacy is particularly high at crucial peaks and lows (shortage or surplus periods) enabling
resourceful planning of acquisition and inventory control of product returns towards
sustainability.
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Nomenclature
at = Pt + Inet,t, Product inflow in period t, e.g. year t, (tons/period, e.g. t/y),

a = steady state level
ARMA Autoregressive moving average, ARIMA AR integral MA
Cf,t Overall sales, originals+remanufactured, consumption (t/y)
D(x) Polynomial of degree 2(N-κ) + μ + 1
dk Coefficient of order-k term in the polynomial D(x)
EoL End-of-life (no further reusable product returns)
EoU End-of-use (reusable product returns)
Et EoL flow (EoL product returns) or EoL exit in period t, e.g.

year t, (tons/period)
G'c,k = 1-g'1-g'2-…-g'k, complementary cumulative distribution of the EoL

exit distribution, gi,
gi, t, i = 1, 2, ..., ν Reusable product return distribution (gi, t= fraction returned in period

t = t* + jκ-μ + i, i = 1,2,..,ν, j = 1,2,…,Ν-1,of an originally manufactured
product in time period t*)

gi Expected value of the stochastic process gi, t, i = 1,2,..,ν,
hi Entries of vector h given by eqs. 4–6 (or coefficients of polynomial

eq. A3), Appendix A
Inet Flow of original net imported products = imports -exports = Iprod,t–

Exprod,t (t/period)
kQ Maximum age in the reusable product return sample
kU Maximum age in the stock sample
MAPE Mean absolute percentage error
MRT Mean residence time =mean lifespan, time periods, e.g. years
mE Minimum age in the EoL sample
mQ Minimum age in the reusable product return sample
N Number of manufacturing cycles (original plus N-1

remanufacturing cycles)
Pt Original production flow (t/period), (original items made from

virgin or recycled material)
P(x) Polynomial defined in eq. A4, Appendix A,
pk Coefficients of order-k term in the polynomial P(x) found from eqs. 7
Qt Reusable return flow, Q = steady state value
Qs,t Size (mass) of the reusable product return sample at time t
Qs,i,t Size (mass) of vintage of age i in the reusable return sample at time t
q Steady state product return flow rate with respect to inflow of original

products =Q/a
RUt Actually reused/remanufactured product flow, (t/period)
st Early loss ratio =Ωt/(Ut +Ωt) = probability of early loss (prior to

EoL exit) in period t
T Time periods form production to centre axis of EoL exit

(T =maximum lifetime for. products with non-distributed, deterministic
exit in a single time period)

Ut Product accumulation: quantity of product stock present at the end
of time period t (tons)
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xt =1-st = retention ratio = probability of remaining in the
reuse/remanufacturing cycle in period t

yi,t Mass fraction of vintage of age i in the reusable return flow in time
period t

y*,t Ratio of mass of the vintage of age i in the reusable return flow in time
period t over the mass of the same vintage in the corresponding
product stock

Greek
ε =E/a = steady state EoL flow ratio with respect to inflow of originals =

EoL rate or yield
ηt =Stock mean age at time period t
θt =EoL flow mean age at time period t
κ =Mean cycle duration, time periods
μ Half spread of the take-back/EoL distribution, time periods
ν =2 μ + 1 = spread of the take-back/EoL distribution, time periods
Π (x) Polynomial in x defined in Appendix A, eqs. A5, A6
πi Coefficients of Π(x), Eq. A5 given by Eq. 9 or Eq. A6
τ =U/a =mean residence time or mean product lifespan =MRT
φ Mean take-back fraction of reusable products with respect to reusable

product stock
Ωt =Early loss flow (t/period)

Symbols
=: Equal by definition.
< > Mean sample path value (MSPV)

Subscripts

t t is discrete time, t = 1: first time a product under consideration is launched in
the market.

s Sample.

Introduction

Cyclic economy (Fig. 1a) embraces reuse/remanufacturing as a key towards more resourceful
and sustainable operations [7, 36]. A new supply chain valorizes no-further usable products,
cores and components returned by consumers and industrial end-users as ‘raw materials’ to
remanufacture products in ‘like new’ condition [1, 47]. Compared to open loop systems, cyclic
structures can attain much higher internal flows for the same input (e.g. virgin materials) and
output (e.g. wastes) flows. In other words, the same consumption level can be satisfied by
much lower virgin materials and wastes. In parallel to creating value for shareholders, key
systemic objectives of industrial remanufacturing (IR) Fig. 1a in this vein are as follows: (i) to
belittle, even annihilate, the flows to sinks (‘zero waste’) and related ecological impacts, (ii) to
minimise extraction of virgin raw materials, and (iii) to reduce emissions from manufacturing
processes. To attain these goals, IR requires efficient planning and control of operations [4, 30,
37, 62, 63], which include acquisition of product returns, inventory control, utilisation (sorting,
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disassembly, refurbishing, reassembly, testing) and commercialisation. The entire chain of
operations hinges on reliable prognosis of returned products, cores and components (Fig. 1b).
As IR gains momentum [32, 33, 56], computational intelligence for efficient plant and
remanufacturing process sizing, inventory control and production planning becomes more
important [26, 69]. Besides ecological gains, tangible economic benefits from achieving higher
reuse/remanufacturing include direct tax credits, or new revenue streams subsidising
remanufacturing, or eco-label allowances. Instigating higher appeal to consumer and willing-
ness to purchase, reuse/remanufacturing may increase sales’ volumes [3, 38]. Safeguarding of
profits intensifies competition for acquisition of high quality returns by original equipment
manufacturers, independent remanufacturers, or third party collectors [16, 63].
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Fig. 1 a (Top): cyclic network (remanufacturing of commercial and end-of-use product returns and material
recycling of EoL exit). b (Bottom): reliable prognosis of product takeback as a part of computational intelligence
in remanufacturing: use for enhanced planning of operations and eco-efficiency



Product/core returns include commercial or consumer returns (appearing in the
early periods of use, usually within product warranty) and end-of use (EoU) returns
(after use is completed by customer). Commercial and EoU returns can be reused in
subsequent cycles. No-longer reusable product returns consist the end-of-life (EoL)
product returns, which are recycled as material [44]. Reusable returns are already
‘loaded’ with a certain technology, which may soon become obsolete [17, 31]. As a
result, the value of reusable returns declines with time, especially for high tech
products and fast varying markets (e.g. electronics) and thus, a portion of acquired
returns may be directed to recycling [24, 27, 65].

Although advancing, remanufacturing is still limited with volumes of remanufactured at
low fractions of overall sales [12, 53, 57]. Involving reuse and minimal remanufacturing
(inspection, washing and refill), refillable containers consist a notable exception [28, 40, 70].
Crucial in the design of sustainable operations, prediction of availability of ‘raw materials’
becomes more challenging in IR, due to uncertainty in quantity and quality of product returns
[17, 68]. Returns can be predicted in several cases, e.g. lease-back products or service contracts
[18]. Several products however, especially high-tech, feature random returns [5, 13, 23, 39, 52,
75]. Sales and returns consist of the main source of uncertainty in IR [29]. Volatility in the
quantity and quality of product returns together with competition, shifting consumer priorities
and ever-present uncertainty in demand, manufacturing technology and commodity prices
increase uncertainty in planning remanufacturing operations [8, 64]. Factors that exert a
decisive and randomising impact on product take-back include economic cycles, gross
domestic product, money supply and available income, oil and metal costs, volatile consumer
perception and product discard, fashion and social trends, advent of technology and innova-
tion, environmental legislation, energy efficiency classification, diminishing operating costs,
and improved eco-footprint of new products. Non-stationarities crop up, together with non-
linearities, favoured by scaling and threshold effects.

Important results have appeared in IR modelling and several methods are available for
predicting product returns. They include (i) transfer function models between sales and returns
[28] of refillable containers and related models based on Gaussian distribution of the quantity
of returns in terms of past sales, with known mean and variance [40] (ii) returns assumed to be
a constant fraction [2] or a dynamic fraction [74] of active market demand (iii) renewal process
and particularly stationary Poisson processes for the returns, with sales following a Poisson
process [10, 11, 22, 41, 42, 45, 66, 67], (iv) artificial intelligence methods, following
recognised patterns [34, 42, 46, 60], (v) actuary science methods [48, 49, 54], (vi) models
presuming constant and known distribution of the returns [43, 51, 55, 58], (vii) smoothing,
ARMA, and ARIMA type models [6] in which the forecast return flow is a projection that
minimises an error metric of recent return flow data, (viii) hazard rate models and regression to
estimate returns [35], (ix) prediction of product returns via tweets [13] and (x) ARIMAX
forecasting [9, 67] with overall sales taken as the exogenous variable. ARIMAX estimation
features lower forecasting error for commercial returns when combined with accelerated
failure models for the mean retention time [59]. Frequently used in practice, ARMA, ARIMA
and ARIMAX type methods presume a linear underlying model, the parameters of which are
estimated via Bayesian estimation or regression methods, e.g. recursive least squares. The
linearity assumption may be violated in cyclic systems, whilst the presence of non-
stationarities [61] casts doubts on assumed a-priori statistics of Bayesian estimators, or on
regression estimates based on linear models. Artificial intelligence methods face difficulties
under shifting patterns of real markets. Well-fit for mechanical failures, accelerated failure time
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models may not represent consumer retention time uncertainty of product returns. Actuary
science and residual life methods presuming specific exit distributions are too rigid to engulf
volatility and economic cycles affecting take back. Field evidence depicts local disparities or
shifting distributions with time [50, 55] not resembling any known distribution.

The endeavour of the approach herein is for enhanced prognosis of reusable product returns
that does not rely on linear models or arbitrary postulates of returns and sales, or on any
particular or known in advance take back distribution. Instead, a systemic procedure is sought,
applicable to all IR systems, independent of take-back distribution, even adjusting to distri-
bution variations and non-stationarities. Based on minimal monitoring, it should employ
readily available, reliable data, allow for random product losses during successive reuse cycles
and provide dependable prediction. The method to be developed in discrete time is based on a
recent law relating the steady state stock level of the product, U and the EoL return flow E
(after completion of all cycles of use as original and remanufactured product) as follows: U
− θE = (η − 1)(α − E) [72] where a is the inflow of originals (=net demand for originally
manufactured products), η is the stock mean age and θ is the EoL mean age. The mean ages
are scaled variables (population averages) typically monitored in practice from samples of
product stock and EoL flow. They are found in the conventional statistical way in any time
period. For instance, if three vintages of ages θ1, θ2, θ3 and respective quantities, E1, E2, E3,
E1 + E2 + E3 = E, are present in the EoL flow, E, in time period t, then θ = (θ1E1 + θ2E2 + θ3E3)/
(E1 + E2 + E3). An example is a product featuring distributed EoL exit in the beginning of time
periods 4, 5 and 6, after being launched in the market in the beginning of period 1, i.e. θ1 = 3,
θ2 = 4, θ3 = 5. The product stock at the end of period t, U, includes a quantity U1 of the current
vintage (vintageU1 of age 1) and vintages U2, U3, U4 and U5 of ages 2, 3, 4 and 5 respectively,
U1 +U2 +U3 +U4 +U5 =U (all higher age vintages have exited the stock in-use). Then
η = (U1 + 2U2 + 3U3 + 4U4 + 5U5)/U and the Eq. U − θE = (η − 1)(α − E) relates the potentially
unknown variables U and E under any distribution of product returns and EoL exit and under
any loss profile of stock. One relation between two unknown variables is better than no
relations at all—if one of them is known the other can be determined. For instance, the EoL
exit of passenger vehicles can be found from the mean age of the vehicle fleet and from the
mean age of a representative EoL vehicle exit sample, since the size of the vehicle fleet in-use,
U, is registered. Being valid under any return/EoL distribution and under arbitrary, unknown
and random losses of stock, the law was used to identify the mean retention time for products
with stock accumulation [73] based on measurements of η, θ and of the EoL age-vintage
fractions. The quest of the present work is whether it may be used to predict quantitative and
qualitative features of reusable product returns. Section 2 presents the key relations of the
model used to simulate the remanufacturing loop and to assess the efficacy of the prognosis of
product returns. The model is refined to include random product take-back and varying
utilisation of product returns by remanufacturers. Section 3 describes the prediction method
and gives a five-step implementation procedure, followed by applications in Section 4.

Modelling of stock and flows in remanufacturing systems

It is evident that a stochastic model [25] is best suited to quantitatively describe the
random nature of IR product stock and flows. Table 1 presents the expressions of
such a model for stock and EoL flow [71–73]. Table 2 gives the expressions for the
internal (remanufacturing) cycle.
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Description of the model

The key equations are as follows: Eq. T1 for the EoL flow, Et, which is distributed, stochastic
and non-stationary (via the randomly varying fractions of the EoL distribution, g'i, t ≥ 0, i = 1, 2,
..., ν, Eq. T2); Eq. T3 for stock evolution in which the outflow (depletion of product stock)
includes random early losses,Ωt, independent from the EoL exit,Et; and also, Eq. T8, obtained from
the lifetime product mass balance, using Eqs. T1 and T3. For each i the fraction g'i, t is a t-family of

Table 1 Model for stock and EoL flow for systems with stock accumulation under random stock losses and time
varying fractions of the EoL distribution [70–73]

Et: EoL exit (EoL product returns)
at the beginning of period t Et ¼ ∑

ν

k¼1
g0ν−kþ1;ta t−T þ k−μ−1 ∏

T−kþμþ1

i¼1
xt−i; ν ¼ 2μþ 1

(T1)

(ν- step, EoL distribution g'i, t,
i = 1, 2, ..., ν, ν-families of
random variables, each one a
stochastic process, e.g. a
renewal process with mean
g'i, i = 1, 2, ..., ν)

0≤g0 i;t ≤1; ∑
ν

i¼1
g0 i;t−νþi ¼ 1 (T2)

Ut: stock of originals and
remanufactured products at
the end of time period t.

Ωt random losses during time
period t; it includes net
exports of used and exports
of remanufactured.

Ut =Ut − 1 + at −Ωt − Et
at: net demand (net inflow of originals)

(T3)

Net demand for originally
manufactured products at
and for imports of used, Iu, t

ct = at + Iu, t (T4)

Net demand or net inflow of
originally manufactured
products = production of
originals, Pt, from virgin or
recycled material + net
imports of originals Io, t.

at = Pt + Io, t (T5)

Early loss ratio:
Retention probability:

st =Ωt/(Ut +Ωt), Ωt ≤Ut
xt ≕ 1 − st =Ut/(Ut +Ωt)

(T6)
(T7)

Analytic expression for the stock
of originals and remanufactured
products

Ut ¼ ∑
T−μ

k¼1
at−kþ1 ∏

t

i¼t−kþ1
xi þ ∑

Tþμ

k¼T−μþ1
at−kþ1G0

c;k−Tþμ;t ∏
t

i¼t−kþ1
xi

where

(T8)

(G'c,k-T+ μ,t represents the part of the
inflow at time t − k + 1, at-k + 1,
that has not exited as EoL exit
until the end of time
period t).

G0
c;k;t ¼ 1− ∑

j

i¼1
g0 i;t−kþi ¼ 1−g01;t−kþ1−g02;t−kþ2−⋯−g0k−1;t−1−g0k;t

(T9)

Key steady state relations
Stock expressed in terms of EoL

flow and retention rate
MRT in terms of EoL rate

and retention rate

U ¼ x a−Eð Þ
1−x

τ ¼ x 1−εð Þ
1−x

(T10)
(T11)

Law of stock and EoL flow
(or MRT and EoL rate)

U − θE = (η − 1)(a −E)
τ − θε = (η − 1)(1 − ε)

(T12)
(T13)

EoL flow in terms of mean
ages and retention rate

EoL rate in terms of mean
ages and retention rate

E ¼ a ηxþ 1−ηð Þ
η−θð Þxþ 1−ηþθð Þ

ε ¼ ηxþ 1−ηð Þ
η−θð Þxþ 1−ηþθð Þ

(T14)
(T15)
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random variables, independently distributed with finite mean, g'i. It can be a discrete stochastic
process at arithmetic time intervals, e.g. an arrival process of random deviates around amean g'i, or a
renewal process, that is, for each i the t-family g'i, t is independently and identically distributed: as
time progresses g'i, t takes values according to the same probability distribution. The distribution of
the t-family g'j, t, j ≠ i, may be different than that of g'i, t.T is the centre axis of the EoL distribution; the
latter expands for μ time intervals in the past (to the left of T) and μ time intervals to the right of T.
Without loss of generality it may be assumed that ν= 2μ+ 1. Early loss includes all premature, i.e.
non-EoL exit from stock. It entails discards of reusable products by the consumer, exports of
remanufactured, exports of used, disposed-of, non-obsolete returns, which the remanufacturer
decides not to use, based on marketing strategy. Early losses are represented by the dimensionless
early loss ratio, st, eq. T6, Table 1, or its complement, the retention ratio, or retention probability in
the reuse/remanufacturing cycle, xt, 0 ≤ xt ≤ 1, Eq. T7, a dominant variable in stock and flow

evolution. The product ∏
T−kþμþ1

i¼1
xt−i is simply the retention probability (considering losses in each

Table 2 Model for reused/remanufactured products under random losses, uncertain sales and random fractions of
the product take-back distribution [71]

Reusable product return flow
(commercial + EoU returns) Qt:

It includes the contributions Qj,t from
N − 1 cycles, j = 1,2,…,N-1. There
are

(N − 1)ν quality grades in Qt,
differentiated by age and number
of past cycles.

Qt ¼ ∑
N−1

j¼1
Qj;t ¼ ∑

N−1

j¼1
∑
v

k¼1
at−jκþk−μ−1gν−kþ1;t ∏

jκ−kþμþ1

i¼1
xt−i

Reusable returns in time t originate from product stock at the
end of the previous time period, i.e. from Ut-1.The fractions
gi,t of the take-back distribution (of reusable returns) satisfy
condition T17.

(T16)

(ν- step, take-back distribution with
take-back fractions: gi, t, i = 1, 2, ...,
ν, in each one of the N-1 reuse
cycles).

0≤gi;t ≤1; ∑
ν

i¼1
gi;t−νþi ¼ φt ; 0 < φt ≤1

gi ¼ φgi
0
; i ¼ 1; 2; :::; ν; 0 < φ≤1

(T17)

N: number of cycles
T: EoL centre axis

T/N ≕ κ
κ: mean cycle duration

(T18)

Consumption: products reaching
the consumer (sales volume in
annual mass of product) = net
demand = ct + remanufactured
products, RUd, t

Cf, t = ct + RUd,t, at =Cf, t − Iu, net, t − RUd, t (T19)

Remanufacturing: return utilisation:
Remanufactured returns, =RUt is a
fraction of reusable returns, Qt:
RUt =RUd, t + RUe, t:RUd, t remain
in the internal domestic cycle and
RUe, t are exported.

Utilised returns of period t of quality
grade j, j = 1, 2, ..., (N − 1)ν,
within the n-step utilisation
horizon, i.e. within the n time
intervals, t, t + 1, t + 2,…,t + n-1.

Discarded fraction of returns of
period t of each quality grade j

Discarded reusable returns
Product return utilisation fraction,

υj,t,t + i =: quality grade j of
product returns in period, t,
utilised in period t + i, i = 1,
2,…,n, by the remanufacturer

RUt ¼ RUd;t þ RUe;t ¼ ∑
n−1

i¼0
υ1;t−i;t υ2;t−i;t ::: υ N−1ð Þν;t−i;t
� �

Vt−i

where Vt−i is the (N − 1)ν- dimensional vector of the various
quality grades in Qt − i and υ1, t − i, t, υ2, t − i, t, ..., υ(N − 1)ν, t − i, t are
the utilization fractions of the (N − 1)ν quality grades of Qt − i
in time period t.

(T20)

Qj;t ∑
n

i¼1
υ j;t;tþn−i

(T21)

1− ∑
n

i¼1
υ j;t;tþn−i

(T22)

Qt− ∑
N−1ð Þν

j¼1
Qj;t ∑

n

i¼1
υ j;t;tþn−i

(T23)

0≤υ j;t;tþi≤ ∑
n

i¼1
υ j;t;tþn−i≤1; j ¼ 1; 2; :::; N−1ð Þν (T24)
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time period to be independent events) from the first entrance of the product in the market in time
period, t−T+ k−μ− 1, as originally manufactured, until and including the time period t− 1, prior
to EoL exit (beginning of period t). Figure 2 illustrates simple accumulation systems corresponding
to constant and random early loss, with mean take-back fraction, φ = 1 (see “Description of the
model for product returns in remanufacturing systems” in regard to φ). The residual life represen-
tation [43, 48, 49, 51, 54, 55, 58] is a deterministic case, corresponding to fixed fractions g'i, t and no
early loss, x= 1.

Description of the model for product returns in remanufacturing systems

Cyclic systems entail accumulation of products that are returned to be remanufactured a number of
cycles, say N− 1 (original, plus N− 1 remanufacturing =N cycles) until the EoL exit, centred at the
centre axis of the EoL distribution. Then, the equations in Table 1 are applicable together with those in
Table 2. The key equation in Table 2 is the expression for the reusable returns (commercial and EoU),
Eq. T16, which is also distributed, stochastic and non-stationary via the arbitrarily randomly varying
fractions of the return distribution, gi, t, i=1, 2, ..., ν. The fractions gi, t sumup toφt, which is equal to, or

less than one: 0≤gi;t ≤1; ∑
ν

i¼1
gi;t−νþi ¼ φt; 0 < φt ≤1. Scaling of the reusable returned distribution

by the (potentially time-varying) scale φt accounts for only a fraction of reusable products in-stock
being returned, as it often happens in practice.

The summation ∑
N−1

j¼1
in Eq. T16 represents reusable returns contributed from products in different

cycles, i.e. cycles 1,2,…, N− 1. Each cycle is centred at time interval jκ, j= 1, 2, ..., N− 1 and
expands for μ time intervals in the past (to the left) andμ time intervals to the right, (Fig. 2), κ ≥μ+
1. If the mean cycle duration is denoted by κ (time periods) then T/N=κ. The first return cycle is
centred at time periodκ after original production. The last return cycle is centred at time period (N−
1)κ after original production and the EoL exit is centred at time period T=Nκ. Cycles can be
overlapping (if N> 2 and κ< ν) or non-overlapping (if N= 2 or if κ ≥ ν), Fig. 2. The number of
overlaps (product returns of same age but corresponding to at most two adjacent cycles) is (N− 2)(ν
−κ). For κ= ν the profile of returns is that of a (quantised) stationary wave with gradually fading
amplitude due to early losses (as the fading riddles from a stone thrown in a lake). It becomes a
standing wave, under no loss, x= 1 and κ= ν. There are (N− 2)κ+ ν age vintages of product
returns, since (N− 1)κ+μ− (κ−μ) + 1 = (N− 2)κ+ 2 μ+ 1 = (N− 2)κ+ ν. Overall demand and
consumption is the sum of originals and of remanufactured products, including net imports (Eq.
T19) reaching the consumer in time t, irrespectively of different pricing of remanufactured products,
used and originals. The model unravels the stochastic routings of returns in various realisations (e.g.
Fig. 3a–f), since all variables at,Et,Ut,Ωt, xt, g'i, , t,Qt,Cf, t, gi, , t, explicitly appearing in themodel, are
random and the return utilisation fractions (see next section) υi, t, t+ j, and the remanufacturing level,
RUt, are time-varying. The mean duration of manufacturing cycles, κ, as well as the spread of the
return distribution, μ or ν, and the centre axis, T of the EoL distribution may also be slowly time-
varying, e.g. diminishing in periods of economic expansion.

Quality grades of reusable product returns and utilisation in remanufacturing

Since quality degrades with time, returns acquired in time-period t are used within a maximum
time horizon, say n time-periods. Usage varies depending on management decision affected by
projected sales, profitability and extent of cannibalisation of original product sales by
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Fig. 2 Modelling of industrial remanufacturing systems. Profiles of stock, early loss, reusable product returns
and EoL flow (left axis) for a product originally manufactured in a single period (a1 = 1 at = 0, t > 1). For
illustration purposesφ = 1 and the fractions of the return distributions in panels a–d are constant corresponding to
the values of the mean distribution (given in the embedded graphs). Panels a, b, c, and d correspond to constant
early loss (right axis, magenta). The return distribution in panel d includes both commercial returns (first peak of
the embedded mean return distribution) and EoU returns (2nd peak). Panels e and f display two realisations of the
same system under random early loss. The fractions, gi,t, of the return distributions are randomly varying, i.e.
random normal deviates around the mean distributions (embedded) obtained via the Markov-chain Monte-Carlo
simulation. The stochastic nature of cyclic systems is further unfolded in Figs. 3–6 where the closed loops are
driven by randomly varying demand and the level of manufacturing of originals (original inflow) in each time
period is found from eq. T19 to balance overall consumption together with remanufactured products (given by
eq. T20)



remanufactured and other uncertain factors. Therefore the various quality grades are utilised
according to varying usage fractions. For instance, the first age vintage (youngest returns, age
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Fig. 3 Application 1. Retreaded tyres. Three different realisations via MCMC simulation, under random sales,
random early loss, randomly varying return distribution and varying return utilisation policy, depicting the
superior prediction efficacy of the proposed method (red line following the blue line) compared to ARIMAX
(green line, right column; b, d, f) based on sales, Cf,t, as the exogenous variable). MAPE of the proposed method
8–12%,MAPE of the ARIMAXmethod 20–30%. The cyclic system is driven by consumption: Eq.T19 gives the
net demand, from which the inflow of originals, at, is found and used in the stochastic expressions for stock,
reusable returns and EoL exit, eqs. T8, T16 and T1



κ-μ) acquired in period t, is used according to varying fractions υ1, t, t, υ1, t, t + 1, ..., υ1, t, t + n − 1,
the second (of age κ-μ + 1) acquired in period t, is used according to fractions υ2, t, t, υ2, t, t + 1,
..., υ2, t, t + n − 1, etc. Besides age, and in the same way as used cars are differentiated both with
respect to age and number of past owners, quality grades in the returns can be considered to be
differentiated with respect both to age and number of past cycles. It can be shown that there are (N
− 1)ν such different quality grades in the return flow. Consequently, utilisation of each quality
grade i to produce remanufactured products is given by the fractions υi, t, t, υi, t, t+ 1, ..., υi, t, t + n− 1,
i = 1, 2, ..., (N − 1)ν. Then if the flows (quantities) of the differing quality grades of product returns
acquired by the remanufacturer in time t are stacked in a column vectorVt the utilisation of quality
grades in time period t (to produce RUd, t products for the domestic market and RUe, t for exports)

is given by eq. T20, RUt ¼ RUd;t þ RUe;t ¼ ∑
n−1

i¼0
υ1;t−i;t υ2;t−i;t ::: υ N−1ð Þν;t−i;t
� �

Vt−i. Inventory

control of product returns may then be addressed. Overall utilisation of each quality grade, as well
as discard of non-utilised products within the n-time horizon (part of early losses,Ωt) are given by
Eqs. T21 and T22. The variable nature of return utilisation, as given by Eq. T20, contributes to the
random variations of stock and flows.

Key asymptotic relations Table 1 gives key relations for the steady state levels of stock and
EoL exit. Eqs T10 and T11 are obtained directly from Eqs. T3 and T7 at steady state. Eqs. T12
and T13 is the law of stock and EoL [72] which gives Eqs. T14 and T15 [73].

Relation between reusable product returns and EoL exit

Assumption A It is assumed that for each i, i = 1, 2, ..., ν, the t-family of random variables g'i, t
in Eqs. T1, T2 is independently and identically distributed. The t-family of random variables gi,

t is also independently and identically distributed and the distribution of the values of the
random variables gi, t is the same as that of the random variables g'i, t, but it is scaled down by
the factor φt, 0 <φt ≤ 1. It is readily shown then that as the number of samples increases, the
mean sample path value of φt, <φt>, tends to the scale of the reusable return with respect to the
EoL distribution, φ (Eq. A1, Appendix A), i.e. φ is the mean fraction of reusable returns in
stock, actually taken back by the customer. Assumption A is mild, reflecting the similarity of
consumer behaviour as to product utilisation by the consumer and take-back.

Then, the following Eq. 1, resulting from eqs. T1 and T16 in Tables 1 and 2, relates the
steady state levels of reusable returns, Q and EoL exit, E. It is valid under any randomly
varying take-back distribution and return utilisation policy, (Appendix A). If the net demand
for originals, at, is not vanishing, Eq. 1 takes the scaled form given in Eq. 2.

Q ¼ φx−TE ∑
N−1

j¼1
xjκ ð1Þ

q ¼ φx−Tε ∑
N−1

j¼1
xjκ ð2Þ

where q is the reusable take-back rate, q =Q / a, i.e. the steady state ratio of reusable product
returns over net demand, x is the retention rate, x =U/(U+Ω), and ε is the EoL rate or EoL
yield, ε=E / a. Being independent of net demand and overall sales, as well as of the distribution
of product returns, Eq. 2 will be used to predict expected product take-back in the next section.
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Prognosis of reusable product returns

The problem addressed is to predict the expected quantity and quality grades of imminent
reusable product returns, with quality reflected by age vintages and past cycles. Prediction is
sought under arbitrarily random and unknown early loss, without presuming any take-back
distribution, i.e. without involving the varying fractions gi,t, or their mean values, gi and without
any assumptions on the retention probability xt. This will be accomplished by determining the
retention rate by combining Eq. 2 with Eq. T15 (Eq. T15 results from the stock Eq. T10 or T11
and law T13). In contrast to black-box postulates, the basic relation presented in this section is
based on fundamental principles (mass and product balances). It relates the long-term value of
the retention probability, xt, named retention rate, with the physical parameters N, κ, ν, via the
following ensemble averages: the mean age of the stock sample at time period t, denoted by ηt
and the mean age of EoL sample, denoted by θt (the subscript t dropped hereafter for simplicity
of notation). Both are readily and reliably monitored as the mean of all (age) vintages present in
a specimen at time t, even from small size or decentralised samples. The efficacy of the
prognosis will be tested using the model given in the previous section.

Proposition 1 Under assumption A and for any return distribution gi, t, i = 1, 2, ..., ν, any sales
profile and return utilisation policy, the polynomial Eq. (3), D(x) = 0 of degree 2(N − 1)κ + μ,

i.e. ∑
2 N−1ð Þκþμ

j¼0
d jx j ¼ 0, relates the long-term (steady state) values of the retention probability, x,

stock mean age η and EoL mean age, θ.

D xð Þ ¼ ∑
2 N−1ð Þκþμ

j¼1
d jx j ¼ 0; d j ¼ ∑

2 N−1ð Þκþμ

i¼ jþ2
i− j−1ð Þhi ð3Þ

The coefficients, dj, of the polynomial,D(x) are determined in each time period from the
parameters hi; the latter are explicitly given in terms of η and θ by Eqs. 4–9: where the hi, i = 0,
1, 2, ..., 2(N − 1)κ + μ + 1 are found as follows in terms of the mean ages.

h2 N−1ð Þκþμþ1 ¼ N−1ð Þ η−θð Þ; h2 N−1ð Þκþμ ¼ N−1ð Þ 1−ηþ θð Þ ð4Þ
hj ¼ 0; j ¼ 2 N−2ð Þκþ 2μþ 1; 2 N−2ð Þκþ 2μþ 2; ::; 2 N−1ð Þκþ μ−1 ð5Þ

hj ¼ ∑
N−2ð Þκþ2μ

i¼0
p N−2ð Þκþ2μ−iπ j− N−2ð Þκ−2μþi; j ¼ 0; 1; 2; :::; 2 N−2ð Þκþ 2μ ð6Þ

and the pi are given in terms of the age vintage fractions yi in the return sample, Qs, by

p N−2ð Þκþ2μ ¼ yκ−μ; p N−2ð Þκþ2μ−1 ¼ yκ−μþ1; :::; p1 ¼ y N−1ð Þκþμ−1; p0 ¼ y N−1ð Þκþμ ð7Þ

yi ¼ Qs;i=Qs ð8Þ

i ¼ κ−μ;κ−μþ 1; :::;κþ μ; 2κ−μ; 2κ−μþ 1; :::; 2κþ μ; :::;
N−1ð Þκ−μ; N−1ð Þκ−μþ 1; :::; N−1ð Þκþ μ
πjκþ1 ¼ −η;πjκ ¼ − 1−ηð Þ; j ¼ N−2;N−3; :::; 1; 0;π1 ¼ −η;π0 ¼ − 1−ηð Þ
πjκ−1 ¼ ::: ¼ π j−1ð Þκþ2 ¼ 0; j ¼ 2; 3; :::; N−1ð Þ;π j ¼ 0; j < 0

ð9Þ

The (N − 2)κ + ν age-vintage fractions, yi, in the reusable return sample, Qs, are readily
determined in each time period via Eq. 8. Neat digital mechanisation of Eq. 3 is possible
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using the vector notation, d ¼ d2 N−1ð Þκþμ d2 N−1ð Þκþμ−1 ::: d1 d0
� �

and corresponding

matrix multiplication functions in available software: eq. 3 is written as:

d ¼ Lh ð10Þ

L is the (2(N − 1)κ + μ + 1)x(2(N − 1)κ + μ + 1) shift matrix L ¼

0 0 ::: 0 0
1 0 ::: 0 0
1 1 0 ::: 0
::: ::: ::: ::: :::
1 1 ::: 1 0

2
66664

3
77775 with

the entries hi, i = 0, 1, 2, ..., 2(N − 1)κ + μ + 1 of the 2(N − 1)κ + μ + 1 dimensional vector hT

¼ h2 N−1ð Þκþμþ1 h2 N−1ð Þκþμ 0 0 ::: 0 h2 N−2ð Þκþ2μþ1 h2 N−2ð Þκþ2μ ::: h1 h0
� �

given by Eqs. 4–9.

Examples 1) N = 2: (one original manufacturing cycle plus one reuse/remanufacturing cycle).

Then 2(N − 1)κ + μ + 1 = 2κ + μ + 1, Eq. 1 is q = φx−2κεxκ and Eq. 3 becomes D xð Þ

¼ ∑
2κþμ−1

j¼0
d jx j ¼ 0; with d ¼ L2κþμþ1h. The vector h is found from Eqs. 4–9:

p2μ = yκ − μ, p2μ − 1 = yκ − μ + 1, ..., p1 = yκ + μ − 1, p0 = yκ + μ and π1 = − η, π0 = − (1 − η) giving
h2κ + μ + 1 = (η − θ), h2κ + μ = (1 − η + θ), h2κ + μ − 1 = 0 = h2κ + μ − 2 = ...h2μ + 2 = 0, h2μ + 1 = − ηyκ

− μ, h2μ = − ηyκ − μ + 1 − (1 − η)yκ − μ, h2μ − 1 = − ηyκ − μ + 2 + (1 − η)yκ − μ + 1, ...,
h1 = − ηyκ + μ − (1 − η)yκ + μ − 1, h0 = − (1 − η)yκ + μ.
1a) For instance, for κ = 1 and μ = 0 (fixed time of EoL returns at T = 2 time periods, e.g.

lease-back products with EoU return at the end of period 1 and EoL exit at the end of period 2)

Eq. 3, D xð Þ ¼ ∑
2

j¼0
d jx j ¼ 0; becomes: (ηt − θt)x2 + x + (1 − ηt) = 0, which directly yields the

nontrivial solution x = (η − θ + 1)/(θ − η), or, x = (η − 1)/(2 − η), since in this case θ = 2.

1b) In general, for any κ > 0 and for μ = 0, Eq. 3 is D xð Þ ¼ ∑
2κ

j¼0
d jx j; with d2κ = η − θ, d2κ −

1 = d2κ − 2 = ... = d1 = 1, d0 = − η.
1c) Distributed product returns. For κ = 2 and μ = 1 (see below what the system Eqs. T1, T8

and T16 are in this example) Eq. 3 becomes D xð Þ ¼ ∑
5

j¼0
d jx j;

d5 = η − θ, d4 = 1, d3 = 1, d2 = 1 − ηy1, d1 = 1 − ηy2 − y1, d0 = 1 − ηy3 − y1 − y2.

(Eqs T1, T8 and T16: Et ¼ at−3g1;t ∏
3

i¼1
xt−i þ at−4g2;t ∏

4

i¼1
xt−i þ at−5g3;t ∏

5

i¼1
xt−i,

Qt ¼ at−1xt−1g1;t þ at−2xt−1xt−2g2;t þ at−3g3;t ∏
3

i¼1
xt−i, Ut ¼ atxt þ at−1xtxt−1 þ at−2xtxt−1xt−2

þat−3xtxt−1 xt−2xt−3 1−g01;t
� �þ at−4xtxt−1xt−2xt−3xt−4 1−g01;t−1−g02;t

� �
2) Two remanufacturing cycles, N = 3: Eq. 1 becomes, q =φx−3κε(xκ + x2κ)).

Then D xð Þ ¼ ∑
4κþμ

j¼0
d jx j ¼ 0 and from Eq. 10, dT ¼ d4κþμ d4κþμ−1 1 1 :::½ 1d2κþ2μ

d2κþ2μ−1:::d1d0� or dT ¼ d4κþμ ¼ 2 η−θð Þ; d4κþμ−1½ ¼ 2 1−ηþ θð Þ; 1; 1 ::: 1d2κþ2μ ¼ 1−η
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y1; d2κþ2μ−1 ¼ ∑
4κþμþ1

i¼2κþ2μ
hi ; :::; d1 ¼ ∑

4κþμþ1

i¼2
hi; d0 ¼ ∑

4κþμþ1

i¼1
hi� with the hi, i=1,2,…, 2κ+2 μ

given in Appendix B.
2a) In particular, for κ= 1 and μ= 0 (two reuse cycles, non-distributed product returns) Eq. 3 is

D xð Þ ¼ ∑
4

j¼0
d jx j ¼ 0;withd4 = 2(η− θ), d3 = 2, d2 = 2− ηy1, d1 = 2− ηy1− ηy2, d0 = 2− ηy1− ηy2 +

(η− 2)y1
2b) for κ = 2, μ = 1 (distributed take-back in three time periods, see below for Eqs. T1, T8

and T16) Eq. 3 is D xð Þ ¼ ∑
9

j¼0
d jx j ¼ 0; with

d9 = 2(η − θ), d8 = 2, d7 = 2, d6 = 2 − ηy1, d5 = 2 − ηy2 − y1, d4 = 2 − ηy3 − ηy1 − y2 − y1,
d3 = 2 − ηy4 − ηy2 − 2y1 − y2 − y3, d2 = 2 − ηy5 − ηy3 − 2y1 − 2y2 − y3 − y4
d1 = 2 − ηy4 − 2y1 − 2y2 − 2y3 − y4, d0 = 2 − ηy5 − 2y1 − 2y2 − 2y3 − 2y4 − y5

(Eqs T1, T8 and T16: Et ¼ at−5g1;t ∏
5

i¼1
xt−i þ at−6g2;t ∏

6

i¼1
xt−i þ at−7g3;t ∏

7

i¼1
xt−i

Qt ¼ at−1xt−1g1;t þ at−2xt−1xt−2g2;t þ at−3g3;t ∏
3

i¼1
xt−i þ at−3g1;t ∏

3

i¼1
xt−i þ at−4g2;t ∏

4

i¼1
xt−i þ at−5g3;t ∏

5

i¼1
xt−i;

Ut ¼ atxt þ at−1xtxt−1 þ :::þ at−5xtxt−1:::xt−5 1−g01;t
� � þat−6xtxt−1:::xt−6 1−g0

1;t−1−g02;t
� �

).

Eq. 3 may yield the retention rate, or retention probability, x, (xt = probability to
remain in the internal reuse/remanufacturing cycle in time period t given that it is not
part of the EoL exit at time t), a key parameter which unties the cyclic knot.

Product returns and vintage flows

For practical use, the retention rate, x, is obtained via Eq. 3 in each time period, t,
using the monitored values η and θ from stock and EoL samples. Then, the mean
take-back rate, q, is determined from Eq. 1 as follows. First the EoL rate is found
from Eq. T15. Next, the fraction of reusable products which is actually returned, φ, is
found as the mean sample path value of φt via Eq. A1, based on assumption A and
on the strong law of large numbers [25] using the ratios y*i,t − κ − μ + i of vintage of age
i in the return sample in time period t − κ − μ + i, over the vintage of same age i in
the corresponding stock sample, (Eq. 12):

φ ¼< φt >¼< ∑
κþμ

i¼κ−μ
y*i;t−κ−μþi > if ν≤κ ð11aÞ

φ ¼< φt >¼ ∑
κþμ

i¼μþ1
< y*i;t−κ−μþi > if ν > κ ð11bÞ

y*i;t−κ−μþi ¼ Qs;i;t−κ−μþi=Us;i;t−κ−μþi−1; i ¼ κ−μ;κ−μþ 1; :::;κ;κþ 1; :::;κþ μ ð12Þ

If the net demand, at, is not vanishing, the reusable return flow prediction is Qt
' = qt'at.

The flows of the age vintages of reusable returns can be determined based on the
monitored vintage fractions of reusable returns, Eq. 8.
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A 5-step implementation procedure

The following steps are applied sequentially in each time period, t.

1. Obtain a representative sample of product stock and the corresponding subsample of
reusable product returns, as well as a sample of EoL returns in time t and find i) the mean
age of the stock sample, η and the mean age, θ, of the EoL sample; ii) the fractions of the
(N − 2)κ + 2μ + 1 age vintages of reusable product returns yi, t, i = κ − μ, κ − μ + 1, κ
− μ + 2, ..., (N − 1)κ + μ − 1, (N − 1)κ + μ, in the reusable product return subsample; iii)
the ν ratios, y∗i, t, of the age vintages in the reusable product return subsample over the
same age-vintages in the stock sample.

2. Determine the parameters pj, j = 0, 1, 2, ..., (N − 2)κ + 2μ from Eq. 7 and πj, j = 0, 1, 2, ...,
(N − 2)κ + 1 from Eq. 9. Set pj outside the range j > (N − 2)κ + 2μ and πj, j > (N − 2)κ + 1
equal to zero.

3. Use Eqs. 4–6 and the current values of yi, t, ηt, θt, to determine the entries hi, i = 0, 1, 2, ...,
2(N − 1)κ + μ + 1, of the vector h; use Eq. 3 or Eq. 10 to determine the coefficients of Eq.
3, D(x) = 0.

4. Solve D(x) = 0 to obtain the retention rate, x, in time t. Use the previous value of x—
solution of Eq. 3 obtained in the previous time period, t − 1, i.e. xt−1—as initial value of the
numerical procedure.

5. Obtain the EoL rate, from Eq. T15 in Table 1 and φ from Eq. 11. Obtain the prediction of
reusable product return rate, qt', from Eq. 2 and the expected return flow using the current
value of net demand, at; obtain the vintage flows of reusable product returns from Eq. 8.

The parameters N, κ, T, μ, can be determined, or updated, if they are slowly time-varying,
using the minimum and maximum ages in the stock and return samples, mE, t, kE, t(orkU, t) and
mQ, t via Eqs. C1–C4 in Appendix C.

Applications

Application 1: retreaded tyres Data from Japan, Europe and the USA [14, 19, 20]
suggest that the EoL exit essentially spreads in years 2–8 from production. Early
losses due to wear and biodegradation amount to 2% annually. Retreading allows a
second cycle of the product, yet only ~ 25% of returned by tyre shops are suitable for
remoulding (reusable returns), the rest lost from the remanufacturing cycle. For
simulation purposes the cyclic system may be represented by our model with T = 4,
κ = 2, μ = 1 years. We allow random early loss, (xt varies randomly with mean value
0.6). The fractions of the return and EoL distribution are randomly varying. The mean
distribution is assumed Gaussian in the simulations (i.e. the fractions gi,t are random
deviates ± 50% around mean values gi; the gi follow a quantised Gaussian distribu-
tion) of total level φ = 1. Model T1–T21, in Tables 1 and 2 is used for simulating the
system. The product stock, flow and mean age values for three different realisations
(among a large number of simulated realisations) are given in Fig. 3 under randomly
varying sales, randomly varying early loss (around 0.4) and randomly varying return/
EoL distribution. The simulations fit actual data (actually reused at about 20–25% of
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sales) (Fig. 3a, c, e). The return profile does not necessarily follow the sales profile,
neither is there a fixed distinctive lag between sales and returns.

Expected tyre returns 5-step procedure. Using the minimum and maximum age data, Eqs.
D1–D4 give T = 4, κ = 2, μ = 1 years. Then Eq. 2 is N = 2, q =φx−2κεxκ or q =φx−4εx2,
hT ¼ h6 h5 0 h3 −h2 h1 h0½ �
with: hT ¼ η−θ 1−ηþ θ 0 −ηy1 −ηy2− 1−ηð Þy1 −ηy3− 1−ηð Þy2 1−ηð Þy3½ �

and Eq. 3 becomes:

d5 ¼ η−θ; d4 ¼ 1; d3 ¼ 1; d2 ¼ 1−ηy1; d1 ¼ 1−ηy2 þ y1; d0 ¼ 1−ηy3 þ y2 þ y1:

The mean ages and the vintage fraction values, yi, t, are obtained by simulation. Solution of Eq.
3 in each time period yields the mean retention rate; x and Eq. T15 gives the EoL rate.
Subsequently, the ratios of reusable return vintages over the corresponding age vintages in
stock, y'i, t + κ + μ − i (obtained from a stock sample and the corresponding reusable return
subsample) are found,

y∗1, t − 2 = at − 3xt − 3g1, t − 2/at − 3xt − 3 = g1, t − 2, y∗2, t − 1 = at − 3xt − 2xt − 3g2, t − 1/at − 3xt − 2xt − 3 = g2, t
− 1, y∗3, t = at − 3xt − 1xt − 2xt − 3g3, t/at − 3xt − 1xt − 2xt − 3 = g3, t) and Eq. 11a gives the value of the

mean take-back fraction: φt ¼ ∑
3

i¼1
y*i;tþ1−i ¼ y*1;t−2 þ y*2;t−1 þ y*3;t ¼ 1.

Then Eq. 2 gives the prognosis of reusable return rate qt' from which the reusable return
flow prediction, Qt

' is obtained. It is seen (Fig. 3a, c, f) that the predicted values of reusable
return rate, qt', closely follow the MSPVof the return rate <Qt/at>. The predicted values of the
return flow, Q′t, are also close to the actual values, Qt, with a mean absolute percentage error
(MAPE) around 10% in numerous realisations. Besides mean error metrics, the method
features high accuracy at important peaks and lows of product return flow. Compared to
existing methods and particularly ARIMAX, the method presented herein features about one
third MAPE in numerous realisations (10.2% versus 29.3% in Fig. 3b, 8.4% versus 23.5% in
Fig. 3d, 11% versus 19.3% in Fig. 3f). Predicted EoL rate, ε′ and mean retention time, τ′, via
Eqs. T15 and T11 closely follow the time averages of Et/at and Ut/at, as well.

Application 2: office computers. Refurbishing and upgrading of office computers [15, 21, 48,
49], extends their useful lifetime from 3 to 5 years to 8–10 years, with potentially two intermediate
returns for remanufacturing (N = 3). Model T1-T12 with T = 9, κ = 3, μ = 2, years and N= 3,
enables simulation of the IR (Fig. 4) under random early loss (mean at 0.89), and randomly
varying fractions of the return/EoL distribution. Six different realisations are depicted in Fig. 4
with same sales profile. A return utilisation policy lasting for three periods n = 3, i.e. Eq. T20 with
υi, t, t = 0.15, υi, t, t + 1 = 0.1, υi, t, t+ 2 = 0.05 i = 1,2,…,10, is assumed, with remanufactured exports
assumed zero, RUe, t = 0. Net demand is determined from eq. T19, Table 2, to balance sales
volumes. Imports of used are also zero, Iu, t = 0. Also, φt = 0.5 is assumed for the simulations. The
mean values of the fractions of the EoL distribution follow a right skew (delayed) quantised
Weibull (α = 8.42, β = 4.8) distribution with deviation up to 50% (i.e. the fractions g′i,t are random
deviates ± 50% around mean values gi in Fig. 4a–f). Also, gi = 0.5 g′i.

Expected product returns From age data, Eqs. D1–D4 give N = 3, T = 9, κ = 3, μ = 2. Then
Eq. 2 becomes q =φx−3κε(xκ + x2κ) or, q =φx−9ε(x3 + x6). Following the 5-step procedure, Eqs.
4–9 give the vector h (of dimension 2(N − 1)κ + μ + 1 = 2∗2∗3 + 2 + 1 = 15, with h15 = 2(η − θ),
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h14 = 2(1 − η + θ), h13 = h12 = 0, h11 = − ηy1, h10 = − ηy2 − (1 − η)y1, h9 = − ηy3 − (1 − η)y2,
h8 = − ηy4 − (1 − η)y3 − ηy1, h7 = − ηy5 − (1 − η)y4 − ηy2 − (1 − η)y1, h6 = − ηy6 − (1 − η)y5
− ηy3 − (1 − η)y2, h5 = − ηy7 − (1 − η)y6 − ηy4 − (1 − η)y3, h4 = − ηy8 − (1 − η)y7 − ηy5 − (1
− η)y4, h3 = − (1 − η)y8 − ηy6 − (1 − η)y5, h2 = − ηy7 − (1 − η)y6, h1 = − ηy8 − (1 − η)y7, h0 =
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Fig. 4 Application 2. Computers: Six realisations under random early loss Ωt, randomly varying fractions of the
return distribution viaMCMC simulation and various sales profiles, Cf,t. (The mean values, gi of the random fractions
gi,t of the take-back distribution follow theGaussian distribution in the first four (a–d, top andmiddle) and theWeibull
distribution with α = 8.42, β = 4.8 in e and f, bottom). Enhanced prognosis of return flow, Q′, based on the proposed
method (MAPE= 8–15%, red line following the blue line) using Eq. 3 and real-time data of stock mean age, ηt and
EoL mean age, θt, compared to leading methods in use (MAPE at 20–30%, green line, right column, a–f)



− (1 − η)y8 and Eq. 3 or Eq. 10, d j ¼ ∑
15

i¼ jþ1
hi; j ¼ 15; 14; 13; :::; 1; 0. Solved in every succes-

sive time interval, Eq. 3 gives the retention rate. Then Eq. T15 yields the EoL rate and Eq. 11b

(N = 3 > 2, ν = 5 > κ = 3) gives φt ¼ ∑
κþμ

i¼μþ1
y*i;t−κ−μþi ¼ ∑

5

i¼3
y*i;t−5þi ¼ y*3;t−2 þ y*4;t−1 þ y*5;t

=at − 5xt − 5xt − 4xt − 3g3, t − 2/at − 5xt − 5xt − 4xt − 3 + (at − 5xt − 5xt − 4xt − 3xt − 2g4, t − 1/at − 5xt − 5xt − 4xt − 3xt −

2 + at − 2xt − 2g1, t − 1/at − 2xt − 2) + (at − 5xt − 5xt − 4xt − 3xt − 2xt − 1g5, t/at − 5xt − 5xt − 4xt − 3xt − 2xt − 1 + at − 2xt

− 2xt − 1g2, t/at − 2xt − 2xt − 1) =g3, t − 2 + (g4, t − 1 + g1, t − 1) + (g5, t + g2, t) and

φ ¼< φt >¼ ∑
ν

i¼1
< gi;t−νþi >¼ 0:5 ∑

5

i¼1
< g0i;t−5þi >¼ 0:5, with the fractions of reusable return

vintages over the corresponding vintages in stock, y∗i, t−5+ i, i.e. y∗3, t−2, y∗4, t−1 and y∗5, t obtained
from the stock sample and corresponding subsample or product returns. Subsequently, the return rate
forecast, qt' from Eq. 2, and the return flow forecast Qt

' are found (Fig. 4a–f). Compared to the
ARIMAXsales-based forecasting of product returns, themethod features about twice lower error, e.g.
in regard to the MAPE metric (9% versus 15% in Fig. 4a, 12% versus 20% in Fig. 4b, 13% versus
18% in Fig. 4c, 11% versus 22% in Fig. 4d, 8% versus 13% in Fig. 4e, 11% versus 19% in Fig. 4f).
Without including any return or residual life distribution and without presuming any particular
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Fig. 5 Application 3 Electronic product: Four different realisations under double peak randomly varying take-
back distribution, gi,t, via MCMC simulation (embedded for time t = 10) reflecting commercial and EoU returns,
random early loss, varying sales and varying return utilisation. Prognosis based on Eq. 3 closely follows the
variations of product return flow, whilst ARIMAX forecasting produces average estimates (green line, right
column; b, d) especially under levelled sales, a. The MAPE via Eq. 3 is 4%, whilst the MAPE based on
ARIMAX with sales as exogenous variable, ARIMAXCf is 20%



dependence on sales volumes and history, the method, based on current stock mean age and EoL
mean age data, shows improved performance in real time compared to the ARIMAX method.
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Fig. 6 Application 3. Actual (left column) and predicted via the proposed method (right column) age vintage
flows corresponding to the 4 realisations in Fig. 5. The first nodule corresponds to commercial returns of the first
cycle, the second represents EoU returns from the first cycle and commercial of the second cycle and the third
represents EoU returns of the second cycle



Application 3: Electronics. Electronic products [32, 53, 57] featuring an average lifetime
around 3 years may be represented by our model with T = 12 and a four-month discretisation
interval. Products that may be remanufactured twice are assessed, i.e. N = 3. Then κ = 4
quarters and assuming full spread of the returns within the remanufacturing cycle gives μ =
3 quarters. As in applications 1 and 2, returns may exhibit a drastically different profile than
net demand or sales, including peaks and lows (Fig. 5 presents the flows of four realisations
with the fractions gi,t corresponding to a double-peak return distribution encompassing com-
mercial and reusable returns, under various sales profiles and randomly varying early loss.

Expected returns Eq. 2 becomes q =φx−3κε(xκ + x2κ), q =φx−12ε(x4 + x8). Eqs. 4–9 give the

v e c t o r h ( o f d i m e n s i o n 2 N−1ð Þκþ μþ 1 ¼ 2*2*4þ 3þ 1 ¼ 20; hT ¼
h20 h19 0 0 ::: 0 h15 h14 ::: h1 h0½ �, h20 = 2(η − θ), h19 = 2(1 − η + θ), h18 =
h17 = h16 = 0, h15 = − ηy1, h14 = − ηy2 − (1 − η)y1, h13 = − ηy3 − (1 − η)y2, h12 = − ηy4 − (1
− η)y3, h11 = − ηy5 − (1 − η)y4 − ηy1, h10 = − ηy6 − (1 − η)y5 − ηy2 − (1 − η)y1, h9 = − ηy7 − (1
− η)y6 − ηy3 − (1 − η)y2, h8 = − ηy8 − (1 − η)y7 − ηy4 − (1 − η)y3, h7 = − ηy9 − (1 − η)y8 − ηy5
− (1 − η)y4, h6 = − ηy10 − (1 − η)y9 − ηy6 − (1 − η)y5, h5 = − ηy11 − (1 − η)y10 − ηy7 − (1 − η)y6,
h4 = − (1 − η)y11 − ηy8 − (1 − η)y9, h3 = − ηy9 − (1 − η)y8, h2 = − ηy10 − (1 − η)y9, h1 = − ηy11

− (1 − η)y10, h0 = − (1 − η)y11 and then Eq. 3 or Eq. 10 give Eq. 3 (D(x) = 0) with d j ¼ ∑
19

i¼ jþ1

hi; j ¼ 19; 18; 17; :::; 1; 0 which, solved bumerically, gives the retention rate, x. Eq. 11b,

(N = 3 > 2, ν = 7 > κ = 4) g ives φ ¼< φt >¼< ∑
κþμ

i¼μþ1
y*i;t−κ−μþi >¼< ∑

7

i¼4
y*i;t−7þi >

¼< y*4;t−3 þ y*5;t−2 þ y*6;t−1 þ y*7;t >¼ < g4;t−3 þ g5;t−2 þ g1;t−2
� �þ g6;t−1 þ g2;t−1

� �
þ g7;t þ g3;t
� �

>¼ φ < ∑
7

i¼1
g0i;t−7þi >¼ φ ¼ 0:5, (with the fractions of reusable return vin-

tages over corresponding vintages in stock, y∗i, t − κ − μ + i, found from corresponding return and
stock samples) and Eq. T15 gives the EoL rate, ε. Then, the predicted return rate, qt', is
determined from Eq. 2. The flow of product returns, Qt

', faithfully represents the actual
(simulated) value in all realisations, featuring MAPE less than 8% (4%, 9%, 10%, 8.7% in
Fig. 5a, b, c, d respectively). In contrast, the ARIMAX method features MAPE about 15%
(10%, 14%, 15%, 18%, respectively). The predicted vintage flows of product returns obtained
from Eq. 8, using the monitored age distribution, yi and the forecast flow Qt

', are in close
agreement with the actual vintages, as manifested by Fig. 6 (in which the first nodule
corresponds to commercial returns of the first cycle, the second represents EoU returns from
the first cycle and commercial of the second cycle and the third nodule represents EoU returns
of the second cycle).

Conclusions

Green and profitable industrial remanufacturing depends on the quantity and quality of product
take-back. Reliable prognosis provides competitive advantages for efficient inventory control
and operations’ planning. Strongly influenced by random stock losses and volatile product
take-back, returns are delayed, random and unobservable for several products. No fixed
particular distribution can accurately represent volatile product take-back by consumer and
EoL exit. The present work sought prognosis of returns via dimensionless rates that are core

Journal of Remanufacturing (2020) 10:15–42 35



features in cyclic manufacturing, independent of sales and net demand. The proposed method
stands on two pillars (a) a law associating the mean retention time and the EoL rate via the
stock mean age and the EoL mean age (both population averages) (b) the assumption that each
specific fraction of the product take-back/EoL distribution is a family of independently and
identically distributed random variables. In the same line as the strong law of large numbers by
which time averages are closely approximated by ensemble averages under mild conditions,
we have used population averages from stock and EoL samples (the mean ages of stock and
EoL which are scaled and reliably acquired data) to determine the retention rate. The method
allows for random sales and returns, random early losses during lifetime and unknown/non-
stationary take-back and EoL distributions. It was implemented and tested via the Markov-
chain Monte-Carlo simulation in models representing car tyres, electronic products and office
computers, providing improved prediction of product return quantity and age vintage flows,
compared to up-to-date prognosis methods in use. The method can be used for enhanced
planning of operations in remanufacturing and manufacturing of original products, prediction
of life cycle impact inventory and proactive policy-making towards sustainability.

Proofs

Eq. 1: From Eqs. T2 and T17 using assumption A and since for each i the g'i, t, i = 1, 2, ..., ν
and the gi, t, i = 1, 2, ..., ν are independently and identically distributed, with distributions
scaled byφ, using the strong law of large numbers, as the number of samples becomes large the
mean sample path values of the random variables gi, t, i = 1, 2, ..., ν and g'i, t, i = 1, 2, ..., ν are
related by gi =φgi', i = 1, 2, ..., ν for all possible sample paths with probability one.

< φt >¼< ∑
ν

i¼1
gi;t−νþi >¼ ∑

ν

i¼1
< gi;t−νþi

� �
>¼ ∑

ν

i¼1
< φg0t−νþi >¼ φ ∑

ν

i¼1
< g0t−νþi >

¼ φ*1 ¼ φ ðA1Þ
Multiplying each one of the contributions of the (N − 1)cycles in the reusable return flow, Qj, t

in Eq. T16, by the retention probability from t to t + T – jκ − 1, that is by ∏
T−jκ−1

i¼0
xtþi, gives:

∑
v

k¼1
at−jκþk−μ−1gν−kþ1;t ∏

jκ−kþμþ1

i¼1
xt−i

� 	
∏

T−jκ−1

i¼0
xtþi

� 	
¼ ∑

v

k¼1
at−jκþk−μ−1gν−kþ1;t ∏

T−kþμ

i¼1
xt−i

� 	
,

which, for fixed inflow, a, and constant retention rate, x, becomes a ∑
v

k¼1
gν−kþ1x

T−kþμ

� 	
, or

Qjx
T−jκ ¼ a ∑

v

k¼1
gν−kþ1x

T−kþμ

� 	
. Subsequently, use of Eq. A1 gives

Qjx
T−jκ ¼ a ∑

v

k¼1
φν−kþ1g

0
ν−kþ1xT−kþμ

� 	
¼ aφ ∑

v

k¼1
g0ν−kþ1xT−kþμ ¼ φE. T h e r e f o r e ,

Qjx
T−jκ ¼ φE⇔Qj ¼ φEx−T xjκ⇔ ∑

N−1

j¼1
Qj ¼ φx−TE ∑

N−1

j¼1
xjκ⇔Q ¼ φx−TE ∑

N−1

j¼1
xjκ:⋄

Eq. 3: q, ε and φ are substituted as follows. Denoting the age vintage flows of reusable
returns by Qi, t, i = κ − μ, κ − μ + 1, ..., (N − 1)κ + μ, the ratio q / φ is found from the product
return balance

36 Journal of Remanufacturing (2020) 10:15–42



∑
N−1ð Þκþμ

i¼κ−μ
Qi;tx

N−1ð Þκþμ−i

 !
¼ φ N−1ð Þx N−1ð Þκþμa; or ∑

N−1ð Þκþμ

i¼κ−μ
Qi;tx

N−1ð Þκþμ−i

 !
¼ φ N−1ð Þx N−1ð ÞκþμQ=q or

qφ−1 ∑
N−1ð Þκþμ

i¼κ−μ
yi;tx

N−1ð Þκþμ−i

 !
¼ N−1ð Þx N−1ð Þκþμ

ðA2Þ

Eq. A2 enables elimination of qφ−1 in Eq. 1. Law T12 of stock and EoL allows to substitute ε
in terms of η, θ and x (Eq. T15) in Eq. 2. Indeed, using Eq. A2 and Eq. T15, Eq. 2 becomes an
algebraic equation in the retention rate, x.

xT N−1ð Þx N−1ð Þκþμ ¼ ∑
N−1ð Þκþμ

i¼κ−μ
yi;tx

N−1ð Þκþμ−i

 !
ηxþ 1−ηð Þ

η−θð Þxþ 1−ηþθð Þ ∑
N−1

j¼1
xjκ. If the discretisation in-

terval, δ, is chosen as δ = T/ξ, where ξ is any common multiple of T, N, then the mean cycle
time T/N = κ is integer and Eq. 2 becomes a polynomial equation

xT N−1ð Þx N−1ð Þκþμ η−θð Þxþ 1−ηþ θð Þð Þ ¼ ∑
N−1ð Þκþμ

i¼κ−μ
yi;tx

N−1ð Þκþμ−i

 !
ηxþ 1−ηð Þð Þ ∑

N−1

j¼1
xjκ,

or, factoring out xκ (0 < x < 1),

H xð Þ ¼ N−1ð Þx2 N−1ð Þκþμ η−θð Þxþ 1−ηþ θð Þ½ �− ∑
N−1ð Þκþμ

i¼κ−μ
yi;tx

N−1ð Þκþμ−i

 !
ηxþ 1−ηð Þð Þ ∑

N−2

j¼0
xjκ ¼ 0 ðA3Þ

The coefficients of H(x) are the elements of the vector h found as follows. Define:

P xð Þ≕ ∑
N−1ð Þκþμ

i¼κ−μ
yi;tx

N−1ð Þκþμ−i ðA4Þ

Then Π xð Þ ¼ π N−2ð Þκþ1x N−2ð Þκþ1 þ π N−2ð Þκx N−2ð Þκ þ π N−3ð Þκþ1x N−3ð Þκþ1

þ π N−3ð Þκx N−3ð Þκ:::þ π1 þ π0

πjκþ1 ¼ −η;πjκ ¼ − 1−ηð Þ; j ¼ N−2;N−3; :::; 1; 0;π1 ¼ −η;π0 ¼ − 1−ηð Þ
πjκ−1 ¼ ::: ¼ π j−1ð Þκþ2 ¼ 0; j ¼ 2; 3; :::; N−1ð Þ;π j ¼ 0; j < 0

ðA6Þ

The product of two polynomials α(x) of degreem and β(x) of degree n in x is a polynomial γ(x)
of degree (m + n), the coefficients of which are given by

Coefficient of order j termγ j ¼ ∑
n

i¼0
an−iβ j−nþi ðA7Þ

Applying Eq. A7 to the product P(x)Π(x) yields the analytic formulae 4–9 for hi, determined
only in terms of the vintage fractions yi, t in the return sample and of the mean ages, ηt and θt.
Since H(1) = P(1) − (N − 1) = 0, the polynomial H(x) is divisible by(x − 1), i.e. H(x) = (x −
1)D(x) with D(x) a polynomial of degree 2(N − 1)κ + μ and then Eq. 3 becomes D(x) = 0.⋄.

Eq. 11. Updating of φ. From Eq. A1, φ is the MSPVof φt, which at steady state equals φ. If
N > 2 then N − 1 ≥ 2 and, using the fact that κ > μ, it follows that (N − 1)κ > 2μ⇒Nκ − μ > κ +
μ⇒ T − μ > κ + μ and the reusable age vintages in stock, which appear in Eq. 11 are limited
within the first T − μ =Nκ − μ terms in Eq. T8, i.e. they do not include the terms featuring G'c,

k − T + μ, t. If κ ≥ ν, the remanufacturing cycles do not overlap and all remanufacturable age
vintages appear in the first (and only) cycle once. Then, since the vintage of age i in the
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reusable stock in time t − κ − μ + i is given by at−κ−μ ∏
t−κ−μþi−1

j¼t−κ−μ
x j, the age vintage fractions of

reusable product returns in a representative stock sample satisfy.

∑
κþμ

i¼κ−μ
y*i;t−κ−μþi ¼ ∑

κþμ

i¼κ−μ
at−κ−μgi;t−κ−μþi

��

∏
t−κ−μþi−1

j¼t−κ−μ
x jÞ= at−κ−μ ∏

t−κ−μþi−1

j¼t−κ−μ
x j

 !
Þ ¼ ∑

ν

i¼1
gi;t−νþi ¼ φt.

If κ < ν, adjacent cycles overlap. Since κ > μ⇒ 2κ > 2μ and both are even numbers, it
follows that 2κ > 2μ + 1 = ν⇒ 2κ − μ > μ + 1. The first overlap starts μ terms prior to the
centre axis of the 2nd cycle, i.e. at the vintage of age 2κ − μ and therefore the first μ + 1 terms
do not overlap and g1, t, g2, t, ..., gμ + 1, t appear individually in the beginning of the first cycle.
More specifically, since κ < ν, the last ν-κ age vintages of the first cycle in the return flow
corresponding to the fractions gκ + 1, t, gκ + 2, t, ..., gν, t of the return distribution, are of the same
age (overlapping) with the first ν-κ terms of the second cycle, namely, gκ + 1, t, gκ + 2, t, ..., gν, t,
giving rise to ν-κ age vintage terms with combined fractions (gκ + 1, t + g1, t), (gκ + 2, t + g2, t), ...,
(gν, t + gν − κ, t). The remaining ν − 2(ν − κ) = 2κ − ν fractions gν − κ + 1, t, gν − κ + 2, t, ..., gκ, t
completing the return distribution, g1, t, g2, t, ..., gν, t, which are not included in the combined
terms, are included in terms of the first cycle as individual fractions. Since the oldest age
vintage in the overlapping terms of the 1st and 2nd cycles is of age κ + μ and ν − κ age
vintages have been accounted for in the combined terms and 2κ − ν additional individual age
vintages are needed, the first (most recent) age vintage needed for the completion of the return
distribution is of age κ + μ − (ν − κ) − (2κ − ν) + 1 = μ + 1. Alternatively, ν − 2(ν − κ) more
recent vintage terms, starting from the first overlap (the first overlapping vintage of age 2κ
− μ not included) lead to the same result 2κ − μ − (ν − 2(ν − κ)) = μ + 1. Then, the summation
in Eq. 11b col lects a l l f rac t ions gi , t − ν + i , i = 1, 2, . . . , ν ,once, that is ,

< ∑
κþμ

i¼μþ1
y*i;t−κ−μþi >¼< ∑

ν

i¼1
gi;t−νþi >¼ ∑

ν

i¼1
< gi;t−νþi

� �
>¼ φ:⋄

The vector h in examples 1 and 2

1a). Eqs. 7–9 become: p0 = 1, π1 = − η, π0 = − (1 − η) and from Eqs. 4–6,h3 = (η − θ), h2 = (1
− η + θ), h1 = − η, h0 = − (1 − η).

1b). h2κ + 1 = η − θ, h2κ = η − θ + 1, h2κ − 1 = h2κ − 2 = ... = h2 = 0, h1 = − η, h0 = − (1 − η).
1c). Eqs. 4–9 give h6 = (η − θ), h5 = (1 − η + θ), h4 = 0, h3 = − ηy1, h2 = − ηy2 − (1 − η)y1,

h1 = − ηy3 − (1 − η)y2, h0 = − (1 − η)y3
2) From Eqs. 7–9 pκ + 2μ = yκ − μ, pκ + 2μ − 1 = yκ − μ + 1, ..., p1 = y2κ + μ − 1, p0 = y2κ + μ, πjκ + 1 = − η,
πjκ = − (1 − η), j = 1, 0, π1 = − η, π0 = − (1 − η), πjκ − 1 = ... = π(j − 1)κ + 2 = 0, j > 1, πj = 0, j < 0,

a n d t h e n f r o m E q s . 4 – 6 hT ¼
h4κþμþ1 h4κþμ 0 0 ::: 0 h2κþ2μþ1 h2κþ2μ ::: h1 h0½ � h4κ + μ + 1 = 2(η − θ),
h 4 κ + μ = 2 ( 1 − η + θ ) , h 4 κ + μ − 1 = h 4 κ + μ − 2 = . . . = h 2 κ + 2 μ + 2 = 0

hj ¼ ∑
κþ2μ

i¼0
pκþ2μ−iπ j−κ−2μþi; j ¼ 0; 1; 2; :::; 2κþ 2μþ 1

2a). h5 = 2(η − θ), h4 = 2(1 − η + θ), h3 = − ηy1, h2 = − ηy2, h1 = (η − 2)y1, h0 = (η − 2)y2
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2b). h10 = 2(η − θ), h9 = 2(1 − η + θ), h8 = 0, h7 = − ηy1, h6 = − (ηy2 + (1 − η)y1), h5 = − (ηy3 +
(1 − η)y2 + ηy1) h4 = − (ηy4 + (1 − η)y3 + ηy2 + (1 − η)y1), h3 = − (ηy5 + (1 − η)y4 + ηy3 + (1
− η)y2), h2 = − ((1 − η)y5 + ηy4 + (1 − η)y3), h1 = − (ηy5 + (1 − η)y4), h0 = − ((1 − η)y5).

Update of parameters T, μ, κ, N

Eqs. C1–C4 enable real time update of the parameters T, N, μ and κ via the minimum and
maximum ages in stock, reusable return and EoL samples (kU, t, mQ, t, kQ, t, mE, t, kE, t etc.):

EoL distribution center axisT ¼ 0:5 mE þ kEð Þ ¼ kQ þ mQ ðC1Þ

Mean cycle timeκ ¼ mQ þ 0:5 kU−mEð Þ ðC2Þ

Number of remanufacturing cycles N−1ð Þκ ¼ mE−mQ ðC3Þ

orN ¼ κ−1T ¼ 0:5 kU þ mEð Þ
mQ þ 0:5 kU−mEð Þ ðC4Þ
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