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Abstract
Algeria has experienced catastrophic floods over the second half of the twentieth century, causing many deaths and extensive 
material damage. This study was conducted to find a suitable event-based rainfall-runoff (RR) model for semi-arid conditions, 
where continuous data are not available in all regional basins. The study compared, based on data availability, the SCS-CN 
model based on the antecedent moisture conditions (AMC) and four modified SCS-CN models incorporating antecedent 
moisture amounts (AMA) in order to find the best model to reproduce the flood hydrographs in two catchments. The modi-
fied models were predominant over the SCS-CN method. Nonetheless, the Singh et al. (Water Resour Manag 29:4111–4127, 
2015. https​://doi.org/10.1007/s1126​9-015-1048-1) model (M4) and the Verma et al. (Environ Earth Sci 76:736, 2017a. https​
://doi.org/10.1007/s1266​5-017-7062-2) model (M5) were superior and demonstrated more stable structures. Coupled with 
the Hayami routing model, the models showed promising results and were able to reproduce the observed hydrographs’ 
shape. However, it was impossible to choose the preferred model since they each excelled as to a criterion. Therefore, the 
corresponding outputs were combined using the simple average (SA) method and the weighted average (WA) method. We 
found that the WA method showed better results in the two catchments and allowed a more accurate prediction according 
to the performance criteria.
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Introduction

Recurring floods are the most devastating natural hazards 
in many regions of the world. Therefore, many regional 
authorities increased awareness of flood and inundation haz-
ards (Pilon 2002; WMO 2004). Particular focus has been 
placed on climate change, urbanization growth, and land-
use change (Hdeib et al. 2018). Mediterranean regions are 
prone to flood risk due to their local climate (Gaume et al. 
2009; Llasat et al. 2010), also the case for Algeria, which 
experienced catastrophic floods during the second half of 
the twentieth century. These floods caused many deaths and 

extensive material damage. The November 10–11, 2001 
flood in Bab El Oued, Algiers and the flood on April 18–19, 
2007, in Ghardaïa, remain the most devastating floods in 
recent years. They led to thousands of casualties and trauma-
tized public opinion. As a result, protective measures have 
become a necessity, by using structural or non-structural 
strategies based on a solid understanding of the phenomenon 
of runoff and the many factors that can influence it (Brocca 
et al. 2011). Accordingly, the interest in rainfall-runoff (RR) 
models as an essential tool for flash flood prediction and 
real-time forecasting has increased (Todini 1988).

Many studies in Algeria have focused on analyzing flood 
frequency (e.g., Hebal and Remini 2011; Meddi et al. 2017). 
However, only a few studies have been conducted using RR 
models to understand flood processes and characterize their 
hydrological behavior over small time-steps. In scientific 
literature, several RR models are available, which differ 
by their structure and complexity. Continuous models can 
assess the soil moisture at the beginning of a rainfall event 
(Perrin et al. 2003; Tramblay et al. 2010; Massari et al. 
2014), but the major limitation using these models is their 
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requirement for a long-term and uninterrupted time series to 
collect the input data. However, long records of rainfall and 
runoff data in short time-steps are rarely available in Alge-
ria or even in North Africa (Hughes 2011; El Khalki et al. 
2018). Therefore, in flood modeling, event-based models 
represent an alternative to continuous ones (Tramblay et al. 
2012). The event-based approach is a widely used alternative 
that requires data on the event’s time scale (Chahinian et al. 
2005; Brocca et al. 2011; Hossain et al. 2019). However, it 
involves additional parameters to assess the initial moisture 
conditions (Chang et al. 2017).

Several studies have highlighted the contribution of incor-
porating the initial moisture component before the storm to 
reproduce the corresponding flood hydrograph (e.g., Brocca 
et al. 2009; Tramblay et al. 2010; Massari et al. 2014; El 
Khalki et al. 2018). Therefore, the modeler must choose a 
RR model that can accurately simulate a wide variety of 
complex data from flood events (Chang et al. 2017), with a 
reduced number of parameters to avoid the over-parameteri-
zation which increases the complexity of the models (Perrin 
et al. 2003; Todini 2011).

Among the existing event-based RR models, the SCS-CN 
method (SCS 1972) is frequently used in the Mediterranean 
region (e.g., Soulis et al. 2009; Brocca et al. 2011; Abdi and 
Meddi 2015; Zema et al. 2017; El Khalki et al. 2018; Maref 
and Seddini 2018). The advantage of the SCS-CN method 
is its simplicity, predictability, stability, and applicability 
for ungauged basins (Ponce and Hawkins 1996; Verma et al. 
2017b; Mishra et al. 2018). It relies on two parameters—the 
curve number (CN), which is linked to three levels of ante-
cedent moisture conditions (AMC), and the initial losses 
(Ia). However, the original method has had critical reviews 
about its limitations (e.g., Ponce and Hawkins 1996; Singh 
1999; Mishra et al. 2003, 2006; Garen and Moore 2005), 
especially for the sudden jump in CN that occurs with the 
variation of AMC (Mishra and Singh 2002b; Soulis et al. 
2009; Verma et al. 2017b; Mishra et al. 2018). To over-
come the limitations of the SCS-CN method, many authors 
suggested, with different degrees of success, modifications 
to the soil moisture accounting (SMA) procedure by incor-
porating the antecedent moisture amounts (AMA) (Michel 
et al. 2005; Geetha et al. 2007; Sahu et al. 2010; Singh et al. 
2015; Verma et al. 2017a).

In this study, The SCS-CN method and four such modi-
fied methods will be tested and compared. The four modi-
fied methods are the: Mishra et al. (2006) model, Sahu et al. 
(2012) model, Singh et al. (2015) model, and Verma et al. 
(2017a) model. Thereby, the best performing models will 
be coupled with a transfer function to reproduce the flood 
hydrographs’ shape. In comparing these models, we hope 
to find an efficient RR model that can estimate floods in a 
semi-arid region in northern Algeria. Indeed, an efficient RR 
model is necessary for dam managers to simulate the inflow 

of dams in these areas, which have been filled by floods in 
recent years. Furthermore, it is expected that an efficient RR 
model will be used for wadis development and flood control 
(Zeroual et al. 2016; Meddi et al. 2017).

The manuscript is organized as follows: First, the meth-
ods section details the model structures employed in the 
study and the performance criteria used to compare the 
models. Next, the study area section presents the study area 
and the data used for this study. Finally, the results and dis-
cussion section presents the comparison results of the dif-
ferent models.

The main objective of this paper is to (1) compare the 
performance of five SCS-CN-based models on flood events 
measured in two semi-arid catchments of northern Algeria; 
(2) evaluate the structural stability and the reliability of the 
models for the estimation of the initial soil moisture and 
runoff computation; and (3) choose the most suitable RR 
models for the regional context.

Methods

SCS‑CN method

The Soil Conservation Service Curve Number (SCS-CN) 
method (SCS 1972) shows an empirical relation between 
the precipitation excess and direct runoff based on CN. The 
SCS-CN model is an event-based lumped RR model (Chow 
et al. 1988; Ponce and Hawkins 1996; Mishra and Singh 
2002b).

where P is total precipitation, Ia is the initial losses, R is the 
direct runoff, S is the potential maximum retention capacity 
of the soil, and λ is the initial abstraction coefficient, F is 
the cumulative infiltration excluding Ia and CN is the curve 
number.

Many studies set CN ranges from 1 to 100, while the 
coefficient λ is assumed constant and equal to 0.2 to reduce 
parameters for the calibration process (Ponce and Hawkins 
1996). Recent studies, however, have shown that λ take a 
value of approximately 0.05 (e.g., Shi et al. 2009; Soulis 
et al. 2009).

(1)P = Ia + F + R

(2)Ia = �S

(3)R =
(P − Ia)

2

P + S − Ia
For P ≥ Ia, R = 0 otherwise

(4)S =
25, 400

CN
− 254
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AMC are customarily considered the most significant fac-
tor in runoff computation. They are categorized into three 
levels: AMC I (dry conditions), AMC II (normal or average 
conditions), and AMC III (wet conditions), depending on 
5 days of antecedent rainfall (SCS 1972). A median value 
of CN (CN2) is assigned to AMC II, and for any change 
in AMC, CN2 is converted to CN1 for AMC I or to CN3 
for AMC III. Several analytical formula were developed to 
express CN conversion (e.g., Sobhani 1976; Hawkins et al. 
1985; Chow et al. 1988; Mishra et al. 2008). Mishra et al. 
(2008) developed AMC-dependent conversion formulae 
compared with the existing formulas, using field data taken 
from the USDA-ARS database. The results showed that their 
formulae provided the best performance (Ajmal et al. 2015) 
and was accordingly used in this case. The conversion is 
expressed as:

SCS‑CN modifications

The original method was subject to many modifications to 
improve its efficiency and bypass its limitations. We detail 
the proposed methods that apply to our study area. These 
methods will be tested for the study context with a short 

(5)CN1 =
CN2

2.2754 − 0.012754CN2

(6)CN3 =
CN2

0.430 + 0.0057CN2

duration storm at an hourly time scale; these models’ gov-
erning equations are provided in Table 1.

Mishra et al. (2006) model

Mishra and Singh (2002b) modified the original equation by 
introducing the AMA parameter M instead of the AMC. The 
AMC are quite challenging to evaluate because of the dis-
crete relationship between the CN and AMC classes, which 
results in a sudden jump in calculated runoff (Mishra and 
Singh 2002a, b; Mishra et al. 2018). Runoff is calculated 
using Eq. (7). Mishra et al. (2006) also modified the Ia–S 
relationship by highlighting the high dependency of initial 
abstraction Ia on antecedent soil moisture M as shown in 
Eq. (8), and also proposed an empirical relationship linking 
antecedent moisture M to antecedent 5-day rainfall (P5), as 
shown in Eq. (9).

Sahu et al. (2010) model

Sahu et al. (2010) proposed a more hydrological represent-
ative procedure for Ia and M computation to improve the 
performance of the model introduced by Mishra and Singh 
(2002b). The runoff is calculated using Eq. (10) by employ-
ing the potential maximum retention in an arid condition (S0) 
(i.e., AMC I) which is independent of the antecedent mois-
ture and depends entirely on watershed characteristics. Ia 
and M are calculated using Eqs. (11) and (12), respectively.

Table 1   Equations used in SCS-CN-based hydrological simulation models

Model name Empirical equation Accounting of antecedent moisture

Mishra et al. (2006) R =
(P−Ia)(P−Ia+M)

P+S−Ia+M
For P ≥ Ia
R = 0 otherwise

(7) M = �
√
P5 × S (9)

Ia =
�S2

S+M

(8) where M is the AMA, α is a coefficient, and P5 is the 
antecedent 5-day rainfall

Sahu et al. (2010) R =
(P−Ia)(P−Ia+M)

P−Ia+S0

For P ≥ Ia
R = 0 otherwise

(10) M = �

[
(P5−�S0)S0

(P5−�S0)+S0

]
For P5 > 𝜆S0
M = 0 otherwise

(12)

Ia = �(S0 −M) (11) where β is proportionally coefficient
Singh et al. (2015) R = 0 If V0 ≤ Sa − P (13) V0 = �

√
P5 × S (16)

R =
(P+V0)(P+V0−Sa)

P+S+V0

If Sa − P ≤ V0 ≤ Sa (14) Sa = � × S (17)

R = P

(
1 −

(Sb−V0)
2

SSb+P(Sb−V0)

)
If Sa ≤ V0 ≤ Sb (15) Sb = Sa + S (18)

where Sa is the threshold soil moisture, Sb is the absolute 
potential maximum retention, and α and β are coef-
ficients

Verma et al. (2017a) R = 0 If V0 ≤ Sa − P (19) V0 is calculated using Eq. (16)

R =
(P−Sa+V0)(P−Sa+2V0)

P−Sa+2V0+S

If Sa − P ≤ V0 ≤ Sa (20) Sa is calculated using Eq. (17)

R = P

[
1 −

(Sa+S−V0)
2

P(Sa+S−V0)+S(S+V0)

]
If Sa ≤ V0 ≤ Sa + S (21)
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Singh et al. (2015) model

Singh et al. (2015) proposed an improved SMA procedure 
using the concept introduced by Mishra and Singh (2002b). 
The procedure incorporates initial moisture (V0), thresh-
old soil moisture (Sa), and the absolute potential maxi-
mum retention (Sb). V0 is the initial soil moisture, which 
is calculated using Eq. (16), and Sa and Sb are calculated 
using Eqs.  (17) and (18). The runoff is computed using 
Eqs. (13)–(15).

Verma et al. (2017a) model

More recently, Verma et al. (2017a) proposed an improved 
SMA based on the concept introduced by Mishra and Singh 
(2002b) and inspired by the work of Singh et al. (2015). 
However, they were critical that the initial abstraction was 
included in the proportionality hypothesis, and therefore 
they proposed a different formulation. The runoff is com-
puted using Eqs. (19)–(21). The SMA parameters are calcu-
lated similarly to the model introduced by Singh et al. (2015) 
using Eqs. (16)–(17).

For convenience, the original SCS-CN model, Mishra 
et al. (2006) model, Sahu et al. (2010) model, Singh et al. 
(2015) model, and Verma et al. (2017a) model are referred 
to as M1, M2, M3, M4, and M5, respectively, in the forth-
coming text. Table 2 summarizes the formulation of all these 
models.

Routing model

For routing the rainfall excess R to the catchment’s outlet, 
the Hayami (1951) kernel transfer function is used. This 

function is an approximation of the diffusive wave method 
that has been used mainly for flood routing problems 
(Moussa and Bocquillon 1996; Chahinian et al. 2005; Wang 
et al. 2014). The discharge at the outlet Q(t) is calculated as:

where H(t) is the Hayami kernel function defined as:

where t is the time-step, and ω and z are parameters repre-
senting both translation and diffusivity of the unit hydro-
graph (Moussa and Chahinian 2009).

Base flow separation

For the identification of runoff components (i.e., direct flow 
and a base flow), hydrographs separation is essential (Tal-
laksen 1995; Eckhardt 2005), which is an essential step for 
the runoff model’s calibration (Arnold and Allen 1999).

In this study, we use the digital filter method proposed by 
Lyne and Hollick (1979), which is a commonly used method 
(Mei and Anagnostou 2015) expressed as:

where qt is the direct runoff at time-step t, Qt is the total 
discharge at time-step t, and af is the digital filter parameter 
depending on the catchment geological conditions.

(22)Q(t) =

t

∫
0

R(�)H(t − �) d�

(23)H(t) =
(
� z

�

) 1

2 exp
z

(
2−

t

�
−

�

t

)

(t)
3

2

with

∞

∫
0

H(t) dt = 1

(24)qt = af × qt−1 +
1 + af

2
(Qt − Qt−1)

Table 2   Models’ parameters description and ranges

Model Parameters

Number Equations used Symbol Description Range

M1 2 (1)–(6) CN2 Median Curve Number (–) 0–100
λ Initial abstraction coefficient (–) 0–0.2

M2 3 (7)–(9) S Maximum storage capacity (mm) 0–500
λ Initial abstraction coefficient 0–0.2
α Coefficient relating P5 and S to initial soil moisture 0–1

M3 3 (10)–(12) S0 Maximum storage capacity (mm) 0–500
λ Initial abstraction coefficient (–) 0–0.2
β Coefficient relating P5 and S0 to initial soil moisture (–) 0–1

M4 3 (13)–(18) S Maximum storage capacity (mm) 0–500
α Coefficient relating P5 and S to initial soil moisture (–) 0–1
β Coefficient of threshold soil moisture (–) 0–0.2

M5 3 (19)–(21) and (16)–(17) S Maximum storage capacity (mm) 0–500
α Coefficient relating P5 and S to initial soil moisture (–) 0–1
β Coefficient of threshold soil moisture (–) 0–0.2
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Performance criteria

To evaluate the models’ performances, we use the fol-
lowing numerical criteria presented in Table 3, which are 
commonly used in hydrological modeling.

Where N is the number of events, Rsim and Robs are the 
simulated and the observed runoff, respectively, Qpeak

sim
 and 

Q
peak

obs
 are the simulated and the observed peak flow, respec-

tively, r is the Pearson correlation coefficient between the 
simulated and observed flow, B is the ratio between the 
mean simulated and mean observed flow, and C is the ratio 
between the simulated and observed flow variance.

A standard gradient-based automatic optimization 
method (‘fmincon’ function in MATLAB®) was used 
for the models’ calibration. Indeed, Brocca et al. (2011) 
applied this method for the calibration of the MISDc 
model and found that, for a low number of involved param-
eters, it furnished similar results to the more efficient but 
slower methods, such as the Shuffled Complex Evolution 
algorithm (Duan et al. 1993). Moreover, the parameters 
of both the production functions and the transfer func-
tion are strictly linked to different components; hence, 
the infiltrations models’ calibration was made separately 
from the transfer functions to avoid possible parameter 
dependence. The multi-objective calibration method was 
adopted (Moussa and Chahinian 2009) by applying the 
balanced aggregated objective concept proposed by Mad-
sen (2000), which transforms the multi-objective problem 
into a single objective optimization problem by defining 
a scalar that aggregates the various objective functions. 
Therefore, it was applied for both the production function 
and the transfer function. As such, there are two balanced 
aggregated objectives functions (Madsen 2003; Hundecha 
and Bárdossy 2004), which are expressed as:

(30)Fproduction
agg

=
1

2
(MAE +MARE)

Study area

Two of Algeria’s northern region catchments were selected 
for this study due to their hydro-climatic, geomorphologi-
cal difference, and data availability. These catchments are 
Boubhir, in the province of Tizi-Ouzou, and Allalah, in the 
province of Chlef. The region is characterized by a Medi-
terranean humid climate and an annual rainfall of 1000 mm 
(Meddi et al. 2017). The main characteristics of these catch-
ments are illustrated in Fig. 1 and summarized in Table 4.

The catchments’ delineations (Fig. 1) were made with 
GIS software. The software used digital elevation map data 
with a resolution of 30 m, obtained using an advanced space-
borne thermal emission and reflection radiometer (ASTER) 
and global digital elevation model (NASA/METI/AIST/
Japan Spacesystems and U.S./Japan ASTER Science Team 
2009).

The land cover map used in this study (Fig.  1) was 
extracted from the European Space Agency Climate Change 
Initiative (CCI) product: CCI Land Cover, particularly the 
S2 prototype Land Cover 20 m map of Africa 2016 (CCI 
Land Cover team 2017). Data were extracted using GIS 
software.

A total of forty-eight events were available, thirty for 
Allalah catchment and eighteen for Boubhir catchment. The 
split-sample approach (Klemeš 1986) was used for calibra-
tion and validation. The events were divided into two sec-
tions. Sixty per cent of the available data were used for 
calibration, and the remainder was used for validation. The 
Duplex algorithm (Snee 1977; Daszykowski et al. 2002) 
was used to divide the datasets, which allowed a representa-
tive subset selection by maximizing the Euclidean distances 

(31)Frouting
agg

=
1

2

[

(1 − KGE) +

(
1

N

N∑

i=1

|PPEAK|i

)]

Table 3   Performance criteria used

Criterion Equation Optimal 
value

The mean absolute error (MAE)
MAE =

1

N

N∑
i=1

���Robs − Rsim
��
�
i

(25) 0

The mean absolute relative error (MARE)
MARE =

1

N

N∑
i=1

� �Robs−Rsim�
Robs

�

i

(26) 0

The percent bias (PBIAS) at the event scale PBIAS = 100 ×
(

Robs−Rsim

Robs

)
(27) 0

The mean relative peak flow error (PPEAK) at the event scale
PPEAK = 100 ×

(
Q

peak

obs
−Q

peak

sim

Q
peak

obs

)
(28) 0

The criterion Kling-Gupta efficiency (KGE) (Gupta et al. 2009) KGE = 1 −
√
(r − 1)2 + (B − 1)2 + (C − 1)2 (29) 1
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(a)
(b)

(c)
(d)

Fig. 1   Study area, catchments delineation: a Allalah, b Boubhir, and Land Cover: c Allalah, d Boubhir

Table 4   The main 
characteristics of the study 
catchments

Catchment Area (Km2) Mean slope (%) Channel 
length (Km)

Land use (%)

Woods Crops Pasture Urban

Allalah 295 20.5 28.5 2.7 51.2 44.3 1.8
Boubhir 475 30.1 28.7 51.3 39.1 7.4 2.2
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between the subsets (Daszykowski et al. 2002; Mora and 
Schimleck 2008; Puzyn et al. 2011). The used RR events’ 
main characteristics are illustrated in Fig. 2, which shows 
the relations between the total rainfall, the mean rainfall 
intensity, initial condition, and runoff coefficient (RC).

Results and discussion

According to the results presented in Table 5, the modi-
fied models (i.e., M2, M3, M4, and M5) were more efficient 
than the SCS-CN AMC-based model (M1), which was the 

poorest performing in terms of quality. This is especially 
true for the Boubhir catchment, for which the MAE and 
the MARE in the validation were, respectively, 3.01 and 
0.36 mm. Furthermore, according to Fig. 3, most events’ 
PBIAS values were in the unacceptable range.

The modified models showed better results, which implies 
that the AMA has improved runoff prediction results. How-
ever, although different results were recorded, there was no 
precise classification between M2, M3, M4, and M5 mod-
els based on their ability to predict runoff. Indeed, accord-
ing to Table 5, the lowest MAE value recorded was for the 
M4 model for the Allalah catchment. In contrast, the lowest 
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Fig. 2   Main characteristics of the selected RR events (C calibration and V validation); a, b, and c for Allalah catchment, d, e, and f for Boubhir 
catchment

Table 5   Runoff models results

C calibration, V validation

Catchment Models

M1 M2 M3 M4 M5

MAE MARE MAE MARE MAE MARE MAE MARE MAE MARE

mm (–) mm (–) Mm (–) mm (–) mm (–)

Allalah C 0.87 0.29 0.49 0.12 0.54 0.13 0.49 0.08 0.49 0.10
V 0.96 0.43 0.55 0.14 0.58 0.18 0.53 0.16 0.54 0.16

Boubhir C 1.42 0.29 0.50 0.10 0.52 0.15 0.49 0.08 0.46 0.07
V 3.01 0.36 0.79 0.07 0.67 0.13 0.63 0.09 0.61 0.08
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value recorded in both calibration and validation was for 
the M5 model for the Boubhir catchment. Furthermore, the 
lowest MARE values were recorded for the M2 model for 
the two basins, which were close to the MARE values of the 
M4 and M5 models. However, the PBIAS values of some 
events of the M2 model were within the acceptable range of 
± 25% (Moriasi et al. 2007) in the case of Allalah catchment 
(Fig. 3a). Also, the maximum PBIAS values were recorded 
for the M3 model in both catchments as well as the MARE 
criterion. Furthermore, since the models have the same num-
ber of parameters, the models’ selection criteria, such as the 
Akaike information criterion and the Bayesian information 
criterion, are not applicable (Bennett et al. 2013). Therefore, 
further analysis of the behavior and results of the models 
will be conducted.

The optimal parameters of the models are provided in 
Table 6. We found no significant difference between the 
models’ maximum storage capacity parameters in the two 
catchments. In contrast, the main difference lies in the initial 
moisture parameters and the losses process parameters (i.e., 
initial abstraction and threshold moisture).

Therefore, Figs. 4 and 5 are designed to emphasize the 
parameterization effect on the models’ behavior. Indeed, 
Fig. 4 shows the computed initial moisture using the mod-
els’ optimal parameters for different P5 values. We noticed 
that the M2 model overestimated the small P5 values’ initial 

humidity to adapt to the different events. However, it was 
not the case for M3, M4, and M5 models where the initial 
moisture corresponding values were below P5.

Figure 5 shows the models’ behavior in terms of the RC 
for the two watersheds. Indeed, the optimal parameters given 
in Table 6 were used to simulate the RCs for different cases 
of P5: dry case, moderately wet, wet, and extremely wet (i.e., 
P5 = 0, 10, 50, and 100 mm).

For the dry scenario, we found that the different models’ 
curves were very close, indicating that the models behaved 
similarly. It was also true for the moderately wet case, where 
the curves were relatively close. Nevertheless, a disparity 
between the models’ results was found once P5 reached 
a certain threshold, particularly for model M3, where the 
curves of the simulated RC values (in green) diverged from 
the other models (Fig. 5c and g). This irregularity intensified 
as P5 increased (Fig. 5d and h). Also, we found a break in the 
simulated RC curves (in blue) resulting from the M2 model 
for low precipitation (Fig. 5c, d, and h).

Consequently, we noted that the M2 and M3 models’ 
structures were unstable and gave inconsistent results for 
high P5 values, implying that a continuous SMA procedure 
(M4 and M5 models) ensured a more stable model structure 
under different P5 values. Indeed, models M4 and M5 gave 
good results, and their SMA procedures ensured the struc-
tural reliability of the models. Consequently, based on these 
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Fig. 3   RR models comparison statistics based on PBIAS: (C calibration and V validation); a for Allalah catchment, and b for Boubhir catchment

Table 6   The models’ optimal 
parameters

Catchment Models

M2 M3 M4 M5

S λ α S0 λ β S α β S α β

Allalah 143.0 0.03 0.27 147.4 0.03 0.75 141.5 0.09 0.05 133.6 0.07 0.04
Boubhir 172.7 0.02 0.23 173.9 0.01 0.37 176.5 0.08 0.03 176.5 0.06 0.02
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Fig. 4   The models’ initial 
moisture results: a for Allalah 
catchment, and b for Boubhir 
catchment
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analyses and the results (Table 4 and Fig. 3), the M4 and M5 
models were selected.

While the M4 and M5 models performed well, the 
respective simulated runoffs differed depending on events, 
which led us to test their ability to replicate the hydrographs 
observed by combining both models with the Hayami ker-
nel transfer function. Indeed, although the models provided 
similar results, the distribution of runoff within the events 
can be different; this can impact the shape of the correspond-
ing hydrographs and the routing model parameters.

As expected, different values of the routing model’s opti-
mal parameters were obtained for the respective coupled 
models (Table 7), where no significant difference was found 
between the parameters. Though these differences were not 
significant, however, the shape of the corresponding unit 
hydrographs will be different and, thus, the shape of the 
simulated hydrographs will differ.

Figure 6 showed the simulated versus observed discharge 
using the coupling for both catchments. We noticed that both 
models performed well and produced comparable results 
concerning the determination coefficient (R2). However, dif-
ferent results in terms of KGE and PPEAK were obtained 
according to the KGE and PPEAK. The M4 model was bet-
ter with mean values of 0.83 and 0.82, respectively, for Alla-
lah and Boubhir catchments. Also, the minimum KGE value 
was 0.68 for the Allalah catchment and 0.66 for the Boubhir 
catchment, while the minimum KGE values obtained using 
the M5 model were less than 0.6 (Fig. 7a and c). However, 
PPEAK values obtained using the M5 model were better 
than those of the M4 model (Fig. 7b and d). This implies that 
the model M4 coupled to the transfer function reproduced 
the shape of the observed hydrograph better, while the M5 
model coupled to the transfer function reproduced better the 
peak flows.

Based on these findings, it was difficult to clearly define 
the best “single” model for both catchments, mainly because 
the two models produced good results. Indeed, the best 
model choice is the traditional objective of any predic-
tive study, but rarely is a single model the best in all cases 
(Clemen et al. 1995). Instead, each model has its particular 
strengths and weaknesses (McLeod et al. 1987; Kim et al. 
2006). Hence, rather than selecting a unique model, the most 
suitable alternative is to aggregate the results of the respec-
tive models’ outputs by averaging the results to refine each 
model’s weaknesses. Indeed, many authors have used the 

Table 7   Optimal parameters of the transfer model

Catchment Optimal parameters of the transfer model

Coupled to M4 Coupled to M5

ω z ω z

Allalah 4.70 0.56 4.34 0.65
Boubhir 8.15 0.51 8.00 0.45

Fig. 6   Observed versus 
simulated discharges using M4 
(blue) and M5 (red) models 
coupled to the routing function: 
a and b for Allalah catchment, c 
and d for Boubhir catchment
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combining concept (e.g., McLeod et al. 1987; McIntyre et al. 
2005; Kim et al. 2006; Velázquez et al. 2010; Li et al. 2018). 
They found significant improvements when the predictions 
from different models were combined. Therefore, the com-
bination concept was used by combining the flows resulting 
from models M4 and M5 using the simple average (SA) 
method and the weighted average (WA) method (Shamseldin 
and O’connor 1999; Ajami et al. 2006). The approaches used 
are expressed as:

where (Qc)t is the combined model simulation at time t, 
(Qsim)i,t is the ith model flow simulation for time t, and xi 
are the corresponding weights. In our case, two models were 
combined, so when using the SA method, the weights (xi) 

(32)
�
Qc

�
t
=

Nm�

i=1

xi
�
Qsim

�
i,t
with

�
xi > 0∑

xi = 1

were the same and equal to 0.5, while the weights were opti-
mized for the WA method.

We found that the two methods of combining provided 
good performance, while the WA method was superior, 
where this approach minimized the dispersion of the crite-
ria. Indeed, as shown in Fig. 8, the WA approach ensured a 
reasonable balance giving a satisfactory KGE and reduced 
the PPEAK range.

Conclusion

A comparative analysis was carried out using different mod-
els to determine the most efficient event-based RR model 
capable of reproducing the shapes of hydrographs in two 
watersheds located in northern Algeria. These models have 
different mathematical structures for both the incorporation 

Fig. 7   Models’ comparison 
based on KGE and PPEAK 
statistics: a and b for Allalah 
catchment, c and d for Boubhir 
catchment
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of antecedent moisture and the SMA procedure. The models 
that incorporate the AMA have proven to be more efficient 
than the SCS-CN method that is based on the AMC. Also, 
the analysis of model structures showed that the M4 and 
M5 models were more stable for different precipitation and 
P5 scenarios and highlighted the value of continuous SMA 
procedures. The M4 and M5 models were therefore selected 
and combined with the Hayami transfer model. Both com-
binations gave good results in the two catchments studied. 
However, instead of using the best “unique” model, the M4 
and M5 models’ results were combined using two averag-
ing approaches to reduce the weakness of each of the two 
models. The WA method improved the results by ensuring 
an acceptable balance between the performance criteria.

Our work’s interest lies in the practical concerns of risk 
and water resource management in the semi-arid region of 
Algeria, where most of the wadis require efficient models 
that can simulate the flows linked to rainy events. Indeed, 
the use of combined model methods as a decision support 
tool would be a useful approach for forecasting flows and 
estimating project floods to cope with the recurrent floods 
that have hit the country in recent years and the design and 
management of dams and hydraulic structures. Neverthe-
less, the primary deficiency lies in the lack of hourly data 
on flows and rainfall. Therefore, more watersheds in other 
regions of the country and the Maghreb should be studied 
further to validate the models’ relevance.
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