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Abstract
Compact gravity inversion (CGI) is widely used to invert gravity data following the principle of minimising the volume of 
the causative body due to its simplicity, high efficiency, and sharp-boundary inversion results. In this study, the compactness 
weighting function is generalised and the depth weighting function is introduced to CGI to obtain the reweighted CGI (RCGI) 
method. Although RCGI exhibits better flexibility than CGI, selecting an appropriate compactness factor α and depth weight-
ing function β is difficult, and we design a parameter selection rule to search the proper � and � quantitively. Furthermore, 
we improve RCGI for boasting superior computational efficiency by gradually eliminating the model blocks that reach the 
designated boundaries in the iterative algorithm of inversion. This approach is termed the reweighted and element-elimination 
CGI (REECGI) method. The inversion results show that both RCGI and REECGI result in better inversion accuracy than 
CGI, and REECGI has higher computational efficiency than RCGI and CGI, which increases with the number of iterations.

Keywords  Compact gravity inversion · Inversion theory · Compactness factor · Weighting function · Inversion accuracy · 
Computational efficiency

Introduction

Gravity inversion is a practical method that has been exten-
sively applied in hydrology, oil and gas exploration, min-
eral exploration, and geological surveys (Blakely 1995; 
Chen et al. 2008; Karaoulis et al. 2014; Li and Oldenburg 
1998; Mendonca and Silva 1994, 1995; Pilkington 1997, 
2009; Portniaguine and Zhdanov 1999; Roland et al. 2013; 
Zhdanov 2015). Owing to the instability and non-uniqueness 
of inversion, which is known as the ill-posed problem (Had-
amard 1902), it is difficult to obtain inversion information 
that accurately reflects the real geological conditions below 
the Earth’s surface.

Researchers have made numerous attempts to overcome 
the ill-posed problem; one solution is to find the appropriate 
stability function combined with the error function. Consta-
ble et al. (1987) and Smith et al. (1991) introduced the mini-
mum norm of the Laplace operator of the model, which can 
produce a smooth inversion solution; however, this method 
usually fails to accurately describe the true massive geologi-
cal structure. Rudin et al. (1992) proposed a method based 
on total variation (TV) to rebuild noisy and blurred images, 
but the relative functions are not differentiable at zero. To 
solve this problem, Acar and Vogel (1994) improved the TV 
method by introducing a small real number.

However, these methods all attempt to smooth out the 
inversion results; therefore, they do not represent the actual 
situation, especially in the case of mineral exploration, 
where it is desirable to obtain inversion results with sharp 
boundaries. To obtain sharp-boundary images and overcome 
the smoothness problem, Last and Kubik (1983) developed 
the compact gravity inversion (CGI) method based on the 
minimum area (2D inversion) or volume (3D inversion) of 
the model blocks, resulting in sharp-boundary inversion 
images when the blocks are located at shallow depths. This 
method received widespread attention; however, the effects 
of non-convergence and concentration near the surface often 
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occur during actual gravity inversion. Portniaguine and 
Zhdanov (1999) proposed a similar approach based on the 
CGI called the minimum gradient support (MGS) method; 
however, a similar problem remains (i.e., the near-surface 
concentration effect). Therefore, the inversion results do 
not reflect the actual mineral distribution when the model 
blocks are located at great depths. To obtain accurate inver-
sion results, other scholars used additional a priori informa-
tion to generalise the CGI method (Barbosa and Silva 1994; 
Guillen and Menichetti 1984; Silva and Barbosa 2006; Silva 
et al. 2009, 2011); however, these methods strongly depend 
on a priori information, including the centre of gravity of the 
model blocks and the direction of the dyke, which are often 
unknown in field cases. When there is little a priori informa-
tion, such interactive and generalised inversion methods are 
no longer applicable; therefore, Williams (2008) proposed 
another method of performing inversion without geological 
constraints. However, this led to new problems such as the 
need to estimate a large amount of parameters, which is dif-
ficult when geologists are not familiar with the local geology 
and make the procedure more time-consuming.

Considering the advantages and disadvantages of CGI 
and other methods, this study aims to generalise the CGI 
method and obtain more reasonable gravity inversion results, 
while further improving the calculation efficiency. First, we 
generalise the compactness weighting function of the CGI 
method and introduce the depth weighting function (Li and 
Oldenburg 1998) to make the CGI method more flexible for 
gravity inversion. Second, we propose an approach for quan-
titatively obtaining the appropriate compactness weighting 
function factor α and the depth weighting function β. Lastly, 
we improve the computational efficiency by continuously 
eliminating the model blocks reaching the bounds, ensuring 
that the kernel matrix dimensions decreases continuously.

Materials and methods

The density model is assumed to be discretised into several 
rectangles in two-dimensional (2D) models or rectangular 
prisms in three-dimensional (3D) models. For simplicity, the 
inversion method is introduced for a 2D case here; however, 
the discussion applies equally to the 3D case. It has been 
established that gravity anomaly data, G̃ , has the following 
relationship with the density model, Ṽ:

where G̃ is an adjusted n × 1 vector, Ṽ  is an m × 1 vector, and 
A is the kernel matrix, which was defined by Last and Kubik 
1983; the dimensions of A are n × m . In Eq. (1), G̃ and A are 
known values that can be measured or calculated in advance; 

(1)G̃ = AṼ ,

only Ṽ  is unknown and needs to be obtained in order to 
approximate the solution of the actual mineral distribution.

Last and Kubik (1983) used the principle of minimisa-
tion of the area (or volume in 3D) of the model to solve 
Eq. (1), which can be stated as follows: 

where ṽi is the approximate solution of the ith block, � is 
a sufficiently small value [ ≈ 10−11 in the case of Last and 
Kubik (1983)], and Vmin and Vmax denote the lower bound 
vector with the same entries, vmin (a scalar), and the 
upper-bound vector with the same entries, vmax (a scalar), 
respectively.

The following characteristic exists for a single block in 
Q of Eq. (2):

According to Eq. (3), the optimal solution of Eq. (2) 
will be obtained when the number of blocks ( = 0 ) reaches 
a maximum, which means that the other blocks ( ≠ 0 ) are 
at a minimum. This is why the CGI method follows the 
principal of the minimum area. In fact, Eq. (2) is a special 
case as follows: 

And the following characteristic exists for a single 
block in F of Eq. (4):

Thus, Eqs. (4) and (5) are equal to Eqs. (2) and (3), 
respectively, when � = 2 . Equation (5) also follows the 
same principal as Eq. (3), i.e., the optimal solution is posi-
tively correlated to the number of model blocks ( = 0 ) pro-
duced in the inversion results. The only difference between 
Eq. (2) and (4) or Eqs. (3) and (5) is that the constant 2 
changes to the variable � . The introduction of this vari-
able provides more flexibility than the CGI method during 
gravity inversion by allowing variation of � , which is help-
ful for obtaining better inversion solutions. Actual experi-
ments show that the inversion results are more reasonable 
when � is a positive real number other than 2.

(2)
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Next, we continue to follow the approach of Last and 
Kubik (1983) whereby 1∕

(||vi||
�
+ �

)
 in Eq. (4) is consid-

ered to be the compactness weighting function, which 
should be positive. Therefore, | ∙ | is introduced, which 
represents the absolute value of ∙ , to guarantee that ||vi||

� is 
always a positive real number ( v�

i
 is probably a negative or 

an imaginary number when vi < 0 ). Thus, the compactness 
weighting function has the following matrix form:

with w̃i =
1

|ṽi|𝛼+𝜀 , i = 1, 2,… ,m , � ≠ 0.

The iteration algorithm is introduced because W̃  is not a 
constant weighting matrix. In one iteration, W̃  is replaced 
by the inversion solutions obtained by the last iteration 
so they become constant matrices in the current iteration, 
and the iterative procedure is reduced to a classical least 
L2-norm problem. The optimal solution of the problem in 
the kth iteration is as follows (Menke 1989):

where W̃ (k−1) represents the compactness weighting 
function calculated by Eq. (6) in the (k − 1)th iteration 
and W̃ (1) is an m × m identity matrix. � is a damping factor 
(Levenberg 1944; Marquardt 1963) used to improve the 
condition number of the matrices and I is an n × n identity 
matrix.

Experiments show that the near-surface concentration 
effect cannot be overcome when the blocks ( ≠ 0 ) are located 
at great depths when only considering the compactness 
weighting function of the model. Therefore, the depth weight-
ing function (Li and Oldenburg 1998) or the kernel weighting 
function (Zhdanov 2015) must be added into Eq. (6) and (7) 
(Ghalehnoee et al. 2017; Rosas-Carbajal et al. 2017). Both 
these functions have an equivalent effect in overcoming the 
near-surface concentration effect in the vertical direction 
(Pilkington 2009); thus, the depth weighting function is used 
in this study. Accordingly, W̃ changes to a new form:

with w̃i =
1

(|ṽi|𝛼+𝜀)z𝛽i
 , 𝛼 > 0 , � ≥ 0 , zi > 0,i = 1, 2,… ,m,

where zi is the depth of the ith model and � is the depth 
weighting function factor. The reason for the condition of 
𝛼 > 0 is that the value of ṽi obtained in the kth iteration 
is larger; therefore, the weight of ṽi should be larger in 
the next iteration according to Last and Kubik (1983). If 
𝛼 < 0 , a larger ṽi will correspond to a lower weight of ṽi , 
which contradicts the earlier assumption; hence, 𝛼 > 0 . We 
refer to this CGI method with the depth weighting func-
tion as the reweighted compact gravity inversion (RCGI) 

(6)W̃ = diag
(
w̃i

)
,

(7)Ṽ (k) =
[
W̃ (k−1)

]−1
AT

{
A
[
W̃ (k−1)

]−1
AT + 𝜇I

}−1

G̃, k = 2, 3,…… , 𝜇 > 0

(8)W̃ = diag
(
w̃i

)
,

method because RCGI is equivalent to CGI when � = 2 
and � = 0.

As � and � are variables, determining their appropriate 
values is another problem. Combining Eq. (4), (7), and (8), 
we propose two strategies for determining appropriate � and 
� values in a given interval according to whether the prior 
model vi (i = 1, 2, …, m) is known:

𝛼 > 0, � ≥ 0, i = 1, 2,… ,m . where

If the prior model is known, the optimal � and � values 
are obtained by minimising the sum of the squared residu-
als between the inversion results ṽi and the prior model vi . 

Otherwise, the � and � values are obtained by minimising 
the product of � (i.e., the number of ṽi(≠ 0) that follows the 
principal of minimum area, allowing the inversion model 
to be compact) and � (the relative l2-norm of the observa-
tion data G̃ and the forward result of Ṽ  that prevent exces-
sively large residuals). The appropriate � and � values for 
obtaining the optimal solution generally lie within a small 
interval (i.e., 0.9 ≤ � ≤ 1.2 , 2 ≤ � ≤ 6 in the inversion of 
synthetic data). Because the inversion results usually cannot 
be convergent if � and � are too large, as the best interval is 
unknown at the initial trial, we can instead search for � and � 
in a slightly larger interval with a slightly larger step to esti-
mate the approximate interval, then gradually narrow down 
the interval and step to determine the final values of � and �.

Next, we try to improve the already high computational 
efficiency of the RCGI or CGI methods and obtain REECGI: 
We find that the weights of the models reaching the lower or 
upper bounds in the last iteration are all set to a very large 
value (i.e., 1011 ); therefore, these blocks can be frozen in the 
next iteration. In fact, these blocks can be removed in the 
next iteration because their solutions have been obtained 
and there is no need to involve them in the calculations any 
longer. If so, the dimensions of the kernel matrices A and 
the weighting matrices W̃  in Eq. (7) will be reduced, which 
then leads to a smaller number of calculations in the next 
iteration. The specific process for this concept is as follows:

1.	 Calculate the inversion values using Eqs. (6) and (7);
2.	 Ascertain whether any inversion results reach the bound-

ary values vmin and vmax . If vi reaches the boundaries:

(9)(𝛼, 𝛽) =

�
argmin

∑
i

�
ṽi − vi

�2
, vi is known (a)

argmin (𝛾𝛿), vi is unknown (b)
,

{
𝛾 = number of ṽi(≠ 0)

𝛿 =
G̃−AṼ2

G̃2

,
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	   where A(i, ∶)(k−1) represents the ith column of A in the 
(k − 1)th iteration and 

[
∙
]
 represents the matrices consti-

tuted by ∙;
3.	 Repeat step (1) until convergence.

As we can see from Eq. (10) above, the calculation effi-
ciency of REECGI is faster due to the reduction of A(k−1) 
and W̃ (k−1).

Solving Eq. (7) is an essential step required for the CGI, 
RCGI, and REECGI methods. Now, we approximately 
count the smallest reduction of multiplications involved 
in solving Eq. (7) in one iteration. Assuming that there are 
t  ( 0 ≤ t ≤ m ) blocks reaching the boundary values in one 
iteration, the reduction of RCGI has mn(3m + 2n) multipli-
cations (this is the same as CGI as it is equal to RCGI when 
� = 2 , � = 0 , and the choice of � and � does not change the 
matrix dimensions for multiplication), whereas REECGI 
only has n(m − t)(3(m − t) + 2n) multiplications. There-
fore, the reduction of multiplications for solving Eq. (7) is 
nm(3m + 2n) − n(m − t)(3(m − t) + 2n) = nt(6m − 3t + 2n) 
in one iteration. This leads to significant time saving when 
Eq.  (9) is used to find the appropriate � and � for more 
iterations.

Finally, a relative l2-norm is used to terminate the iteration 
process in the synthetic data as follows:

where Ṽ is the recovered model and V is the true model. The 
threshold and maximum iteration times for the termination of 
the iteration need to be determined according to the actual situ-
ation. Using field data, the difference between two iterations 
can be considered as the principle for terminating the iteration 
process as follows:

Results and discussion

Inversion of synthetic data

We used the model shown in Fig. 1 to compare the CGI, 
RCGI, and REECGI methods. The gravity anomaly dataset 

(10)

A(k) =
[
A(1, ∶)(k−1), A(2, ∶)(k−1), ⋯ , A(i − 1, ∶)(k−1), A(i + 1, ∶)(k−1), ⋯ , A(n, ∶)(k−1)

]
,

W̃ (k) = diag
(
w̃
(k−1)

1
, w̃

(k−1)

2
,… , w̃

(k−1)

i−1
, w̃

(k−1)

i+1
,… , w̃(k−1)

m

)
,

k ≥ 2

(11)e1 =
Ṽ − V2

V2

,

(12)e2 =
Ṽ (k) − Ṽk−1

2

Ṽk−1
2

,

is obtained by forward modelling with equidistant obser-
vations (5 m spacing) in the horizontal direction, and no 
noise is added into the gravity anomaly data to better com-
pare the three methods and prevent interference caused by 
noise. The corresponding model blocks are constructed for 
the same square with a length of 5 m; the example includes 
three separated bodies with one negative (blue rectangle) 
and two positive (yellow rectangles) blocks, distributed 
along the vertical direction. The left and middle models 
both measure 70 m × 20 m at a depth of 95 m, and the 
right model is 30 m × 30 m at a depth of 155 m. The lower 
and upper boundaries are set to − 1000 and 1000 kg m−3, 
respectively.

First, we use RCGI to conduct the inversion calculations 
shown in Fig. 2, where α is a fixed value (= 2) for compari-
son with the CGI method. The blue dashed rectangles indi-
cate the locations of the true model blocks. The left column 
shows the inversion results, and the right shows the relative 
calculation residuals. In Fig. 2a, b, α = 2 and β = 0, which 
indicates that the CGI method is used for inversion of the 

Fig. 1   a Actual gravity anomaly data reproduced in b by for-
ward modelling of the true model with a positive density 
value of 1000  kg  m−3 (yellow rectangles) and a negative value 
of − 1000 kg m−3 (blue rectangle)
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synthetic test; i.e., an obvious near-surface concentration 
of the inversion results exists and the iterative algorithm is 
convergent. In Fig. 2c, d, α = 2 and β = 2.35. Because β has 
a positive correlation with the depth of the inversion results, 
we gradually increase β from zero in order to determine a 
better value for β, which can improve the accuracy of the 
inversion results with respect to the real model; this resulted 
in a β value of 2.35. The location shown in Fig. 2c is closer 
to the real model than that in Fig. 2a, although the residual 
error e1 shown in Fig. 2d is larger than that for CGI shown 
in Fig. 2b, and the iteration is also convergent. In Fig. 2e, 
f, the inversion results are no longer convergent, even if β 
(= 2.40) is only slightly larger than 2.35. Thus, this synthetic 
test shows that we cannot obtain reasonable inversion results 

for the case where α is a fixed value (2). In other words, CGI 
is not applicable in this case.

Figure 2 shows that we cannot obtain good inversion 
results with a fixed α; therefore, we now use the RCGI and 
REECGI methods, in which α is also a variable, to obtain 
better inversion solutions and compare their computational 
efficiency. The maximum iteration times and e1 in Eq. (11) 
are set to 200 and 0.20, respectively, for terminating the 
iteration algorithm. First, we determine the best α and β in 
the given interval (0.9 ≤ α ≤ 1.2, 2 ≤ β ≤ 6) for both methods 
according to Eq. (9a) shown in Fig. 3. In fact, we set a larger 
interval in the initial test, but the inversion results are too 
smooth or not convergent when α and β exceed this interval. 
The left column (Fig. 2a, c) shows the results obtained by 

Fig. 2   Inversion results and relative residual errors using the RCGI 
with a fixed α value of 2 and different β. The blue dashed rectangles 
in a, c, and e indicate the locations of the true model blocks. The 

maximum iteration times and e
1
 from Eq. (11) are set to 200 and 0.20, 

respectively, for terminating the iteration algorithm
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the RCGI and the right column (Fig. 2b, d) shows the results 
obtained by the REECGI. The same α and β are obtained by 
both methods, i.e., α = 1.0 and β = 4.0, as shown in Fig. 2a, 
b. Moreover, similar inversion results are obtained with the 
residual errors: 0.2120 and 0.2203 for RCGI and REECGI, 
respectively. However, there is a certain difference in the 
computational time between RCGI (697.73 s) and REECGI 
(650.58 s) when using a 2.2 GHz processor. The saved cal-
culation time of REECGI is approximately 6.7% compared 
to RCGI.

Inversion of field data

In this section, we apply the CGI, RCGI, and REECGI meth-
ods to the inversion of gravity anomaly field data measured 
in an iron ore mine at Qian’an, Hebei Province, China. 
The iron ore is predominantly located in the strata of the 
Archean Santunying Formation with a background density 
of 2670 kg m−3. There are three tectonic boundaries shown 
in Fig. 4: F1, F2, and F3. F1 is composed of north-west 
F1–1, F1–2, and F1–3 tectonic boundaries, F2 is composed 
of south-west F2–1 and F2–2 tectonic boundaries, and F3 is 
a north-east stratigraphic lithology interface. We follow the 
principle of cutting structures to design three profiles, P201, 
P202, and P203, placed 200 m from each other.

The CG-5 relative gravimeter (No. 1095) produced by 
Scintrex in Canada is used to measure the gravity anomaly 
with a measurement accuracy of better than 5 μGal. The 
field data is further processed by normal field, Bouguer, 
and terrain corrections. As shown in Fig. 4, the high gravity 
anomaly area is predominantly distributed to the west of 
F3, whereas the low gravity anomaly area is to the east. The 
background density information is removed from the gravity 
measurements by forward modelling.

According to existing geological data shown in Fig. 5 
(Fig. 5a shows the 3D model structure of the ore body in 
the study area, Figs. 5b–d shows the 2D model structure 
beneath profiles P201, P202, and P203, respectively), the 
composition of the ore minerals is as follows. The domi-
nant mineral type is hematite, followed by a small amount 
of martite with a band-shaped structure, represented 
as yellow polygons in the figure. Both ore minerals are 
treated as having the same density and the corresponding 
residual density is 660 kg m−3. In addition, some low-
density rock masses exist that constitute a broken com-
plex (residual density: − 470 kg m−3), represented as dark 
blue polygons, as well as sedimentary rocks (residual 
density: − 70 kg m−3), which are represented as light blue 
polygons. Based on the available data, the entire inversion 
area is set to 1200 m × 1000 m, and the corresponding 

Fig. 3   Optimal α and β values determined by a RCGI and b REECGI. The same α and β values (α = 1.0, β = 4.0) are obtained by both methods. 
Inversion results from c RCGI and d REECGI
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model blocks consist of a 120 m × 100 m grid with dimen-
sions of 10 m × 10 m in the horizontal and vertical direc-
tions, respectively.

Now, we conduct inversions of the three profiles using 
CGI, RCGI, and REECGI methods. The CGI method with 
fixed α (= 2) and β (= 0) is first used to confirm its unsuit-
ability at great depths in the inversion area. As we can see 
from Fig. 6, the inversion results of all three profiles show 

significant near-surface concentration effects, although they 
are compact (Fig. 6a–c, e) and the data residuals are small 
(Fig. 6b, d, f).

As CGI is deemed unsuitable for this study, we apply 
RCGI and REECGI for the three profiles. The best choice 
of α and β should naturally be considered; thus, the step 
sizes are set to 0.01, and the corresponding α and β val-
ues of the three profiles obtained by Eq. (9b) are shown in 

Fig. 4   Study area of an iron 
ore mine in Qian’an, Hebei 
Province, China. There are 
three tectonic boundaries: F1 
(composed of north-west F1–1, 
F1–2, and F1–3), F2 (composed 
of south-west F2–1 and F2–2), 
and F3 (north-east stratigraphic 
lithology interface). The three 
profiles P201, P202, and P203 
are located 200 m from each 
other

Fig. 5   Mineral distribution beneath the three profiles, P201, P202, 
and P203: a Overall distribution of minerals. Simplified mineral dis-
tribution beneath b P201; c P202; and d P203. Three types of miner-

als are shown: hematite (residual density 630 kg m−3) represented by 
yellow polygons, broken complexes (residual density − 470  kg  m−3) 
in dark blue polygons, and sedimentary rocks in light blue polygons
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Table 1. As the data fitting results are good, we do not show 
the data fitting charts for both methods as shown in Fig. 6b, 
d, f. The inversion results of the three profiles obtained with 
the appropriate α and β values using the two methods are 
shown in Fig. 7 (results in the left column are obtained by 

RCGI and those in the right are obtained by REECGI). Both 
methods yield almost the same results for P201, P202, and 
P203, as shown in Fig. 7a–f, in which the hematite, broken 
complex, and sedimentary rocks are shown as yellow, dark 
blue, and light blue polygons, respectively.

Fig. 6   Inversion results (left) and corresponding data misfits (right) determined by CGI for a, b P201; c, d P202; and e, f P203. Near-surface 
concentration effects are observed in the inversion results of all three profiles

Table 1   Optimal � and � values of RCGI and REECGI methods used for the inversion of three gravity anomaly profiles, P201, P202, and P203. 
Both step sizes are set to 0.01 for determining � and � values within the same interval

Method P201 P202 P203

� � � � � �

RCGI 1.60 1.70 1.49 1.13 1.70 1.70
REECGI



1675Acta Geophysica (2020) 68:1667–1677	

1 3

For P201, compared to the prior geological information 
shown in Fig. 5b, the inversion results of the broken complex 
are closer to the actual situation than those of hematite and 
sedimentary rocks. The worst inversion solution is obtained 
where the hematite (positive density) and the sedimentary 
rocks (negative density) are vertically overlapped. Only a 
small amount of sedimentary rocks and hematite is obtained, 
as shown in Fig. 7a, b. For P202, compared to the results 
shown in Fig. 5c, the left broken complex and the shallow 
hematite are obtained relatively accurately, whereas the very 
deep minerals, especially when overlapped with sedimentary 
rocks, are difficult to obtain, as seen from Fig. 7c, d. For 

P203, compared to results shown in Fig. 5d, the hematite and 
sedimentary rocks in the middle of Fig. 7e, f are obtained 
relatively accurately, unlike those at other locations.

Finally, we test the computational times of the RCGI and 
REECGI methods using P201, as shown in Fig. 8. In order to 
observe the calculation efficiency of the two methods more 
intuitively, the number of iterations are set to 100, 300, 600, 
and 1000 times, respectively. According to Fig. 8, the com-
putational time of REECGI is lower than that of RCGI, and 
the time saved becomes more significant as the number of 
iterations increases.

Fig. 7   Inversion results of profiles P201, P202, and P203 by RCGI 
and REECGI. The left column shows the inversion results of RCGI 
for a P201, c P202, and e P203. The right column shows the inversion 

results of REECGI for b P201, d P202, and f P203. The inversion 
results of the two methods are almost the same
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Conclusion

We developed the RCGI method to ensure high flexibility for 
gravity anomaly inversion, especially for compact mineral 
models located at great depths, by generalising the classic 
CGI method. We then developed the REECGI method by 
improving the RCGI method to have higher computational 
efficiency. In addition, we proposed a quantitative method 
for determining the two key parameters (the compactness 
weighting factor α and the depth weighing factor β) required 
to obtain the optimal solution of RCGI or REECGI meth-
ods. Synthetic and field tests both indicate that RCGI and 
REECGI result in more accurate inversions of positive and 
negative model blocks than CGI, and that REECGI is more 
efficient than RCGI. The REECGI method can be easily run 
on a computer in only a few seconds, and can be applied to 
the inversion of any gravity data to obtain more acceptable 
resolution in the vertical direction.
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