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Abstract
Water temperature is one of the most important indicators of aquatic system, and accurate forecasting of water temperature 
is crucial for rivers. It is a complex process to accurately predict stream water temperature as it is impacted by a lot of factors 
(e.g., meteorological, hydrological, and morphological parameters). In recent years, with the development of computational 
capacity and artificial intelligence (AI), AI models have been gradually applied for river water temperature (RWT) forecast-
ing. The current survey aims to provide a systematic review of the AI applications for modeling RWT. The review is to show 
the progression of advances in AI models. The pros and cons of the established AI models are discussed in detail. Overall, 
this research will provide references for hydrologists and water resources engineers and planners to better forecast RWT, 
which will benefit river ecosystem management.
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Introduction

Water temperature is one of the most important indicators 
for river systems, which controls many physical and bio-
geochemical processes within the waterbody, such as the 
reaeration process of oxygen (Gualtieri et al. 2002), decay 
process of organic matter (Matsumoto et al. 2007), nitri-
fication kinetics (Zhang et al. 2014), etc. All the aquatic 
species have the specific water temperature ranges for devel-
opment and production, and significant variations in water 
temperature may bring serious consequences to the ecosys-
tem. For example, Quinn et al. (1994) indicated that water 
temperatures that occur in summer in many New Zealand 
rivers may limit the distribution and abundance of some 
invertebrate species. Lessard and Hayes (2003) found that 
increasing temperatures downstream of the dams impacted 

the densities of several cold-water fish species and the com-
munity composition of macroinvertebrates. It is therefore 
of great significance to study the thermal regime of rivers.

Mathematical models are important tools to evaluate the 
thermal dynamics in rivers. In the past decades, many mod-
els were developed and applied in different regions. Gener-
ally, these models can be classified into two categories: (1) 
statistical/stochastic models and (2) process-based determin-
istic models.

For statistical/stochastic models, there are many types 
available, such as the simple linear regression models (Smith 
1981; Crisp and Howson 1982; Stefan and Preud’homme 
1993; Pilgrim et  al. 1998; Erickson and Stefan 2000; 
Sohrabi et al. 2017; Laanya et al. 2017), logistic nonlin-
ear models (Mohseni et al. 1998; Webb et al. 2003; Koch 
and Grunewald 2010; van Vliet et al. 2011; Soto 2016; 
Piotrowski and Napiorkowski 2019), autoregressive models 
(Kothandaraman 1971; Cluis 1972; Caissie et al. 1998, 2001, 
2017), and hybrid models (Toffolon and Piccolroaz 2015).

The process-based deterministic models are based on 
the energy balance equations, and they consider the heat 
fluxes between the river and the surrounding environment 
(Sinokrot and Stefan 1993; Benyahya et al. 2007; Wright 
et al. 2009; Dugdale et al. 2017). These models are gener-
ally complex, and they need a lot of data as model inputs, 
such as river bathymetry, hydrological information, and a set 
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of meteorological variables, which limit their applications, 
especially in areas with limited available data. This helps to 
boost another type of statistical model, namely the artificial 
intelligence (AI) models.

Recent advances in computational algorithms and com-
putation capacity of modern computers have significantly 
contributed to the development and applications of various 
types of artificial intelligence models. These AI models 
require fewer input variables compared with the process-
based deterministic models and may outperform the tra-
ditional statistical models (Sahoo et al. 2009; Faruk 2010; 
Hadzima-Nyarko et al. 2014; Piotrowski et al. 2015; Zhu 
et al. 2018, 2019a; Graf et al. 2019). Previously, Benyahya 
et al. (2007) briefly reviewed the statistical water tempera-
ture models for rivers; Dugdale et al. (2017) conducted a 
review of process-based deterministic approaches and future 
directions for river temperature modeling. However, a com-
prehensive review of the available studies on developing and 
applying AI models for river water temperature forecasting 
has never been conducted.

This study aims to fill this research gap by conducting a 
review of the available studies on river water temperature 
forecasting using AI models. This review introduces how 
effectively the applied AI models have accomplished proper 
predictive river water temperature models, particularly in 
relation to the external or internal structure of the AI models, 
input variables, and the efficiency of AI integrated modeling.

Artificial intelligence models

We use the scientific databases, Web of Science and Google 
Scholar, and set the keywords/terms as “stream/river water 
temperature, modeling/forecasting, artificial intelligence” in 
the period of 2000–2020. After screening, we get 36 studies 
(see Table 1). These AI models can be divided into the fol-
lowing groups: (1) artificial neural networks, (2) adaptive 
neuro-fuzzy inference system, (3) Gaussian process regres-
sion, (4) Wavelet Transform (WT)-Artificial Intelligence 
integrated model, and (5) other AI models.

Artificial neural networks

During the last two decades, artificial neural networks 
(ANNs) (Haykin 1999) become a classical modeling tool for 
regression problems in hydrology. ANN architecture often 
consists of a number of nodes structured in consecutive lay-
ers that perform various mathematical computational tasks. 
In recent years, to solve complex environmental problems, 
various variants of “shallow” neural networks were used. 
These networks are relatively simple, with easily under-
standable features. However, with the development of AI, 
deep learning networks (LeCun et al. 2015; Goodfellow 

2016) become increasingly popular in almost every field 
of science, and this trend is slowly impacting hydrological 
researches as well (Shen 2018; Shen et al. 2018; Sun et al. 
2019; Hu et al. 2019; Lee et al. 2020; Bui et al. 2020; Zhu 
et al. 2020a; Lu and Ma 2020). Nonetheless, so far there is 
limited application of deep learning networks in stream tem-
perature modeling, what may be easily justified by the lim-
ited number of available stream temperature data and huge 
number of parameters that need calibration in deep learning 
models (Lu and Ma 2020). Although we hope for future 
implementations of deep learning networks into river water 
temperature modeling, while in hydrology, the most widely 
used ANN type is still the so-called multilayer perceptron 
neural network (MLPNN) with three layers, which may be 
easily considered as a classical “shallow” neural network. 
In Table 1, we show that although “shallow” ANNs have 
been widely used for stream temperature modeling, with a 
few exceptions that introduce radial basis function networks 
(RBFNs) (Bromhead and Lowe 1988) or product-units neu-
ral networks (PUNNs) (Durbin and Rumelhart 1989) to the 
topic, majority of studies considered only MLPNN variants.

The MLPNN architecture often consists of three layers: 
input, hidden, and output ones. The input data are fed to the 
input layer and computation of weighted sum is performed; 
then, the data are processed in the hidden layer, which can 
be converted to multiple layers depending on the complex-
ity of the problem; and lastly, the result is produced in the 
output layer.

Majority of MLPNN applications (see Table 1) concerned 
classical stream temperature modeling for the particular 
river based on exogenous variables such as air temperature 
or flow discharge. However, ANNs were also used for pre-
dicting specific dates at which particular stream tempera-
tures are expected. For example, Daigle et al. (2009) used 
MLPNN to evaluate the date of the beginning of the seasonal 
cycle of stream temperature in different streams located in 
Canada and Northern USA and showed that they perform 
favorably against simple regression models (Daigle et al. 
2010). Faruk (2010) coupled MLPNN with ARIMA mod-
els for autoregressive modeling of stream temperature. Tao 
et al. (2008) applied MLPNN for both autoregressive stream 
temperature modeling with exogenous inputs and for mod-
eling the specific dates at which ice cover appears and melts 
on particular rivers.

Among large number of studies devoted to assessing the 
impact of projected climatic changes on stream tempera-
tures (Webb et al. 2008; Watts et al. 2015; Arora et al. 2016; 
Knouft and Ficklin 2017; Soto 2018; Du et al. 2019), many 
are based on MLPNN models (Jeong et al. 2013; Liu et al. 
2018b). MLPNN is attractive for this task, as it requires 
information only on a few variables that may be obtained or 
evaluated from climate models. In this respect, it is somehow 
in-between physically based models that require too much 



1435Acta Geophysica (2020) 68:1433–1442	

1 3

Table 1   Applications of artificial intelligence (AI) models for river water temperature forecasting

Model type Input variables Time scale Reference

Artificial neural network (ANN)
 MLPNN Air temperature, dew-point temperature, 

solar radiation, wind speed, discharge, 
cloud cover

Daily Foreman et al. (2001)

 MLPNN Air temperature, rainfall, pH, dissolved 
oxygen

Monthly Sivri et al. (2007)

 MLPNN Air temperature Daily Chenard and Caissie (2008)
 MLPNN Air temperature, discharge, past river 

temperature
Daily Tao et al. (2008)

 RBFNN, MLPNN Air temperature, short wave radiation Daily Sahoo et al. (2009)
 MLPNN Air temperature, sea temperature, past 

stream temperature
Monthly Sivri et al. (2009)

 MLPNN Air temperature, barometric pressure, 
wind speed, wind direction, solar radia-
tion reflected from the river, humidity, 
autoregressive water temperature, water 
temperature spilled from the artificial 
dam

10-min Hong (2012)

 MLPNN Air temperature, precipitation Daily Jeong et al. (2013)
 MLPNN Air temperature, landform attributes, 

riparian forest and network forest land 
cover, local catchment agriculture

Daily DeWeber and Wagner (2014)

 MLPNN Air temperature Daily Hadzima-Nyarko et al. (2014)
 MLPNN Air temperature, water level Hourly Hebert et al. (2014)
 MLPNN Air temperature, solar radiation, wind 

speed, discharge, cloud cover, precipita-
tion, barometric pressure

Daily Cole et al (2014)

 MLPNN Air temperature Daily Rabi et al. (2015)
 MLPNN, PUNN Air temperature, flow discharge, declina-

tion of the Sun
Daily Piotrowski et al. (2014, 2015, 2016)

 MLPNN Air temperature, precipitation Hourly Jeong et al. (2016)
 MLPNN Air temperature, wind speed, relative 

humidity
Monthly Temizyurek and Dadaser-Celik (2018)

 MLPNN Air temperature Daily Zhu et al. (2018)
 MLPNN Air temperature, discharge, relative 

humidity, wind speed, sunshine duration
Daily Liu et al. (2018a)

 MLPNN Various water quality indicators Monthly Voza and Vukovic (2018)
 MLPNN Air temperature, flow discharge, the 

components of the Gregorian calendar 
(day of the year)

Daily Zhu et al. (2019b, c)

 FFNN Air temperature, flow discharge, day of 
the year

Daily Zhu et al. (2019d)

 RBFNN Air temperature, flow discharge, day of 
the year

Daily Zhu and Heddam (2019)

 MLPNN Air temperature, flow discharge, declina-
tion of the Sun

Daily Piotrowski et al. (2020)

 BPNN, RBFNN, WNN, GRNN, 
ELMNN

Air temperature, flow discharge, day of 
the year

Daily Qiu et al. (2020)

Adaptive neuro-fuzzy inference system (ANFIS)
 DNFIS Air temperature, barometric pressure, 

wind speed, wind direction, solar radia-
tion reflected from the river, humidity, 
autoregressive water temperature, water 
temperature spilled from the artificial 
dam

10-min Hong and Bhamidimarri (2012)
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information unavailable for the future, and simple regression 
models that are based solely on air temperature which is 
highly doubtful (Arismendi et al. 2014). Moreover, MLPNN 
may relatively easily be coupled with more-physical ones, 
e.g., Stewart et al. (2014) presented a hybrid approach that 
coupled Soil-Water-Balance Model with MLPNN in order 
to evaluate stream temperatures in various locations across 
the State of Wisconsin (USA) in future climatic conditions 
based on geographical features.

Adaptive neuro‑fuzzy inference systems

Fuzzy logic models have been useful tools in solving difficult 
computational problems (Zadeh 1988; Zhai and Williams 
2012; Petrović et al. 2014). Among the fuzzy logic models, 
the most popularly applied one is the adaptive neuro-fuzzy 
inference system (ANFIS) model (Jang 1993; Kurnaz et al. 
2010; Bui et al. 2012). ANFIS is a multilayer feedforward 
network, which utilizes a neural network learning algorithm 
and is able to identify nonlinear boundaries. It has the ability 
to achieve a highly nonlinear mapping and nonlinear time 
series. The stages of ANFIS consist of choosing the type of 
interfering systems such as Mamdani, Sugeno, and Tsumoto, 
as well as aggregation, and defuzzification procedures.

The applications of the ANIFS models for river water 
temperature forecasting are also summarized in Table 1. For 
example, the dynamic version of neuro-fuzzy inference sys-
tems (DNFIS) has been developed for stream temperature 
forecasting at specific river reach located under the artificial 
dam which spills waters of modified temperatures into the 
river (Hong and Bhamidimarri 2012). As seen, compared 
with the ANN models, applications of the ANIFS models 
in the area of river water temperature forecasting are quite 
limited, even though the ANFIS models have been widely 
used in other scientific fields (Kurnaz et al. 2010; Mohandes 
et al. 2011; Bui et al. 2012; Razavi Termeh et al. 2018).

Gaussian process regression

Gaussian process regression (GPR) is a Bayesian learning 
algorithm. It has been widely used in hydrological studies, 
such as streamflow forecasting (Sun et al. 2014), reference 
evapotranspiration estimation (Holman et al. 2014), or pre-
cipitation simulation (Kleiber et al. 2012). It is based on the 
assumption that the joint probability distribution of model 
outputs is Gaussian. It combines various machine learning 
tasks, including model training, uncertainty estimation, and 
hyperparameter estimation, which is its major advantage over 
the other machine learning methods. However, currently, GPR 

Table 1   (continued)

Model type Input variables Time scale Reference

 ANFIS Air temperature, flow discharge, declina-
tion of the Sun

Daily Piotrowski et al. (2015)

 ANFIS Air temperature, flow discharge, the com-
ponents of the Gregorian calendar

Daily Zhu et al. (2019b)

Gaussian process regression (GPR)
 GPR Air temperature, flow discharge Daily Grbic et al. (2013)
 GPR Air temperature Daily Zhu et al. (2018)
 GPR Air temperature, flow discharge, day of 

the year
Daily Zhu et al. (2019d)

Wavelet Transform (WT)-Artificial Intelligence integrated model
 WT-MLPNN Air temperature, flow discharge, declina-

tion of the Sun
Daily Piotrowski et al. (2015)

 WT-MLPNN, WT-ANFIS Air temperature, day of the year Daily Zhu et al. (2019e)
 WT-MLPNN Air temperature Daily Graf et al. (2019)

Other AI models
 DT Air temperature, flow discharge, day of 

the year
Daily Zhu et al. (2018, 2019d)

 SVM Air temperature, flow discharge Daily Rehana (2019)
 ELM Air temperature, flow discharge, day of 

the year
Daily Zhu et al. (2019a), Zhu and Heddam (2019)

 DT, RF, SVM, RBFNN, LSTM Water temperature Hourly Lu and Ma (2020)

Multilayer perceptron neural network (MLPNN), radial basis function neural network (RBFNN), product-unit artificial neural network (PUNN), 
feedforward neural network (FFNN), back-propagation neural network (BPNN), wavelet neural network (WNN), general regression neural net-
work (GNN), Elman neural network (ELMNN), decision trees (DT), extreme learning machine (ELM), random forests (RF), support vector 
machine (SVM), and long short-term memory (LSTM)
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model has been applied in river water temperature forecasting 
several times, as summarized in Table 1.

Wavelet‑artificial intelligence integrated model

Wavelet transform is a preprocessing method capable of 
doing wavelet decomposition, wavelet de-noising, wavelet 
aided complexity description, and wavelet aided forecasting 
(Sang 2013). It can help to overcome the limitation of vari-
ous AI models to handle nonstationary data. Due to this, a lot 
of researches employ the hybrid wavelet-artificial intelligence 
integrated models for hydrological studies (Nourani et al. 
2009, 2014; Guimarães Santos and da Silva 2014; Quilty and 
Adamowski 2018; Poul et al. 2019).

There are two common forms of wavelet analysis: (1) One 
is discrete wavelet analysis which deals with discrete signals 
and decomposes the time series into sub-signals at a specific 
wavelet and decomposition level. (2) The other one is continu-
ous wavelet transform which deals with continuous signals 
and is applied for disclosing time series features under multi-
temporal scales. The applications of the hybrid wavelet-AI 
model for river water temperature forecasting are also sum-
marized in Table 1. As seen, compared with its applications 
in other hydrological time series forecasting (Nourani et al. 
2014), applications of this modern method in river water tem-
perature modeling are relatively limited.

Other artificial intelligence models

Applications of the other AI models for river water tempera-
ture forecasting are also summarized in Table 1. Unlike the 
other hydrological time series modeling (e.g., modeling of sus-
pended sediment concentrations, rainfall-runoff forecasting), 
for which a lot of AI models have been used (Chandwani et al. 
2015; Afan et al. 2016), for river water temperature modeling, 
AI models, which are not based on neural networks, fuzzy 
sets or wavelet transformations, are very rarely applied. This 
may be simply the effect of the dominance of neural networks-
based approaches in the hydrological literature.

Evaluation and assessment

Model inputs

As summarized in Table 1, most of the available studies 
evaluate river thermal dynamics at daily time scale. For 
high-frequency data (e.g., hourly), the available studies are 
limited (Hong and Bhamidimarri 2012; Hebert et al. 2014; 
Jeong et al. 2016; Lu and Ma 2020). This may be induced 
by the data availability (e.g., high-frequency data are rarely 
measured) as in many parts of the world, water temperature 
in rivers is measured once per day.

Physical interpretation of various variables that affect the 
relation between air and stream temperature has been given 
in Mohseni et al. (1999). Since then, different studies may 
use different input variables; however, air temperature needs 
to be used due to the strong correlations between river water 
temperature and air temperature. In order to consider the 
time lags between water temperature and air temperature 
(Letcher et al. 2016), air temperatures from the past few time 
intervals are often used as model inputs (Sahoo et al. 2009; 
Piotrowski et al. 2015; Graf et al. 2019).

Except air temperature, the role of flow discharge as an 
input to AI models was assessed in many studies (Foreman 
et al. 2001; Grbic et al. 2013; Piotrowski et al. 2014, 2015; 
Zhu et al. 2019b, c, d; Graf et al. 2019; Qiu et al. 2020). It 
was found that flow discharge plays an important role mainly 
in snow-fed and regulated rivers with higher-altitude hydro-
power reservoirs, while it improved to a lower extent model 
performance in lowland rivers (Zhu et al. 2019b). Some 
authors also use the information on precipitation (Jeong 
et al. 2013, 2016; Cole et al. 2014), barometric pressure 
(Hong 2012; Cole et al. 2014), humidity (Hong 2012), or 
wind velocity (Foreman et al. 2001; Hong 2012; Cole et al. 
2014), but the importance of these factors for stream tem-
perature modeling is rather limited for specific locations. 
Temperature of spilled water from artificial dams has also 
been considered for specific rivers (Hong 2012), which is of 
no importance in most cases.

On the contrary, model input that can significantly 
improve model performance is solar radiation (Foreman 
et al. 2001; Cole et al. 2014) coupled with cloud cover. For 
daily river water temperature forecasting, Sahoo et al. (2009) 
also used short wave radiation as model input because this 
variable impacts thermal balance of rivers, and the model 
results showed that the prediction performance was some-
what higher if short wave radiation was included. However, 
longer time series of such data are frequently unavailable 
for vast majority of locations of interest. As a result, some 
substitutes have to be used. One of the simplest is the com-
ponents of the Gregorian calendar (CGC), such as day of 
the year (DOY). The modeling results showed that the addi-
tion of CGC contributes to better capture the seasonal pat-
tern of river water temperature (Zhu et al. 2019b, c, d; Qiu 
et al. 2020) as it can provide additional relevant information 
on the seasonality of the river thermal dynamics, possibly 
mimicking the effect of lateral and upstream water and heat 
inputs. The results are the same as in other studies for water 
quality modeling (Heddam 2016; Heddam and Kisi 2017). In 
the studies of Piotrowski et al. (2014, 2015, 2020), declina-
tion of the Sun is used as model input, and the model results 
showed that it helped to improve the model performance. In 
a recent publication (Piotrowski and Napiorkowski 2019), 
the role of this variable was further studied in the non-
linear regression stream temperature model. However, to 
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what extent the use of declination of the Sun, or day of the 
year may substitute the direct measurement of solar radia-
tion has never been researched so far, which needs further 
investigations.

Comparison of different models

For stream temperature modeling, in most studies, more than 
a single model is used. However, the intercomparison among 
various models is rarely conclusive. The clear exceptions are 
linear, nonlinear regression, and the other statistical models, 
which were shown to be outperformed by MLPNN or the 
other AI models (Foreman et al. 2001; Sahoo et al. 2009; 
Zhu et al. 2018, 2019a, b). This finding was easily confirmed 
in some more recent studies, e.g., Jeong et al. (2013). For 
example, Sahoo et al. (2009) showed that artificial neural 
network models performed far better than the traditional 
regression analysis and chaotic nonlinear dynamic models. 
Zhu et al. (2019a) found that the AI models (e.g., MLPNN 
and ELM) improved the accuracy of river water temperature 
modeling (20–35%) compared with the traditional statistical 
models.

Intercomparison among the other stream temperature 
AI models is less conclusive. Cole et al. (2014) found that 
MLPNN performs better than statistical models, but is out-
performed by heat budget-based approach. However, Hong 
and Bhamidimarri (2012) claimed that DNFIS model out-
performs not only classical ANFIS, but also MLPNN, at 
least for short-term stream temperature forecasting. Zhu 
et al. (2019b) compared the performances of MLPNN and 
ANFIS models. In their study, three identification methods 
used for the ANFIS model, including fuzzy c-mean cluster-
ing, grid partition method, and subtractive clustering, were 
compared. The results indicated that the MLPNN model 
provides the best performance in general, and the choice of 
the identification method significantly impacts the perfor-
mance of the ANFIS model. The evaluation results in Zhu 
et al. (2019d) showed that the feedforward neural network 
performed better than the GPR and DT models. Piotrowski 
et al. (2015) compared various artificial neural network types 
and found that the choice of neural network is dependent on 
the way the models are compared, and this may be a warning 
for anyone who wishes to promote their own models, and 
their superiority should be verified in different ways.

Zhu et al. (2019e) integrated wavelet transform with 
MLPNN and ANFIS models, and the results indicate that 
the combination of WT and AI models yields better models 
than the conventional forecasting models. The performance 
of the hybrid model is based on the mother wavelet and 
decomposition level. In order to assess the impact of mother 
wavelet and decomposition level on the performance of the 
hybrid model, Graf et al. (2019) developed a hybrid WT 
and MLPNN model and found that among the four mother 

wavelets applied, the discrete Meyer performs the best, 
slightly better than the Daubechies at level 10 and Sym-
let, while the Haar mother wavelet has the lowest accuracy. 
Also, the model performance improves with an increase in 
the decomposition level, indicating the importance of the 
choice of decomposition level.

In a recent study by Qiu et al. (2020), particle swarm 
optimization (PSO) was coupled with the back-propagation 
neural network (BPNN) to forecast water temperature in two 
river stations of the Yangtze River, and the modeling results 
were compared with that of RBFNN, wavelet neural net-
work (WNN), general regression neural network (GRNN), 
and Elman neural network (ELMNN). The results showed 
that with the optimization of the PSO algorithm, the BPNN 
model can better capture river thermal dynamics.

Model calibration

AI models applied for stream temperature simulations often 
require calibration (frequently the term training is used in 
case of neural networks). Because MLPNNs are universal 
approximators (Hornik et al. 1989), they may be fitted to 
any continuous and differentiable functions. This means 
that during calibration, such model may be fitted to not only 
the signal, but also the noise presented in the training data 
sample, which may negatively affect the possibility of using 
such calibrated model to independent data. This is especially 
important for stream temperature modeling, for which often 
there is scarcity of available data and the number of spectac-
ular events (with rapid heating or cooling of stream waters) 
is low. Hence, the performance of the calibrated models on 
unseen data depends on both calibration algorithm and pos-
sibility to avoid overfitting.

Comparison of training algorithms for stream tempera-
ture modeling has been done in a few studies. Hong and 
Bhamidimarri (2012) verified two training methods of the 
dynamic neuro-fuzzy inference systems: extended Kalman 
filter approach with and without back-propagation algorithm. 
Authors also showed the performance of MLPNN trained 
with back-propagation algorithm for comparison. Dynamic 
neuro-fuzzy model with hybrid training turned out to be 
the best choice. In another study, Hong (2012) compared 
the performance obtained by MLPNN trained by sequential 
learning with extended Kalman filter, extended Kalman fil-
ter with noise updating, and classical (nonsequential) back-
propagation algorithm. In the sequential learning approach, 
instead of dividing data set into calibration and independent 
subsets, authors assumed that the new information is added 
into training sample each time it is collected. The superiority 
of the proposed approach is confirmed by the experiments. 
Piotrowski et al. (2014) presented a wide-scale comparison 
among MLPNN trained by means of various metaheuristic 
algorithms and Levenberg–Marquardt approach. Although 
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some metaheuristics showed promising performance, it was 
concluded that majority of them are unable to outperform 
the Levenberg–Marquardt algorithm and that more consist-
ent performance may rather be achieved by ensemble averag-
ing than searching for newer optimization methods.

A possibility to mitigate the effect of overfitting in 
MLPNN models applied for stream temperature simulations 
by means of deep-learning-based technique called dropout 
has been studied in Piotrowski et al. (2020). It was shown 
that by temporarily dropping out nodes with small prob-
ability (1%) during MLPNN training by means of Leven-
berg–Marquardt algorithm (Levenberg 1944), the probability 
of getting poorly calibrated models may be highly reduced, 
and hence, the performance of an average calibrated model 
is improved.

Recommendations for future research

Wavelet transform, as a good preprocessing method, helps 
to improve the performance of the traditional AI models for 
river water temperature forecasting, as revealed in Zhu et al. 
(2019e, 2020b) and Graf et al. (2019). However, currently, 
WT has only been coupled with the MLPNN and ANIFS 
models, and further researches are needed to investigate 
its coupling with some modern AI models. Additionally, a 
recent study by Quilty and Adamowski (2018) showed that 
some of the recent researches incorrectly developed wavelet-
based AI models, which cannot be properly used for practi-
cal applications. The errors made by these researchers are: 
(1) the use of future data as input to the developed models, 
(2) inappropriate selection of decomposition level and wave-
let filter, and (3) not carefully partitioning training and test-
ing data. Because of not addressing the boundary conditions 
in applying wavelet decomposition, some researchers incor-
rectly implemented wavelet-based AI models, which resulted 
in much better accuracy than what is realistically achievable. 
In Quilty and Adamowski (2018), a new strategy for avoid-
ing such errors and adequately using wavelet decomposition 
method was reported that should be considered in future 
studies related to wavelet-based complementary modeling 
approach.

Overfitting is a common issue for AI models (Schaffer 
1993), and in order to avoid overfitting, several methods 
are available. Early stopping is a simple approach to avoid 
overfitting, frequently used in stream temperature simula-
tions (Piotrowski et al. 2015; Graf et al. 2019). However, to 
mitigate the possibility of poor performance on independ-
ent data, Piotrowski et al. (2019) investigated the impact of 
deep learning-based dropout on shallow neural networks for 
river water temperature modeling. They found that dropout 
reduces the number of models that perform poorly on testing 
data and hence improves the mean performance. Dropout 

is a method to avoid overfitting for deep learning, and its 
applications in shallow neural networks for river water tem-
perature modeling are worth further researches.

Some new AI models, such as the extreme learning 
machine (Huang et al. 2006), a recent extension of the ANN 
model, is known as a fast-computational learning model, 
which has been certified as an online expert predictive sys-
tem with great real-time application potential. It has been 
widely used in other hydrological studies (Atiquzzaman and 
Kandasamy 2016; Rezaie-Balf and Kisi 2017; Yaseen et al. 
2018, 2019), however, there are only two attempts for river 
water temperature simulations (Zhu et al. 2019a; Zhu and 
Heddam 2019), and its potential for river water temperature 
forecasting worth further studies.

Finally, the usefulness of deep learning networks in 
stream temperature modeling needs to be verified. Of much 
interest are studies that could compare a few deep learning 
methods on larger number of rivers and possibly relate the 
results with those obtained by means of physically based 
models.
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