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Abstract
The development of temperature forecasting models for the state of Kerala using Seasonal Autoregressive Integrated Moving 
Average (SARIMA) method is presented in this article. Mean maximum and mean minimum monthly temperature data, for 
a period of 47 years, from seven stations, are studied and applied to develop the model. It is expected that the time-series 
datasets of temperature to display seasonality (and hence non-stationary), and a possible trend (due to the fact that the data 
spans 5 decades). Hence, the key step in the development of the models is the determination of the non-stationarity of the 
temperature time-series, and the transformation of the non-stationary time-series into a stationary time-series. This is car-
ried out using the Seasonal and Trend decomposition using Loess technique and Kwiatkowski–Phillips–Schmidt–Shin test. 
Before carrying out this process, several preliminary tests are conducted for (1) finding and filling the missing values, (2) 
studying the characteristics of the data, and (3) investigating the presence of the trend and seasonality. The non-stationary 
temperature time-series are transformed to stationary temperature time-series, by one seasonal differencing and one first-
order differencing. This information, along with the original time-series, is further utilized to develop the models using the 
SARIMA method. The parsimonious and best-fit SARIMA models are developed for each of the fourteen variables. The 
study revealed that SARIMA(2, 1, 1)(1, 1, 1)12 as the ideal forecasting model for eight out of the fourteen time-series datasets.

Keywords  Autocorrelation function (ACF) · Partial autocorrelation function (PACF) · Sen’s slope estimator · Seasonal 
autoregressive integrated moving average (SARIMA) · Mann–Kendall (MK) trend test

Introduction

India, with a population of more than 1.3 billion, has more 
than 50% of its population dependent on agriculture (Arjun 
2013). Most states in India still heavily rely on rainfall for 
various agricultural activities. It is well known that rainfall, 
a part of the hydrological cycle, is susceptible to changes 
in global temperature (Allen and Ingram 2002; Andronova 
and Schlesinger 2000; Trenberth 1999). Hence, an exclu-
sive look into the long-term temperature variations would 

constitute a vital part in the analysis of agricultural output 
of any region of the country.

In this regard, many researchers have carried out studies 
in the last decade on global, continental and regional level 
long-term temperature variations (Hänsel et al. 2016; Jain 
and Kumar 2012; Kocsis et al. 2017). Also, many attempts 
have been undertaken by researchers to develop models for 
understanding and extrapolating the temperature variation 
(Hänsel et al. 2016; Mills 2014; Tiwari et al. 2016). In 
India, among all the studies focused on temporal tempera-
ture variation, the most noteworthy study is the one con-
ducted by the Indian Network for Climate Change Assess-
ment (INCCA) (2010). The projections of mean annual 
surface temperature for the 2030s (average of 2021–2050) 
were carried out on country level using PRECIS (Provid-
ing Regional Climates for Impact Studies), with the data 
obtained from 1970s (average of 1960–1990). In this 
study, it was predicted that the annual mean surface air 
temperature would rise by 1.7–2 ◦C over the entire Indian 
subcontinent. Though this study indicates that significant 
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changes could be expected in the overall characteristics 
of rainfall, the projections are at a macroscopic level (i.e. 
for the entire Indian subcontinent), and not for each indi-
vidual states. Regional studies focussing on individual 
states are necessary to get a better understanding of the 
local factors that influence these variations. A state-wise 
study is important because local policies and actions can 
be exclusively implemented by the state governments to 
combat any expected adverse changes in their respective 
states. In this study, the temporal variation of the monthly 
mean maximum (MMAX) and mean minimum tempera-
ture (MMIN) is analysed for the state of Kerala.

The analysis is carried out for a period of 47 years, 
starting from 1969 to 2015. The overall objective of the 
study is to develop a model for future forecasts of MMAX 
and MMIN for the state of Kerala. Prior to the time-series 
modelling, it is necessary to carry out preprocessing of 
the data to identify the missing values. The time-series 
data available for each station and the number of miss-
ing values are listed in Table 1. The data gaps are to be 
eliminated before any time-series modelling. The data 
infilling process is carried out using expectation–maxi-
mization algorithm. Further, for the construction of a 
suitable forecasting model, it is necessary to evaluate the 
time-series datasets to understand the existing pattern. 
This preliminary analysis provides a good insight regard-
ing the available data. It comprises of (1) a descriptive 
statistical analysis of the monthly data, (2) performance 
of the normality test, (3) test to check for outliers, (4) 
Mann–Kendall trend analysis and (5) performance of the 
Sen’s slope test. The results obtained from the prelimi-
nary analysis revealed the presence of non-stationarity in 
the datasets. In order to confirm the preliminary results 
obtained, the time-series datasets are decomposed using 
STL decomposition to get the time-series components. The 
obtained time-series components also revealed the pres-
ence of seasonality and the presence or absence of a trend. 
The value of parameters (seasonal and non-seasonal dif-
ferencing, D and d, respectively) needed for converting the 
non-stationary time-series to a stationary series is obtained 
using the results of Kwiatkowski–Phillips–Schmidt–Shin 
(KPSS) test. These values, along with the original time-
series datasets, are used for the SARIMA model build-
ing process. The next section (“Temperature data and 
research methodology” section) briefly describes each of 
the process (the preliminary tests, STL decomposition, 
Unit root test and SARIMA) applied in this study. Section 
“Temperature data and research methodology” describes 
the application of these tests to our data. Also, in “Result 
and discussions” section, the result of each test is ana-
lyzed and elaborated, and a final forecast is also delivered 
with the developed model. Lastly, section “Summary and 

conclusions” concludes the article with an overview of 
the entire study.

Temperature data and research 
methodology

The main reason for carrying out the temperature-related 
studies for the state of Kerala is that the state is the gate-
way of the summer monsoon (South-West) for India. Any 
disturbance to the South-West monsoon creates a cascad-
ing effect on the rainfall patterns in the entire country. As 
stated earlier, this section presents the techniques applied 
for (1) estimating the missing values, (2) conducting the 
preliminary analysis, (3) decomposing the time-series data, 
(4) converting the non-stationary data to stationary data, and 
(5) developing the model.

An account of Kerala and its temperature dataset

The state Kerala is a small strip of coastal land located in 
the southern part of India. It consists of an area of 38,850 
km2 . It is located between 8◦ 18′ N–12◦ 48′ N latitudes and 
74◦ 52′ E–77◦ 24′ E longitudes. Figure 1 shows the location 
map of the study area. The state has a shoreline of 580 km, 
and the width of the state varies between 30 and 120 km. 
Geologically, the state Kerala can be categorised into three 
climatically distinct regions: the eastern highlands (rugged 
and cool mountainous terrain), the central midlands (roll-
ing hills), and the western lowlands (coastal plains). The 
lowlands and highlands bound the state of Kerala, where 
the lowlands comprise the regions which adjoin the shore-
line, and highlands cover the region slopping down from the 
Western Ghats. The midlands spread between the highlands 
and lowlands. Area-wise, the highlands comprise of 18,650 
km2 , while the midlands and lowlands comprise of 16,200 
km2 and 4000 km2 respectively. Tea, coffee and rubber are 
major plantation crops grown in the highlands. It also houses 
several endemic flora and fauna. Wide variety of fruits, nuts 
and vegetables are grown in the midland region. Paddy and 
coconut are grown in the fertile lowlands.

The temperature datasets from 13 observatories that cover 
the entire state of Kerala are obtained from the Indian Mete-
orological Department (IMD). The observatories spread 
across all the three climatic regions. The observatories are 
located at Palghat, Fort Cochin, Kovalam, Karipur, Trichur, 
Ernakulum, Kozhikode, Kannur, Alappuzha, Punalur, Kot-
tayam, Thiruvananthapuram and Trivandrum Airport. Out 
of 13 stations, three observatories (Palghat, Fort Cochin 
and Kovalam) are not properly functioning for the past 15 
years, and the datasets for recent years are not available. 
For three observatories (Karipur, Trichur and Ernakulum), 
the datasets are available starting from the year 1996 and 
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later. Adequate datasets for the analysis are available only 
for seven meteorological stations. The spatial locations of 
the observatories are shown in Fig. 1b.

The data from the rest of the seven stations are found 
ideal for the study. Table 1 shows the data availability for the 
selected seven stations. A total of 235 intermittent monthly 
values (about 3.13% of the data) are found to be missing 
in the available dataset. Table 1 lists the number and types 
of missing values for each station. Datasets with missing 
values present several problems in the representativeness 
of the samples (Kang 2013). Hence, the missing values 
are to be determined first. For this purpose, the expecta-
tion–maximization algorithm is used. The missing values 
estimated through this method is used to fill the data gaps in 
order to obtain continuous time-series datasets. Preliminary 

statistical tests are conducted using these datasets. The 
results indicated the presence of skewness and kurtosis. 
Further, a test for normality is carried out using the Shap-
iro-Wilk normality test and the outliers are identified using 
Grubb’s test. The results indicated that datasets followed a 
non-normal distribution without any outliers. Therefore, a 
nonparametric Mann–Kendall trend test (Gocic and Trajko-
vic 2013; Kocsis et al. 2020) and Sen’s slope test are used to 
determine the direction and magnitude of monotonic trends 
in the time-series.

Mann–Kendall trend test

The Mann–Kendall trend test (Mann 1945; Kendall 
1975; Gilbert 1987) is widely used test in the field of 

Fig. 1   a Location map of the 
state Kerala, b the location map 
of the seven stations for which 
study is conducted

Table 1   The amount of missing data present in the meteorological observatories

Station name Starting year 
of time series

Ending year 
of time series

Total length 
of data 
(years)

MMAX MMIN

Number of 
monthly val-
ues present

Number of 
monthly val-
ues missing

% of 
missing 
values

Number of 
monthly val-
ues present

Number of 
monthly val-
ues missing

% of 
missing 
values

Kozhikode 1969 2015 47 564 0 0 564 0 0
Kannur 1981 2015 34 404 16 3.81 404 16 3.81
Alappuzha 1969 2015 47 549 15 2.66 548 16 2.84
Punalur 1969 2015 47 532 32 5.67 500 64 11.34
Kottayam 1973 2011 43 498 18 3.49 496 20 3.88
Thiruvanan-

thapuram
1969 2015 47 564 0 0 564 0 0

Trivandrum 
Airport

1969 2015 47 545 19 3.37 545 19 3.37
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Hydro-meteorology, dealing with variables like temperature, 
rainfall and streamflow. The Mann–Kendall test is used to 
statistically assess the presence of an increasing or decreas-
ing trend in the series. The Mann–Kendall test operates by 
checking whether to reject the null hypothesis ( H0 ) and 
accept the alternative hypothesis ( H1 ). The null hypothesis 
( H0 ) means there is no trend in the temperature over time, 
and the alternative hypothesis ( H1 ) implies the presence of 
either an increasing or decreasing trend in the temperature 
data. The sign of the computed Mann–Kendall test statistic 
ZMK reveals the direction of the trend. The positive value of 
ZMK indicates that the temperature tends to increase with 
time, while the negative value of ZMK denotes the decrease 
in temperature over time. The null Hypothesis ( H0 ) is 
rejected, and the alternative hypothesis ( H1 ) is accepted if 
|
|ZMK

|
| ≥ Z1−�∕2 at the Type I error rate �.

Sen’s slope estimation

All the available statistical techniques may not be equally 
good in detecting the magnitude of the trend in the time-
series data (Radziejewski and Kundzewicz 2004). A simple 
parametric least-square regression technique is not suit-
able to calculate the magnitude of the trend for non-normal 
time-series. In such cases, a test which is nonparametric, 
robust against outliers would be an appropriate choice. Sen’s 
Slope estimation, a nonparametric test is selected to detect 
the magnitude of trends in the temperature time-series. It is 
impartially resistant to outliers, with a breakdown point of 
0.29 (Sen 1968). It was initially proposed in 1968 to account 
for the non-normality of precipitation data. A mathematical 
explanation of the scheme is not detailed here, as it has been 
already presented in detail by various authors (Gocic and 
Trajkovic 2013; Kocsis et al. 2020).

STL decomposition

The Mann–Kendall trend test and Sen’s slope estimation 
are carried out as a part of the initial investigation. Further 
to provide a better understanding of the datasets, the time-
series data is decomposed as the trend component, the sea-
sonal component and the remainder component. It is carried 
out using STL (Seasonal and Trend decomposition using 
Loess) decomposition method (Cleveland et al. 1990). The 
decomposed components are plotted for graphical visualisa-
tion of the data. It allows us to visualise the presence of trend 
and seasonality in the data. Compared to the other classical 
decomposition methods, STL has several advantages like 
the ability to handle any type of seasonality (daily, monthly, 
quarterly, annual, etc.), being robust to outliers, facilitat-
ing the user to control the smoothness of trend cycle, and 
allowing the user to control the rate of change of seasonal 
component.

Unit root test

The trend and seasonal components obtained from the STL 
decomposition will reveal the presence of non-stationarity 
in the temperature time-series. The non-stationarity is only 
inferred from the graphs of the decomposed components 
(only visual inference). To mathematically confirm the 
presence of non-stationarity in the time-series, the unit root 
tests are performed. In the present study, KPSS (Kwiat-
kowski–Phillips–Schmid–Shin) unit root test is performed 
to confirm the presence of non-stationarity (Kwiatkowski 
et al. 1992). The original temperature time-series and the 
decomposed components are used for this purpose. The 
KPSS method proceeds with the null hypothesis (i.e. the 
data are stationary) and tries to find evidence to show that 
the null hypothesis is false for the selected time-series. If the 
non-stationarity is confirmed, then the next step is the con-
version of the non-stationary data to stationary data. The p 
values determined from the KPSS test provides information 
about the differencing; small p values typically, less than 
0.05 points the necessity of differencing for the conversion 
of the time-series.

Seasonal autoregressive integrated moving average 
(SARIMA) model

After the non-stationary time-series is converted to a sta-
tionary time-series (i.e. after the determination of d and D), 
the next step is to develop a model for future predictions. 
Forecasting models developed from the historical records 
are generally used to predict the future changes in the cli-
mate variables. Several authors have proposed temperature 
models using a number of forecasting techniques (Aguado-
Rodríguez et al. 2016; Tiwari et al. 2016; Wang et al. 2019; 
Lai and Dzombak 2020; Wanishsakpong and Owusu 2020). 
Several climate variables are generally influenced by sea-
sonality, and one of the best forecasting models for such 
variables is the SARIMA model. It combines the advantage 
of the autoregressive model and the moving average model.

In an autoregressive model, a linear combination of the 
past values of the variable is used to predict the future of the 
variable. Mathematically, Eq. 1 represents an autoregressive 
model of order p, i.e. AR(p) model.

The equation shows that the observation y at time t 
( yt ) is estimated from p previous observations ( yt−i , 
i = 1, 2, 3,… , p ). �k , with k = 1, 2, 3,… , p are the param-
eters, and �t is the white noise.

In a moving average model, the forecast is done using the 
past forecast errors in a regression-like model.

(1)yt = �0 + �1yt−1 + �2yt−2 +⋯ + �pyt−p + �t
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Equation 2 describes the moving average model of order 
q, i.e. MA(q) model, where yt is the observation at time t; 
�i , with i = 1, 2, 3,… , q , are the parameters and �t−k , with 
k = 1, 2, 3,… , q are the error terms, respectively.

By combining differencing with autoregression and a 
moving average model, the non-seasonal Autoregressive 
Integrated Moving Average (ARIMA) model is obtained. 
Mathematically, the ARIMA model is represented by Eq. 3.

y′
t
 denotes the differenced series. It has to be noted that the 

series may have been differenced more than once, and the 
degree of the differencing involved is denoted by d. This 
series is represented as the ARIMA(p, d, q) model, where 
p denotes the order of autoregressive part, d denotes the 
degree of differencing, and q denotes the moving average 
part.

If seasonality is observed in a time-series, then a sea-
sonal-ARIMA model or SARIMA model (Hyndman and 
Athanasopoulos 2018) has to be applied. The seasonal-
ARIMA model is obtained by including the additional sea-
sonal terms to the ARIMA models. The seasonal-ARIMA 
model is represented as SARIMA(p, d, q)(P,D,Q)m . The 
non-seasonal part of the model is represented as (p, d, q), 
and the seasonal part of the model is given by (P,D,Q)m . 
The terms P, D and Q represents the order of the seasonal 
autoregressive term, degree of the seasonal differencing and 
order of the seasonal moving average part, respectively. The 
term m represents the number of observations per year. The 
terms of the seasonal part of the model are similar to the 

(2)yt = �0 + �t + �1�t−1 + �2�t−2 +⋯ + �q�t−q

(3)y�
t
= �0 + �1y

�
t−1

+ �2y
�
t−2

+⋯ + �py
�
t−p

+ �1�t−1 + �2�t−2 +⋯ + �q�t−q + �t

non-seasonal part expect that they involve backshifts of the 
seasonal period.

Result and discussions

All the tests discussed in the previous section are applied 
parallelly or sequentially based on the requirements. The 
results of these tests, and their significance, are discussed 
in this section.

Results from descriptive statistics

Descriptive statistics of the temperature datasets are obtained 
after filling the missing values using the expectation–maxi-
mization algorithm. The analysis is carried out for seven sta-
tions for two variables (MMAX and MMIN) in each station. 
Therefore, altogether fourteen time-series datasets are ana-
lysed. The average MMAX and MMIN temperature covering 
all the seven stations are 31.84 ◦C and 23.48 ◦C respectively. 
The MMAX varies between 31.11 ◦C (at Trivandrum Air-
port), and 33.06 ◦C (at Punalur), and MMIN varies between 
22.34 ◦C (at Punalur) and 24.22 ◦C (at Kozhikode). The 
standard error of the mean of all fourteen variables ranges 
between 0.04 ◦C and 0.1 ◦C . The maximum deviation of the 
sample-mean from the population-mean is 0.2 ◦C , at a con-
fidence level of 95%. The difference between the sample-
mean and the population-mean is negligible. Therefore, it 
can be concluded that a sample mean is a genuine represen-
tation of the population mean. The descriptive statistics of 
the variables are listed in Table 2. In the tabulation, SEM, 

Table 2   Descriptive statistics of the variables

Station name Variable type Mean SEM SD Variance CV Q1 Q3 Range IQR Skewness Excess kurtosis

Kozhikode MMAX 31.50 0.08 1.79 3.22 5.69 30.20 32.80 8.40 2.60 – 0.23 – 0.64
Kozhikode MMIN 24.22 0.05 1.24 1.54 5.12 23.50 24.80 8.10 1.30 0.22 0.29
Kannur MMAX 32.13 0.10 2.04 4.16 6.35 30.50 33.70 8.90 3.20 – 0.14 – 0.89
Kannur MMIN 23.47 0.07 1.33 1.78 5.68 22.70 24.20 7.20 1.50 0.12 – 0.12
Alappuzha MMAX 31.48 0.07 1.64 2.70 5.22 30.10 32.80 7.70 2.70 – 0.25 – 0.90
Alappuzha MMIN 23.92 0.05 1.17 1.36 4.88 23.20 24.60 6.50 1.40 0.07 0.03
Punalur MMAX 33.06 0.09 2.14 4.58 6.47 31.40 34.70 10.30 3.30 0.36 – 0.57
Punalur MMIN 22.34 0.05 1.19 1.42 5.33 21.70 23.10 7.10 1.40 – 0.25 0.14
Kottayam MMAX 32.03 0.08 1.76 3.11 5.51 30.70 33.40 9.50 2.70 – 0.09 – 0.65
Kottayam MMIN 23.08 0.04 0.98 0.95 4.23 22.70 23.70 6.20 1.00 – 0.91 1.52
Thiruvananthapuram MMAX 31.56 0.06 1.38 1.90 4.37 30.50 32.68 6.20 2.18 0.04 – 0.83
Thiruvananthapuram MMIN 23.56 0.04 0.97 0.94 4.12 23.00 24.10 5.90 1.10 0.24 0.13
Trivandrum Airport MMAX 31.11 0.05 1.18 1.39 3.79 30.20 31.90 5.90 1.70 0.21 – 0.66
Trivandrum Airport MMIN 23.76 0.05 1.10 1.20 4.61 23.20 24.32 6.60 1.12 – 0.23 0.60
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SD, CV, Q and IQR stand for standard error of the mean, 
standard deviation, coefficient of variation, quartile, and 
inter-quartile range, respectively.

The MMIN variable at Kottayam has a skewness of 
−0.91 , and since this value is within the range of −0.5 and 
−1 , it implies that data is moderately skewed. Moreover, the 
excess kurtosis values of all fourteen variables are nonzero, 
which implies that all fourteen temperature time-series 
are non-mesokurtic. Although the excess kurtosis values 
(nonzero) indicate the non-normal distribution of all the 
variables, it has to be noted that the values are small. There-
fore, it necessitates a dedicated normality test. Consequently, 
a Shapiro-Wilk test is conducted to validate the nature of the 
distribution.

Test for normality

The test for normality indicated that all fourteen variables 
are indeed non-normally distributed. The results of the 
Shapiro-Wilk test are presented in Table 3.

Additionally, the Grubb’s test is also conducted to 
determine the presence of outliers in the data. The results 
of the Grubb’s test are presented in Table 4. The G-statis-
tic values of all fourteen variables are found to be less than 
their corresponding critical values indicating that there 
are no outliers in any of the fourteen temperature datasets.

Table 3   The results of the test 
for normality of the variables

Station name Variable type Degrees of 
freedom

Shapiro–Wilk

Statistic p value Decision at level (5%)

Kozhikode MMAX 564 0.983 3E−06 Reject normality
Kozhikode MMIN 564 0.977 9E−08 Reject normality
Kannur MMAX 420 0.978 6E−06 Reject normality
Kannur MMIN 420 0.987 1E−03 Reject normality
Alappuzha MMAX 564 0.972 6E−09 Reject normality
Alappuzha MMIN 564 0.991 2E−03 Reject normality
Punalur MMAX 564 0.979 3E−07 Reject normality
Punalur MMIN 564 0.989 4E−04 Reject normality
Kottayam MMAX 516 0.988 2E−04 Reject normality
Kottayam MMIN 516 0.953 1E−11 Reject normality
Thiruvananthapuram MMAX 564 0.984 7E−06 Reject normality
Thiruvananthapuram MMIN 564 0.983 5E−06 Reject normality
Trivandrum Airport MMAX 564 0.983 4E−06 Reject normality
Trivandrum Airport MMIN 564 0.981 1E−06 Reject normality

Table 4   The results obtained 
from the Grubb’s test for the 
variables

Station name Variable type G-statistic Critical value Approximate p 
value (%)

Decision

Kozhikode MMAX 2.4 3.9 9.18 No outliers
Kozhikode MMIN 3.49 3.9 0.26 No outliers
Kannur MMAX 2.22 3.82 10.87 No outliers
Kannur MMIN 2.95 3.82 1.3 No outliers
Alappuzha MMAX 2.61 3.9 5.05 No outliers
Alappuzha MMIN 2.93 3.9 1.85 No outliers
Punalur MMAX 2.82 3.9 2.61 No outliers
Punalur MMIN 1.83 2.89 1.78 No outliers
Kottayam MMAX 2.97 3.87 1.49 No outliers
Kottayam MMIN 3.78 3.87 0.01 No outliers
Thiruvananthapuram MMAX 2.35 3.9 10.4 No outliers
Thiruvananthapuram MMIN 3.26 3.9 0.6 No outliers
Trivandrum Airport MMAX 2.88 3.9 2.22 No outliers
Trivandrum Airport MMIN 3.34 3.9 0.45 No outliers
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Trend analysis using Mann–Kendall test and Sen’s 
slope estimation

Since the datasets are not normally distributed, the 
Mann–Kendall test is applied to check the presence or 
absence of the trend in the datasets. The results of the trend 
analysis are presented in Table 5. As mentioned earlier, the 
results of the Mann–Kendall indicate only the presence or 
the absence of a trend in the series and its direction. How-
ever, it fails to quantify the magnitude of the trend.

In this test, a p value greater than � (i.e. 0.05), indicates 
the absence of the trend. The sign of MK-statistic indicates 
the direction of the trend. The test results indicate that a 
certain amount of trend is present in ten variables. The 
magnitude of trend determined using Sen’s slope estima-
tion is presented in Table 5. The �-slope represents the mag-
nitude of the trend. This is consistent with the findings (p 
value) from the Mann–Kendall’s test. The four stations that 
indicated the absence of a trend in the Mann–Kendall test 
resulted in very low values of �-slope. It may be noted that 
for non-stationary series with small slopes (< 0.0002) , even 
at p < 0.01 , Mann–Kendall trend test rejects null-hypothesis, 
resulting in Type-I error. The other specific inferences that 
could be made from this test is that the MMAX series of 
Kozhikode, Kannur and Thiruvanathapuram has a signifi-
cant trend ( �-slope exceeding 0.2%), and MMIN series of 
Alapuzzha station is the only one with a decreasing trend, 
confirming the result obtained from the Mann–Kendall test.

Analysis through STL decomposition

Though the previous two tests reveal the presence or 
absence of a trend, the presence of non-stationarity result-
ing from seasonality cannot be directly inferred from them. 
A time-series decomposition technique is applied to obtain 
the components. The fourteen time-series variables are 
decomposed to get each one’s trend, seasonal and remain-
der components using the STL decomposition. Figure 2 
shows the original data, trend, seasonal, and remainder 
components of the MMAX variable of Kozhikode station.

For STL decomposition, only the first 80% of the time-
series datasets are utilized. The remaining 20% of the data 
is retained for the validation of the forecasting model. 
The increasing trend, which was predicted by both the 
Mann–Kendall test and Sen’s slope estimation, can be vis-
ualised from the figure. It also indicates the existence of a 
strong seasonal pattern. Similar to Kozhikode MMAX var-
iable, the other thirteen variables also exhibited seasonal 
patterns. On this basis, it is possible to conclude that the 
datasets are non-stationary. Before developing a forecast-
ing model, the non-stationary datasets must be converted 
to stationary datasets, and subsequently the parameters 
d and D must be determined. The non-stationarity of the 
datasets are validated by applying the unit root test.

Table 5   The results of Mann–Kendall trend test ( � = 0.05 ) and Sen’s slope test ( � = 0.05)

Station name Variable type MK S-statistic Standard error z statistic p value Presence 
of trend

Sen’s slope Sen’s-slope 
(lower 95 % 
Confidence 
Interval)

Sen’s-slope 
(Upper 95 % 
Confidence 
Interval)

Kozhikode MMAX 35,826 4469.78 8.02 0 Yes 0.0038 0.0029 0.0046
Kozhikode MMIN 26,011 4467.88 5.82 0 Yes 0.0015 0.001 0.0021
Kannur MMAX 16,583 2873.8 5.77 0 Yes 0.0048 0.0032 0.0063
Kannur MMIN 9118 2873 3.17 0 Yes 0.0016 0.0006 0.0025
Alappuzha MMAX 9169 4469.78 2.05 0.04 Yes 0.0009 0 0.0017
Alappuzha MMIN – 14,724 4468.65 – 3.3 0 Yes – 0.001 – 0.0016 – 0.0004
Punalur MMAX 2670 4470.12 0.6 0.55 No 0.0003 – 0.0008 0.0015
Punalur MMIN 5220 4468.91 1.17 0.24 No 0.0003 – 0.0001 0.001
Kottayam MMAX 5403 3912.08 1.38 0.17 No 0.0007 – 0.0003 0.0018
Kottayam MMIN – 4099 3909.71 – 1.05 0.3 No 0 – 0.0008 0
Thiruvanan-

thapuram
MMAX 33,767 4469.45 7.56 0 Yes 0.0028 0.0021 0.0035

Thiruvanan-
thapuram

MMIN 20,561 4467.24 4.6 0 Yes 0.001 0.0006 0.0015

Trivandrum 
airport

MMAX 18,572 4469.01 4.16 0 Yes 0.0013 0.0007 0.0019

Trivandrum 
airport

MMIN 21,046 4467.87 4.71 0 Yes 0.0011 0.0006 0.0016
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Unit root test and the conversion to a stationary 
series

The Kwiatkowski–Phillips–Schmid–Shin (KPSS) test is 
applied to categorise the datasets as stationary or non-sta-
tionary. The results of the unit root test are presented in 
Table 6. The test results for the original temperature time-
series are listed in the third column of the table. A p value 
of less than 0.05 implies that the series is non-stationary. 
The results indicate that time series datasets of Alappuzha, 
Punalur and Kottayam corresponding to MMAX variable, 
and MMIN variable of Punalur and Kottayam are stationary. 
This is contrary to what was inferred from the STL seasonal 
plots. To resolve this paradox, the autocorrelation (ACF) 

plots and partial autocorrelation (PACF) plots of those five 
variables are analyzed. The ACF and PACF plots of the 
Punalur MMAX are shown in Fig. 3. The ACF and PACF 
values in the plots follow a decaying sinusoidal pattern, 
which indicates seasonality and the dataset is non-stationary.

Similar trends are observed in the ACF and PACF plots 
for the other four variables. Therefore, it is conclusive that 
all fourteen variables are indeed non-stationary. As the 
seasonality is confirmed, at least one seasonal differencing 
is necessary to convert the non-stationary time-series to a 
stationary time-series. As this technique ascertains non-
stationarity by means of seasonality, there are possibilities 
that the non-stationarity may exist exclusive of the seasonal 
component. In other words, it is possible that there could 

Fig. 2   The decomposed compo-
nents of the Kozhikode MMAX 
time-series

Table 6   The result of KPSS test 
for level stationarity

Station name Variable type Original 
series (p 
value)

Seasonally 
adjusted series (p 
value)

Series after seasonal adjustment 
and first-order difference (p 
value)

Kozhikode MMAX 0.01 0.01 0.1
Kozhikode MMIN 0.01 0.01 0.1
Kannur MMAX 0.01 0.01 0.1
Kannur MMIN 0.049 0.01 0.1
Alappuzha MMAX 0.1 0.01 0.1
Alappuzha MMIN 0.01 0.01 0.1
Punalur MMAX 0.1 0.1 0.1
Punalur MMIN 0.1 0.051 0.1
Kottayam MMAX 0.1 0.01 0.1
Kottayam MMIN 0.06 0.01 0.1
Thiruvananthapuram MMAX 0.01 0.01 0.1
Thiruvananthapuram MMIN 0.01 0.01 0.1
Trivandrum Airport MMAX 0.01 0.01 0.1
Trivandrum Airport MMIN 0.01 0.01 0.1
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be a non-stationarity in the non-seasonal component of the 
time-series. In order to determine this possibility, the KPSS 
test is conducted on the seasonally adjusted time-series.

The seasonally adjusted series is obtained by subtracting 
the seasonal component from the original time-series data-
sets (seasonal differencing). The test results for the season-
ally adjusted time-series are listed in Table 6. The results 
indicate that most of the seasonally adjusted series are non-
stationary. Hence, it is evident that the non-stationarity of 
the datasets is not just due to the presence of seasonality 
alone. It indicates that, in addition to seasonal differenc-
ing, performing the first-order difference would be prudent 
in conversion of non-stationary time-series to stationary 
time-series. Subsequently, all fourteen time-series datasets 
are subjected to one seasonal differencing and a first-order 
difference. The KPSS test is performed on the resulting 
time-series datasets. The test results are presented in the 

last column of Table 6, where it can be observed that all the 
differenced time-series datasets are stationary.

Modelling by seasonal autoregressive integrated 
moving average (SARIMA) method

Forecasting models are developed by applying the SARIMA 
method using the original time-series datasets. The model 
has an inherent ability to transform non-stationary data into 
stationary data using the parameters d and D determined ear-
lier. SARIMA models for each variable are developed with 
a different combination of parameters, and the best-fitting 
model is selected based on statistical evaluation. The proce-
dure followed to develop the SARIMA model for MMAX 
variable of Kozhikode station is detailed. A similar proce-
dure is adopted for the other thirteen variables.

Fig. 3   a ACF plot of MMAX 
variable at Punalur station, b 
PACF plot of MMAX variable 
at Punalur station
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In the SARIMA model, where the model is represented 
by SARIMA(p, d, q)(P,D,Q)m , the determination of the 
parameters p, d, q, P, D, Q and m, for a particular time-
series data, completes the development of the model for 
that dataset. In the present case, from the previous analysis, 
it was found that d = 1 and D = 1 , and for monthly data 
m = 12 . Therefore, it is necessary to determine the values 
for parameters p, q, P and Q alone. These parameters are 
determined from the ACF and PACF plots of the station-
ary series (the seasonally and first-order differenced series) 
(Hyndman and Athanasopoulos 2018). The ACF and PACF 
plots of Kozhikode MMAX which are seasonally and first-
order differenced are shown in Fig. 4, where the first 30 lags 
are considered for determining the parameters.

The value of non-seasonal autoregressive term (p) and 
seasonal autoregressive term (P) are determined from the 

PACF plot (Fig. 4b). In the first span of seasonality, there 
are significant spikes at lag 1, lag 2 and lag 3, and this indi-
cates that a non-seasonal autoregressive component up to 
AR(3) (i.e. p ≤ 3 ) would be appropriate. The spikes at lags 
1, 2 and 3 are considered, while the spikes at lags 5, 6 and 
11 are ignored, because lags 1, 2 and 3 serially lie outside 
the bounds and lag 4 lies within the bound, and thus break 
the continuity. All the out of bound lags, in the first span of 
seasonality, after lag 4 are ignored for this reason. Both the 
second (lags 12 to 23) and third span (lags 24 to 35) of sea-
sonality have out of bound lags. Therefore, a seasonal autore-
gressive component AR(2) (i.e. P ≤ 2 ) would be appropriate. 
Similarly, the moving average components are determined 
from the ACF plot Fig. 4a. The appropriate values of moving 
average components are q ≤ 1 and Q ≤ 2 (seasonal). Thus, 
the candidate model is SARIMA(3, 1, 1)(2, 1, 2)12.

Fig. 4   a ACF plots for the 
stationary series of MMAX 
variable at Kozhikode station, 
b PACF plot for the stationary 
series of MMAX variable at 
Kozhikode station
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It may be noted that the nature of the fourth span (lags 
36 to 47) in the PACF and ACF plots is unknown. There-
fore, due consideration should also be given for the sea-
sonal autoregressive component AR(3) (i.e. P = 3) and the 
seasonal moving average component MA(3) (i.e. Q = 3). In 
the model development phase, it is necessary for the devel-
oper to ensure that the model is parsimonious. In order to 
satisfy the parsimony principle, the sum of the parameters 
p, q, P and Q of the SARIMA model should be less than or 
equal to six. Therefore, these four parameters of the can-
didate model are perturbed in the range of −1 and + 1. It 
resulted in 15 possible combinations to build the SARIMA 
model. Out of these, the best model is the one which mini-
mises AICc (corrected Akaike information criteria) and BIC 
(Bayesian information criteria). The AICc and BIC values 
for the 15 models are presented in Table 7. The most suit-
able model that corresponds to the lowest AICc and BIC 
value is SARIMA(2, 1, 1)(1, 1, 2)12 . However, it may be 
noted that the AICc and BIC values of the other four mod-
els SARIMA(2, 1, 2)(1, 1, 1)12 , SARIMA(2, 1, 1)(1, 1, 1)12 , 
SARIMA(2, 1, 1)(2, 1, 1)12 and SARIMA(3, 1, 1)(1, 1, 1)12 
are also closer to the selected model.

Statistical evaluation of the developed models is carried 
out using the validation dataset. The computed statistical 
measures are root mean square error (RMSE), mean absolute 
error (MAE), mean absolute percentage error (MAPE) and 
mean percentage error (MPE). The results of the statistical 
evaluation of the models are presented in Table 8. In the 
statistical evaluation, the SARIMA(2, 1, 1)(2, 1, 2)12 model 
did not produce the best results; nevertheless, the results 
are very close to the models that produced the best results. 
Therefore, the SARIMA(2, 1, 1)(1, 1, 2)12 is considered to be 

an appropriate model for forecasting the MMAX variable of 
the Kozhikode station.

The selected model is also validated using the ACF of the 
residuals obtained from the fitted SARIMA(2, 1, 1)(1, 1, 2)12 
model to the complete time-series data. The residual plot and 
the ACF plot are shown in Fig. 5. Ideally, for a model to be 
absolutely perfect, it is expected to have autocorrelation of 
residuals close to zero.

However, if 95% of the spikes lie within the bounds (± 
2 
√
T  , where T is the length of the time-series), that would 

confirm that the series is white noise without autocorrela-
tion. Here, there are two significant spikes (at lag 25 and 
lag 35), and this translates to 94.4% of the spikes remaining 
within the bounds. The percentage of spikes lying within the 
bounds is close to 95% indicates that the selected model has 
the ability to provide good forecasting results.

Model building and validation for other thirteen vari-
ables are carried out using a similar procedure. The data 
length used for model building and validation is presented 
in Table 9. Finally, Table 10 shows the apt models for all of 
the fourteen temperature time-series.

Summary and conclusions

The development of temperature forecasting models for the 
state of Kerala, India, is presented in this article. Monthly 
mean maximum (MMAX) and mean minimum (MMIN) 
temperature time-series, obtained from seven stations 
of Kerala is used for the development of the model. The 
time-series temperature data observed over a period of 47 
years, spanning from 1969 to 2015 is utilised in this study. 

Table 7   The AICc and BIC values of the SARIMA models for 
MMAX variable of the Kozhikode station

SARIMA Model AICc BIC

SARIMA(3,1,1)(1,1,1)12 – 2208.86 – 2180.66
SARIMA(3,1,0)(2,1,1)12 – 2176.63 – 2148.43
SARIMA(3,1,0)(1,1,2)12 – 2180.75 – 2152.56
SARIMA(3,1,0)(1,1,1)12 – 2176.52 – 2152.33
SARIMA(2,1,1)(2,1,1)12 – 2208.06 – 2179.86
SARIMA(2,1,1)(1,1,2)12 – 2212.19 – 2183.99
SARIMA(2,1,1)(1,1,1)12 – 2208.52 – 2184.33
SARIMA(2,1,0)(2,1,2)12 – 2173.92 – 2145.72
SARIMA(2,1,0)(2,1,1)12 – 2168.88 – 2144.68
SARIMA(2,1,0)(1,1,2)12 – 2174.36 – 2150.16
SARIMA(2,1,0)(1,1,1)12 – 2169.02 – 2148.83
SARIMA(2,1,0)(1,1,3)12 – 2173.91 – 2145.72
SARIMA(2,1,0)(3,1,1)12 – 2168.35 – 2140.16
SARIMA(2,1,2)(1,1,1)12 – 2210.84 – 2182.64

Table 8   The statistical evaluation results of the SARIMA models 
developed for the Kozhikode MMAX

SARIMA Model RMSE MAE MPE MAPE

SARIMA(3,1,1)(1,1,1)12 0.846 0.656 – 1.36 2.046
SARIMA(3,1,0)(2,1,1)12 1.092 0.891 – 2.41 2.8
SARIMA(3,1,0)(1,1,2)12 1.121 0.92 – 2.541 2.9
SARIMA(3,1,0)(1,1,1)12 1.117 0.918 – 2.551 2.891
SARIMA(2,1,1)(2,1,1)12 0.817 0.627 – 1.18 1.951
SARIMA(2,1,1)(1,1,2)12 0.878 0.675 – 1.454 2.11
SARIMA(2,1,1)(1,1,1)12 0.868 0.674 – 1.451 2.107
SARIMA(2,1,0)(2,1,2)12 1.024 0.825 – 2.136 2.588
SARIMA(2,1,0)(2,1,1)12 1.056 0.856 – 2.27 2.685
SARIMA(2,1,0)(1,1,2)12 1.089 0.886 – 2.402 2.79
SARIMA(2,1,0)(1,1,1)12 1.082 0.882 – 2.411 2.776
SARIMA(2,1,0)(1,1,3)12 1.022 0.823 – 2.127 2.581
SARIMA(2,1,0)(3,1,1)12 1.13 0.93 – 2.582 2.933
SARIMA(2,1,2)(1,1,1)12 0.869 0.679 – 1.5 2.12
SARIMA(4,1,0)(1,1,1)12 1.162 0.962 – 2.738 3.037
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Some data gaps are identified in the datasets obtained from 
IMD. The missing values are estimated using the expecta-
tion–maximisation algorithm. It is natural for a long term 
time-series dataset of a meteorological variable to possess 
a trend. Moreover, the monthly mean of the meteorological 
variable is bound to have seasonal variations. The inher-
ent seasonality in the variable induces a non-stationarity 
in the time-series datasets. Statistical analysis is carried 
out on the time-series datasets to understand the nature 
of the data.

The results from the descriptive statistics indicated that 
most of the temperature time-series are kurtotic. A prelimi-
nary analysis is carried out to test the normality of the data 
and to check the presence of outliers. The Shapiro-Wilk test 
and the Grubb’s test are conducted to test the normality and 

to check the outliers. The results indicated that the time-
series datasets are non-normal and outliers are absent.

The trend analysis is carried out by applying Mann–Ken-
dall’s trend test and Sen’s Slope estimation. The results indi-
cated the presence of trend in at least ten of the fourteen 
time-series datasets. This served as the first indication for 
the non-stationary nature of the datasets. In order to con-
firm the presence of seasonality, with absolute confidence, 
STL decomposition and KPSS test are conducted. In STL 
decomposition, the time-series is decomposed into trend, 
seasonal, and remainder components. The results obtained 
from these tests clearly indicated the presence of seasonal-
ity and thereby, confirmed the non-stationarity of the all 
the fourteen time-series datasets. Subsequently, one sea-
sonal difference and one first-order difference are applied to 

Fig. 5   The residual 
time-series of the fitted 
SARIMA(2, 1, 1)(1, 1, 2)12 
model for the Kozhikode 
MMAX variable, ACF plot of 
the residuals and the distribu-
tion of the residuals

Table 9   The training and the 
validation data length utilised

Station name Variable type Training data Validation data

Kozhikode MMAX 1969–2005 (37 years) 2006–2015 (10 years)
Kozhikode MMIN 1969–2005 (37 years) 2006–2015 (10 years)
Kannur MMAX 1981–2005 (28 years) 2006–2015 (7 years)
Kannur MMIN 1981–2005 (28 years) 2006–2015 (7 years)
Alappuzha MMAX 1969–2005 (37 years) 2006–2015 (10 years)
Alappuzha MMIN 1969–2005 (37 years) 2006–2015 (10 years)
Punalur MMAX 1969–2005 (37 years) 2006–2015 (10 years)
Punalur MMIN 1969–2005 (37 years) 2006–2015 (10 years)
Kottayam MMAX 1969–2003 (35 years) 2005–2011 (8 years)
Kottayam MMIN 1969–2003 (35 years) 2005–2011 (8 years)
Thiruvananthapuram MMAX 1969–2005 (37 years) 2006–2015 (10 years)
Thiruvananthapuram MMIN 1969–2005 (37 years) 2006–2015 (10 years)
Trivandrum Airport MMAX 1969–2005 (37 years) 2006–2015 (10 years)
Trivandrum Airport MMIN 1969–2005 (37 years) 2006–2015 (10 years)
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transform the non-stationary datasets into stationary data-
sets. The results assist in identifying the values of the dif-
ferencing parameters necessary for building the SARIMA 
model.

The SARIMA models are developed individually for each 
of the fourteen variables using the original time-series data-
sets. The SARIMA models are developed individually for 
each of the fourteen time-series datasets. The results indi-
cated that the SARIMA(2, 1, 1)(1, 1, 1)12 model the ideal one 
to forecast eight out of the fourteen time-series variables. In 
order to have a better understanding of local influences, the 
studies must be carried out on a better spatial and temporal 
scales.
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