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Abstract
This study investigates the potential of two evolutionary neuro-fuzzy inference systems, adaptive neuro-fuzzy inference 
system (ANFIS) with particle swarm optimization (ANFIS–PSO) and genetic algorithm (ANFIS–GA), in modelling refer-
ence evapotranspiration (ET0). The hybrid models were tested using Nash–Sutcliffe efficiency, root mean square errors and 
determination coefficient (R2) statistics and compared with classical ANFIS, artificial neural networks (ANNs) and clas-
sification and regression tree (CART). Various combinations of monthly weather data of solar radiation, relative humidity, 
average air temperature and wind speed gotten from two stations, Antalya and Isparta, Turkey, were used as input parameters 
to the developed models to estimate ET0. The recommended evolutionary neuro-fuzzy models produced better estimates com-
pared to ANFIS, ANN and CART in modelling monthly ET0. The ANFIS–PSO and/or ANFIS–GA improved the accuracy 
of ANFIS, ANN and CART by 40%, 32% and 66% for the Antalya and by 14%, 44% and 67% for the Isparta, respectively.

Keywords  Reference evapotranspiration modelling · Evolutionary neuro-fuzzy inference systems · Particle swarm 
optimization · Genetic algorithm

Introduction

Scarcity of water, increment in pumping costs, complica-
tions in water storage and delivery system are the main 
issues that emphasize on enhancement of the water applica-
tion efficiency for the operation of large irrigation systems. 
Irrigation engineers and agricultural managers need to cal-
culate crop water requirement accurately for utilizing the 
scarce water timely and efficiently. For the efficient water 
application, evapotranspiration (ET) has a crucial role due to 
help in the calculation of crop water requirements precisely. 
Therefore, an accurate estimation of ET is fundamental to 

improve water application efficiency (Guven et al. 2008). 
The Food and Agriculture Organization (FAO) introduced 
the Penman–Monteith equation for modelling ET. This 
approach has become a commonly used method for calcu-
lating ET throughout the world (Allen et al. 2006). Several 
climatic inputs such as minimum, maximum and average 
temperature, wind speed, mean relative humidity and sun-
shine duration are required for ET estimation by the Pen-
man–Monteith equation. These large numbers of climatic 
data are not always available or reliable. The influence of 
the mentioned climatic variables on ET makes it a complex 
nature (Hernandez et al. 2011), and therefore, forecasting ET 
is one of the most difficult tasks in water resource problems. 
In such a situation, soft computing (SC) methods that can 
accurately model complex behaviour between input and out-
put emerge as a better alternative. In recent years, SC meth-
ods like ANNs, ANFIS and machine learning (ML) methods 
have applied for modelling different complex systems in the 
field of hydrology (Adnan et al. 2018, Adnan et al. 2019a, b; 
Nair et al. 2018; Muhammad Adnan et al. 2019; Majhi et al. 
2019; Wu et al. 2020).

In the literature, ANNs and ANFIS models were applied 
successfully to predict evapotranspiration (Ladlani et al. 
2012, 2014; Kisi et al. 2015; Wen et al. 2015; Luo et al. 
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2015; Keshtegar et al. 2018; Abrishami et al. 2019; Walls 
et al. 2020). Ladlani et al. (2012) compared two ANN 
models, namely generalized regression artificial neural 
network (GR-ANN) method and radial basis artificial neu-
ral network (RB-ANN), for modelling ET using climatic 
parameters from Dar El Beida, Algeria. As climatic data, 
the authors used the data of sunshine duration, average 
relative humidity, average wind speed, maximum, mini-
mum and average air temperature. They found that the GR-
ANN performed better than the RB-ANN in predicting ET. 
Ladlani et al. (2014) checked the potential of ANFIS and 
multiple linear regression (MLR) models for forecasting 
daily ET0 in the Mediterranean region of Algiers, Algeria. 
Results obtained from the investigation demonstrated that 
the ANFIS had better performance compared to the MLR 
models.

Kisi et al. (2015) compared four soft computing mod-
els: (1) MLP-ANN, (2) ANFIS-GP, (3) ANFIS-SC and (4) 
gene expression programming (GEP) models for predicting 
monthly ET using the data of 50 climatic stations in Iran. 
From the obtained results, the authors found the ANFIS-
GP as an optimal model. Wen et al. (2015) investigated the 
prediction accuracy of ANN and empirical methods in com-
parison with a machine learning method, namely support 
vector machine (SVM). The selected models were used to 
predict ET of the arid region of Ejina basin, China, using the 
minimum temperature and maximum temperature as inputs. 
Luo et al. (2015) compared four ANN models: (i) multilayer 
perceptron artificial neural network (MLP-ANN), (2) gen-
eralized feed-forward artificial neural network (GFF-ANN), 
(3) probabilistic neural network (P-ANN) and (4) linear 
regression artificial neural network (LR-ANN) models for 
predicting evapotranspiration of Gaoyou climatic station of 
Jiangsu province in China. The results of this study proved 
that ANNs can be effectively employed as a reliable ET 
modelling tool. Keshtegar et al. (2018) applied the ANFIS 
(ANFIS-FCM) with ANN and M5 model tree models to pre-
dict the evapotranspiration of three stations of the Central 
Anatolian Region of Turkey. They divided data into different 
training–testing subsets to check ANFIS accuracy for each. 
They found that the ANFIS model with different subsets 
performed better than the M5 and ANN models. Abrishami 
et al. (2019) used the ANN models to predict the ET of Nis-
souri Creek in Oxford County, Canada. They used two types 
of activation functions including rectified linear unit (ReLU) 
and sigmoid. Results showed that ReLU performed better 
than sigmoid activation function .Walls et al. (2020) applied 
different ANN structures for modelling the ET of wheat and 
maize crops and found ANN models suitable for predicting 
ET of both crops. ANN, ANFIS and ML models have also 
been successfully used in modelling different hydrological 
time series due to their ability to capture nonlinear behaviour 
(Adnan et al. 2017; Kisi et al. 2018; Yuan et al. 2018).

In the recent past years, the literature study has exposed 
that the hybrid soft computing models provide better ET 
prediction accuracy in comparison with stand-alone soft 
computing methods. The primary consideration of the 
researchers is towards combining several novel heuristic 
search algorithms with soft computing methods for opti-
mizing their control parameters and enhancement of their 
forecasting accuracy. Patil and Deka (2017) applied the 
hybrid of wavelet transform with ANN and ANFIS meth-
ods for the modelling of evapotranspiration in the arid 
regions of India. The results confirmed that the hybrid 
models had better performance than the stand-alone soft 
computing models in predicting ET. Araghi et al. (2018) 
also demonstrated the benefits of WT (wavelet trans-
form) combined with the ANFIS (WT–ANFIS), ANN 
(WT–ANN) and MLR (WT–MLR) models for ET forecast-
ing of three climatic stations chosen from three different 
climates of Iran. Using daily weather data of selected sta-
tions, the authors found that the WT–ANN outperformed 
the other wavelet-based hybrid models (i.e. WT–ANFIS 
and WT–MLR). Gocić et al. (2015) combined the firefly 
algorithm with SVM (SVM–FFA) for predicting ET in 
Serbia. The authors compared the proposed SVM–FFA 
model with WT–SVM, SVM and ANN. They found that 
the SVM–FFA and WT–SVM models provided better pre-
diction results in comparison with stand-alone ANN and 
SVM computational methods. Shamshirband et al. (2016) 
applied a novel heuristic method called cuckoo search 
algorithm (CSA) for optimizing the ANN and ANFIS 
methods in estimation of ET at 12 climatic stations in 
Serbia. The prediction results of designed hybrid meth-
ods (ANN–CSA and ANFIS–CSA) are compared with 
stand-alone ANN and ANFIS models. Also, the authors 
compared the proposed methods with the Hargreaves and 
Priestley–Taylor empirical models.

Available literature indicates that hybrid heuristic soft 
computing methods generally provided better prediction 
accuracy compared to stand-alone soft computing models. 
The literature surveys point out that the application of new 
hybrid soft computing methods is vital to improve predic-
tion accuracy and minimize the method’s error. For this 
reason, evolutionary neuro-fuzzy systems are proposed in 
this research for an effective evapotranspiration model-
ling. Genetic algorithm (GA) and particle swarm optimi-
zation (PSO) heuristic algorithms are used to optimize 
the parameters of ANFIS models and to develop hybrid 
soft computing methods, ANFIS–PSO and ANFIS–GA. 
Also, ET modelling using classification and regression 
tree (CART) model is very scarce, and this study looks 
to be the first that compares the accuracy of CART with 
the ANFIS–PSO, ANFIS–GA, ANFIS and ANN models 
in ET prediction.
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Materials and methods

Used data

The study uses monthly weather data, solar radiation, rela-
tive humidity, air temperature and wind speed, from two 
automated climatic stations, Antalya (long. of 30°44′00″E, 
lat. of 36°42′00″N and altitude of 64) and Isparta (long. of 
30°34′00″E, lat. of 37°47′00″N and altitude of 997) operated 
by the TMO (Turkish Meteorological Organization). The 
study area and stations’ location are illustrated in Fig. 1. The 
stations are situated in the Mediterranean region having a 
Mediterranean climate (dry summers and mellow to cold, 
wet winters). The temperature in winter has its highest value 
as 24 °C, and in summer season, it can increase to 40 °C.

In the study, data (25-year monthly values for the period 
of 1982–2006) were divided into two parts as training (80% 
of the aggregate data) and testing (20% remaining part). 
The brief statistical properties of the used data are summed 
up in Table 1. It is evident from the average statistics that 
the Antalya has a higher temperature, solar radiation, wind 
speed and reference evapotranspiration compared to Isparta.

Used methods

Adaptive neuro‑fuzzy inference system (ANFIS)

The ANFIS interface represents a multilayer model initially 
proposed by Jang (1993) that trains input and output vari-
ables and affords estimations agreement between input and 
output in the most efficient way. There are several fuzzy 
interfaces system (FIS) reported in the literature, which has 
different performance and as results in significant differences 

in the results among them. The FIS is categorized into three 
main groups: Mamdani’s interface system (Mamdani and 
Assilian 1975), which consists of a system that considered 
inputs and outputs as a fuzzy set. This system is the most 
often applied; Tsukamoto’s system (Tsukamoto 1979), 
which is not very commonly used; finally, Sugeno’s FIS, 
which considers the input data as a fuzzy set, while the out-
puts as a constant coefficient of a linear function (Takagi and 
Sugeno 1985). The fact of being compact and very efficient 
in terms of computational time makes the Sugeno’s system 
very commonly used also (Nourani et al. 2014; Zhu et al. 
2019; Adnan et al. 2019c; Alizamir et al. 2020a). ANFIS 
applied in this study consists of a network structure which 
uses Sugeno inference system (S-FIS) and supported from 
the artificial neural network (ANN) in the training phase of 
the input data (Fig. 2).

The ANFIS interface is composed of several nodes con-
nected through directional links. Indeed, the combination 
of the fuzzy-based rules systems with the high performance 
regarding the learning capability of the ANN has made the 
ANFIS interface more robust and popular in modelling dif-
ferent problems (Tabari et al. 2012). ANFIS is more com-
monly used in solving complicated problems characterized 
by significantly high nonlinearity (Rezakazemi et al. 2017). 
Training of the data sets is done based on the fundamental 
learning rule backpropagation approach, which tends to min-
imize the error computation of the input data set (Cobaner 
2011). In addition to the binary variables, a set of linguistic 
variables were used to design the fuzzy system. Afterwards, 
several IF/THEN rules were used to characterize the rela-
tionship between fuzzy variables (Nourani et al. 2014). In 
the case of the Sugeno’s system, which is the system used in 
this study, the conditional rules IF/THEN can be expressed 
as follows (Sayed et al. 2003):

Fig. 1   The study area and sta-
tions’ location (adapted from 
d-maps.com)
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where A1 and B1 represent the fuzzy sets in the originator, 
and pi , qi and ri are the design parameters defined during 
the training process of the data set. As shown in Fig. 2, the 
architecture of the ANFIS was designed considering five lay-
ers, and detailed explanation for each layer and the equations 
used can be found in the literature (Tabari et al. 2012). The 
hybrid learning algorithm used in the ANFIS architecture 

(1)Rule1 ∶ if x is A1 and y is B1, then z1 = p1x + q1y + r1

(2)Rule2: if x is A2 and y is B2, then z2 = p2x + q2y + r2

applies a combination of gradient descent, in order to iden-
tify the proposition parameters, while the least-squares 
method is applied to allocate the linear consequent param-
eters. The training algorithm makes the ANFIS outputs with 
the lowest error (Jang 1993; Nourani et al. 2014).

ANFIS–PSO  In this ANFIS model, a particle swarm opti-
mization (PSO) was used. This optimization algorithm is 
very efficient in case of discrete data type (Nourani et  al. 
2014). This combination may be considered as a surrogate 
approach. So, after determining the design variables, the 
objective function and constraints, ANFIS was mainly used 

Table 1   Brief statistics for the 
climatic data of Antalya and 
Isparta stations

Station Data set Unit Avr. Min. Max. SD Skewness

Antalya Training data T °C 19.52 7.3 32.25 7.33 0.03
SR cal/cm2 412 120 679.2 154 − 0.09
RH % 57.0 47.5 68.5 3.81 0.25
WS m/s 2.64 0.9 4.9 0.69 0.008
ET0 mm day−1 5.64 1.16 10.4 2.1 0.16

Testing data T °C 20.1 9.7 31.85 7.27 0.1
SR cal/cm2 361 1268 595.6 145 − 0.08
RH % 52.9 45.5 67 4.16 0.93
WS m/s 2.63 1.8 4.9 0.49 1.87
ET0 mm day−1 5.54 2.67 9.28 1.82 0.15

Isparta Training data T °C 12.3 − 2.3 25 7.71 − 0.12
SR cal/cm2 318 112 657 117 0.02
RH % 60.0 46 72 5.08 − 0.31
WS m/s 1.84 0.6 3.6 0.5 0.42
ET0 mm day−1 3.53 0.69 6.79 1.51 − 0.02

Testing data T °C 12.6 − 0.9 25.2 8.04 − 0.05
SR cal/cm2 355 148 638 141 0.21
RH % 63.4 52.5 72.5 2.57 0.006
WS m/s 1.43 0.8 2.5 0.42 0.68
ET0 mm day−1 3.43 1.03 6.43 1.54 0.11

Fig. 2   The fundamental struc-
ture of the ANFIS interface
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to search the space, while PSO approach as an optimization 
algorithm can be employed to establish the efficient way to 
find the best salutation (Kennedy and Eberhart 1995). PSO 
is a stochastic optimization method which consists of select-
ing a specific population or particles in given space com-
pletely in a random way while subsequently looking for the 
optimal solution (Rezakazemi et  al. 2017). There are sev-
eral applications of ANFIS–PSO. Basser et al. (2015) used 
ANFIS–PSO to predict the optimal parameters to mitigate 
scouring depth in existing spur dykes, while Djavareshkian 
and Esmaeili (2014) applied ANFIS–PSO to optimize the 
operation of the submerged hydrofoil. ANFIS–PSO inter-
face is also used to solve nonlinear problems related to the 
nanomaterial’s components (Rezakazemi et al. 2017).

ANFIS–GA  In ANFIS–GA model, genetic optimization 
algorithm (GA) is incorporated. The GA consists of the 
inset of chromosome combinations, which evaluates the 
results obtained in each computational step by seeking the 
optimal solution possible (Termeh et al. 2018). Differently, 
from PSO, GA can provide relatively large solution spaces 
since it utilizes a probabilistic transition and not determin-
istic rules (Rezakazemi et al. 2017). The GA interface uses 
variables that represent real values or binary coding. The GA 
optimization procedure is associated with several processes 
as follows: population initialization, selection, crossover 
and mutation (Rezakazemi et al. 2017). GA has become a 
prevalent optimization method in different areas. Termeh 
et  al. (2018) applied GA in flood susceptibility mapping; 
they found that this algorithm among the other advantages 
reveals high accuracy. Rezakazemi et al. (2017) used GA to 
assess the hydrogen mixed matrix membrane considering 
several operating conditions. While Khosravi et al. (2018) 

applied GA to predict potential solar radiation to support 
solar-based energy systems, all the studies above found that 
the GA interface poses the ability to provide efficient com-
putation time and high accuracy.

Artificial neural network (ANN)

Artificial neural network (ANN) consists of imitating the 
biological nervous system, although much of the biologi-
cal details are neglected. ANNs are composed of several 
massively processing elements organized in parallel systems 
connected by using variable weights. Each layer is con-
nected to the other layers through interconnection weights, 
W  . The methodology applied for tuning the weights based 
on backpropagation process (Rumelhart et al. 1986). The 
backpropagation network is by far the most commonly used 
paradigms in ANNs (Nourani et al. 2014; Kisi et al. 2017; 
Alizamir et al. 2018; Kisi and Alizamir 2018). The process-
ing elements that composed the ANNs are called neurons. 
The basic structure of the ANN interface is shown in Fig. 3. 
The neural network layers i , j and k are interconnected 
with weights Wij and Wjk between layers of neurons. Fur-
ther details and explanation about the training process of the 
input data may be found at Kisi and Öztürk (2007).

Classification and regression tree (CART)

Classification and regression tree (CART) is based on a set 
of decision trees on the predictor variables which grew by 
repeatedly stratifying the data set into consecutively smaller 
subgroups (Breiman 1984). CART is a predictive tree model 
based on the recursive approach in data mining models that 
constructs the structure of the given data set which generates 

Fig. 3   The ANN interface used 
for the ET0 estimation
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decision rules for predicting a categorical variable (Choubin 
et al. 2018; Kisi et al. 2020; Alizamir et al. 2020a, b). Con-
sidering the principle of homogenization or less variability 
among the nods, the splitting procedure of the variables is 
made until the best split is reached (Breiman 1984).

CART algorithm has also become commonly applied in 
different fields. Choubin et al. (2018) have applied CART to 
predict sediment transport in alpine rivers; they found that 
CART has relatively high accuracy. Ebrahimy and Azad-
bakht (2019) have applied CART to predict land surface 
temperature over several different areas. Also, Juntakut et al. 
(2019) have used CART to predict the long-term contamina-
tion of the groundwater in Nebraska State. They concluded 
that CART was capable of differentiating the weight of sev-
eral physical factors in the water contamination.

Application and results

The ability of two evolutionary neuro-fuzzy systems: 
ANFIS–PSO and ANFIS–GA, are investigated in model-
ling reference evapotranspiration (ET0) using various input 
combinations of climatic data and compared with the classic 
ANFIS, ANN and CART methods. For the control param-
eters, different values were tried for each method. For the 
ANFIS–PSO, 500 iterations were used, and population, iner-
tia weight, personal learning coefficient and global learn-
ing coefficient were set to 45, 1, 1 and 2, respectively. For 
the ANFIS–GA, number of iterations, population, mutation 
and crossover percentages were set to 400, 55, 0.7 and 0.4, 
respectively. For the ANFIS, subtractive clustering with 150 
iterations and 0.35 radii was used. For the ANN, Bayesian 
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Fig. 4   The observed and estimated ET0 values by the best models in the test period of Antalya Station: a input combination (i), b input combina-
tion (ii), c input combination (iii) and d input combination (iv)
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regulation was used, and the optimal number of neurons in 
the hidden layer (HL) was found to be 10. The following 
evaluation metrics are used to select the best models:

where N = number of data, ETm = mean FAO 56 PM ET0, 
ETip = predicted ET0, and ETim = FAO 56 PM ET0.

Table 2 compares the test statistics of the ANFIS–PSO, 
ANFIS–GA, ANFIS, ANN and CART models for different 

(3)

Root mean square error (RMSE) =

�

∑N

i=1

�

ETim − ETip

�2

N

(4)

Nash − Sutcliffe efficiency (NSE) = 1 −

∑N

i=1

�

ETim − ETip

�2

∑N

i=1

�

ETim − ETm

�2

input combinations of Antalya Station. Among the one 
input combinations, T variable provided the best statistics 
for all methods. Out of two-input models, the model with 
SR and RH inputs had the lowest RMSE and the highest 
NSE and R2 for the ANFIS–PSO, ANFIS–GA, ANN and 
CART methods. Three-input ANFIS–PSO, ANFIS, ANN 
and CART models with T, SR and WS variables performed 
better than the corresponding models with T, SR and RH 
variables. It is apparent from Table 2 that the models with 
whole input variables (T, SR, RH and WS) outperformed 
the other models for all methods. The ANFIS–PSO and 
ANFIS–GA with full climatic inputs have almost the 
same accuracy, and they have better statistics than the 
other models. The relative RMSE differences between the 
ANFIS–PSO and ANFIS, ANN, CART are 40%, 32% and 
66%, respectively.
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Fig. 5   The observed and estimated ET0 values by the best models in the test period of Isparta Station: a input combination (i), b input combina-
tion (ii), c input combination (iii) and d input combination (iv)
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Figure 4 illustrates the observed and estimated ET0 val-
ues by the best models in the test period for the Antalya 
Station. It is clearly observed that the ANFIS–PSO and/or 
ANFIS–GA models generally have less scattered estimates 
compared to other models. It is also apparent from the scat-
ter graphs that all the methods produce less scattered esti-
mates by increasing the number of input variables.

Test results of the employed methods are summed up 
in Table 3 for estimating ET0 of Isparta Station utilizing 
various climatic input variables. In this station, the models 
with SR variable have the best statistics among the one input 
combinations. Similar to the Antalya Station, here also the 
SR, RH and T, SR, WS combinations generally provided 
the most accurate estimates for two- and three-input models, 
respectively. Among all input combinations, the models with 
full climatic input variables performed the best. The best 
ANFIS–GA model outperformed the ANFIS–PSO, ANFIS, 
ANN and CART with respect to RMSE, NSE and R2. The 

relative RMSE differences between the ANFIS–GA and 
ANFIS–PSO, ANFIS, ANN, CART are 5%, 14%, 44% and 
67%, respectively. It is clear from Tables 2 and 3 that the 
evolutionary algorithms, PSO and GA, improve the classical 
ANFIS model in both stations, improvement in RMSE by 
about 40% and 14% for the Antalya and Isparta stations. In 
Isparta Station, SR seems to be more effective on ET0 com-
pared to Antalya. The RH and WS variables produce worse 
results compared to Isparta. One reason for this may be the 
fact that these variables have higher skewed distribution in 
Antalya than the Isparta (see skewness values of the SR and 
RH data in Table 1).

The test results of the employed models are graphically 
compared in Fig. 5 for the Isparta Station. Here also, the 
better estimates are obtained by increasing input numbers, 
and the models with full inputs (T, SR, RH and WS) have 
the best estimates among the input combinations tried. 
Both ANFIS–PSO and ANFIS–GA have less scattered 

(a)

(b)

Fig. 6   R2 values of the best models for different input combinations: a Antalya Station, b Isparta Station
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estimates than the ANFIS, ANN and CART models. 
CART model has the worst estimates among the models 
applied. Figures 6, 7 and 8 compare the R2, RMSE and 
NSE values of the five optimal models with different input 
combinations for the Antalya and Isparta stations, respec-
tively. It is clearly observed that the ANFIS–PSO and/or 
ANFIS–GA generally have the highest R2 and NSE and the 
lowest RMSE compared to other three methods.

Overall, the ANFIS–PSO and ANFIS–GA models per-
form superior to the other models in estimating monthly 
ET0. PSO and GA are heuristic methods and have some 
advantages compared to classical training algorithms such 
as gradient descent and least square. These belong to a 
class of search methods so that they have a notable bal-
ance between exploitation of the optimal solutions and 
reconnaissance of the search space. Stochastic search and 
directed search are combined in such methods. Therefore, 
they are more robust compared to directed search tech-
niques and capable of finding global optimum without 
local optima problem (Mantoglou et al. 2004; Karterakis 
et al. 2007).

Conclusion

The accuracy of two evolutionary neuro-fuzzy methods 
was investigated in the presented study in modelling refer-
ence evapotranspiration. Their results were compared with 
the classic ANFIS, ANN and CART models. Various input 
combinations of climatic data obtained from two stations; 
Turkey were utilized for the employed models. Evolution-
ary ANFIS–PSO and/or ANFIS–GA produced better ET0 
estimates than the ANFIS, ANN and CART models with 
the relative RMSE differences of 40%, 32% and 66% for one 
station (Antalya) and 14%, 44% and 67% for the other station 
(Isparta), respectively.

Comparison of various climatic inputs revealed that the 
estimation accuracy of the applied models increases by 
including more input variables and four inputs (average tem-
perature, solar radiation, relative humidity and wind speed) 
produced the best estimates for each method. The compari-
son also indicated that solar radiation has more influence on 
ET0 in Isparta, while including relative humidity and wind 
speed in inputs makes models less accurate in Antalya.

(a)

(b)

Fig. 7   RMSE values of the best models for different input combinations: a Antalya Station, b Isparta Station
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