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Abstract
Soil erosion is one of the most leading environmental and public health problems in the world which dislodges consider-
able volumes of soil annually. In order to control soil erosion, several soil factors should be taken into account. Regarding 
the importance of soil properties on erosion occurrence, it is necessary to focus on soil properties. The aim of this study is 
to evaluate the effect of physical parameters that consist of sand %, silt %, clay %, SP % and stone % along with hydraulic 
properties including theta s, theta r, alpha n and Ks (cm/day) on the amount of soil erosion in Emamzadeh watershed. The 
above-mentioned factors were optimized using response surface methodology. The soil texture in the study area is mostly 
silty clay loam, and the main soil orders are Entisols and Inceptisols. Moreover, the main land use in the study area is for-
est–rangeland. The results proved that both physical and hydraulic valuables illustrated a significant effect on all of the 
independent parameters. The optimized values of different physical parameters were 60.241 for sand, 14 for silt, 41.025 for 
clay, 58.729% for SP and 3.83% for stone. A theta r of 0.09, theta s of 0.457 alpha of 0.014, n of 1.3 and Ks of 46.01 were 
found to be optimal values. The results of this study indicated that at optimal studied parameters, the values of the soil erosion 
before and after application of management scenarios were found to be 11.537 and − 2.253, respectively. Results show that 
both physical and hydraulic parameters have significant effects at the 1% level on the soil erosion before and after application 
of management scenarios. The obtained results could assist policy-makers with decisions aimed at minimizing soil erosion 
in this watershed. In summary, using the simulation–optimization techniques helps to evaluate the effect of management 
scenarios, then select and apply the best one to minimize the soil erosion outcomes.

Keywords  D-optimal design · Management scenarios · Optimization · Physical and hydraulic parameters · Response 
surface methodology (RSM)

Introduction

Soil as one of the most important sources of production has 
been demolished with population growth and industrializa-
tion of the world (Meliho et al. 2019). Land degradation 
through human activities such as deforestation, overgraz-
ing, tillage operations, inappropriate agricultural practices 
and land-use changes has negative impacts on soil quality 
indices and soil healthy (Schole et al. 2018; IPBES 2018). 
Soil erosion by water, as the most prevailing factor of soil 

degradation, has several outcomes, including mitigation of 
agricultural productivity, water quality–quantity and envi-
ronmental impacts (Park et al. 2011; Xu et al. 2013; Xiong 
et al. 2019). Therefore, effective planning and implemen-
tation of soil erosion monitoring program are needed for 
understanding and estimating of soil erosion severity (Mon-
dal et al. 2017; Nasiri et al. 2017). Moreover, in order to 
decrease the risk of soil erosion should be considered con-
venient strategies in the management plan (Sherriff et al. 
2018). However, despite widespread researches on soil ero-
sion and conservation (Mhazo et al. 2016), still, there is 
not a precise technique for soil erosion assessment in the 
watersheds; this means that, given the importance of the 
occurrence of erosion processes and the complexity of their 
mechanisms, it is essential to use new software and tech-
niques with the ability to monitoring complex processes 
(Diodato et al. 2012; Corella et al. 2019). A convenient tool 
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to estimate soil erosion–deposition and to understand the 
relations between different effective parameters on soil ero-
sion is the application of soil erosion models. Soil erosion 
models are beneficial tools for analyzing soil erosion pro-
cesses in the watersheds (Laflen and Flanagan 2013). Qian 
et al. (2014) analyzed the relation between water and soil 
erosion using linear and quadratic regression models and 
concluded that the runoff rate had a significant linear rela-
tionship with the rate of sediment loss. The outputs of soil 
erosion models are efficient tools which ultimately can be 
used to provide different scenarios for selecting and imple-
menting a best management practice (Argent et al. 2016). 
Well-developed and properly calibrated models provide 
reasonable estimations of soil erosion risks (Giannecchini 
2006). Generally, using simulation–optimization techniques 
are effective tools for planners, managers and executive units 
which is convenient in achieving management goals. In this 
regard, should provide backgrounds and contexts for best 
application of these techniques in order to eventually adopt 
appropriate management scenarios (Batista et al. 2019).

Regarding the complexity of soil erosion mechanisms 
and due to deficiency of appropriate management strategies, 
it is necessary to apply new techniques for simulation and 
optimization of soil erosion processes (Kirkby et al. 2008; 
Arnold et al. 2015; Shojaei et al. 2019). Response surface 
methodology (RSM) is an appropriate technique for moni-
toring the complicated processes in the watersheds (Chan-
dramohan et al. 2015). The main advantage of RSM is the 
reduction of experiments to evaluate multiple parameters 
and their interactions (). Another advantage of this tech-
nique is the simplification of complex processes, scrutiniz-
ing continuous variables, elimination of problems related to 
the one-factor and determination of response’s sensitivity to 
each factor. The RSM is an efficient experimental strategy to 
run optimal conditions for multivariable systems (Long et al. 
2019). Indeed, the RSM by providing response levels along 
with appropriate statistics and ultimately by optimizing them 
allows selection of the best set of input parameters based on 
the research objectives (Sharma et al. 2019). The RSM is a 
collection of useful statistical and mathematical techniques 
for developing, improving and optimizing processes. It also 
has essential applications in the design, development and 
formulation of new products, as well as in the improvement 
of the existing product designs (Tan et al. 2017). The pri-
mary purpose of the RSM is to optimize the response (out-
put variable), which is influenced by several independent 
variables (input variable) (Kumar et al. 2016). Therefore, 
according to importance of soil against erosive forces, it 
is necessary to use RSM technique for optimization and 
ultimately selection of the best management practices. The 
specific objective of our study was to optimize soil erosion 
using response surface methodology based on soil physical 
and hydraulic parameters which are effective on soil erosion.

Methods and material

Location of the study area

The study area is placed in the northeast of Khuzestan 
Province, Iran country, with the geographical coordination 
of 31° 18′ to 31° 33′ N and 50° 5′ to 50° 13′ E (Fig. 1). The 
area of this watershed is approximately 104 km2 including 
six hydrological parcels. In this area, the total annual pre-
cipitation is around 712 mm, and the average temperature 
is 23 °C. Furthermore, the soil texture in the study area is 
mostly silty clay loam (SiCL), and the main soil orders are 
Entisols and Inceptisols. The main land use in the study 
area is forest–rangeland.

Soil sampling, measurements and analysis

A composite sample (0–20 cm) was obtained by mixing soil 
from five separate sampling points in the watershed. Soil 
samples were air-dried at 20 °C in the laboratory. After-
ward, soil texture was measured using hydrometric method. 
Regarding the heterogeneity of soil texture in different parts 
of study area, soil samples were collected and analyzed. 

Fig. 1   Location of study area on true color composite of Landsat7 
ETM+ image acquired in March 2018
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In order to measure stone (%) were collected all the stone, 
gravel and pebble in the 1 × 1 square meter area on the 
ground, then weighted. Using these 1 × 1 m2 plots in differ-
ent places, we calculated the average amount of stone on the 
ground in different parcels of watershed. Cation exchange 
capacity (CEC) and exchangeable bases were measured by 
the ammonium acetate method (pH = 7) (Thomas 1982). 
The soil organic matter (SOM) was measured using Walkley 
and Block method. Actually, soil organic matter is a key fac-
tor to prevent the soil against erosive factors. The saturation 
percentage (SP) is an index of soil texture; this parameter 
was measured based on the difference of the soil weight in 
the dry condition and the saturated condition. For all the soil 
samples, this parameter was measured three times to find an 
acceptable average. Albedo coefficient was calculated using 
the climate data, solar radiations and surface characteris-
tics. This parameter depends on solar radiations and surface 
characteristics. For the white and flat surfaces, the Albedo 
coefficient has the highest amount. Compute theta r, theta 
s, alpha, n and KS through RETC software.

Soil erosion simulation using the WEPP model

The Water Erosion Prediction Project (WEPP) model is 
based on surface water flow hydrology and erosion processes 
which provide the possibility of estimating the spatial and 
temporal patterns of soil erosion and sedimentation in the 
watersheds (Boll et al. 2015; Brooks et al. 2016). In the 
WEPP model, a watershed is defined as one or number of 
hillslopes, which have been drained into one or more chan-
nels (Flanagan and Nearing 1995; Flanagan et al. 2013). In 
this study, the climate simulation was performed using CLI-
GEN module (Kinnell et al. 2018; Anache et al. 2018) with 
data obtained from Izeh synoptic station. Moreover, soil, 
topography and management layers were defined for each 
hillslope (Schaap and Leij 2000; Tiwari et al. 2000). Ulti-
mately, the studied watershed was simulated by hillslopes 
and the hydrographical network to run the model. In this 
study, in 17 hydrological units, the sediment load was con-
verted to soil erosion values in ton/ha using the relationship 
between sediment load, sediment delivery ratio (SDR) and 
soil erosion described in PSIAC (1968) and modifications 
applied on PSIAC (MPSIAC) by Johnson and Gebhardt 
(1982). Sediment delivery ratio for each hydrological unit 
calculated based on the unit area (in mi2) as above men-
tioned references (Table 1). Hydrological unit sediment 
production was obtained from the ministry of agriculture’s 
hydrometric/sediment gauging stations (2009).

Response surface methodology

The second part of this study is the evaluation and optimiza-
tion of physical and hydraulically parameters effective on 

soil erosion, which was performed using the RSM method. 
Design-Expert version 10 was utilized to generate a regres-
sion model and to perform the statistical analysis. The RSM 
shows the general form of the statistical model for predicting 
the response or dependent variable (Y) based on independent 
variables ( x1, x2,… , xk ) based on Eq. (1). The dependent 
variable is response, and independent variable acts as input 
factors (Muthusamy et al. 2019; Montgomery and Anderson-
Cook 2009).

f is the response function, which will be finally optimized 
by the software, while ɛ shows the variables (error) that are 
effective in y but are not included in f (Najafi et al. 2015). 
The general form of the quadratic polynomial model is 
expressed by Eq. 2:

where Y is the response. α0, �j , �jj and αjl are regression 
coefficients for intercept, linear, quadratic and interaction 
coefficients, respectively (k = 8 levels for each factor). xj and 
xl are independent variables and ɛ unpredicted error (De 
Oliveira Faber and Ferreira-Leitão 2016).

Response surface methodology is a collection of math-
ematical and statistical techniques based on the fit of a poly-
nomial equation to the experimental data, which predict the 
process and optimize the levels of independent variables 
to attain the best level of dependent variables (Keshtegar 
et al. 2016; Bezerra et al. 2008). The RSM includes three 
parts: designing, analysis and optimization (Pattanaik and 
Rayasam 2018). In the first section, were determined the 
independent and dependent variables in two levels (− 1 and 
+ 1) for software, and in the next sections, data analysis 
and optimization were performed (Gao et al. 2016). In the 
analysis section, there is a possibility to choose PTF (pedo-
transfer function) for data analysis and a section dedicated 
to the analysis of variance called ANOVA1 (Rao and Ven-
kaiah 2015). Then, in the next section, the software shows 

(1)y = f
(
x1, x2,… , xk

)
+ �

(2)Y = 𝛼0 +

k∑
j=1

𝛼jxj +

k∑
j=1

𝛼jjx
2

j
+

∑
j<1

k∑
l=2

𝛼jlxjx1 + 𝜀

Table 1   The measured erosion, WEPP predicted and measured SDR 
for hydrological units

N Overall 
SDR

Mean of 
predicted 
erosion 
(ton/ha)

Mean of 
predicted 
erosion 
(ton/ha)

Mean 
hydrologi-
cal units 
SDR

Mean hydro-
logical units 
area

17 30.68 23.04 29.27 61.98 6.15

1  Analysis of variance.
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the relationship between independent and dependent vari-
ables in a way 2D and 3D graphs, contour graphs, one-factor 
graphs and interaction graphs (Podder and Majumder 2015). 
First, each parameter must be defined in the upper limit and 
lower limit for the software. Then, according to the nature of 
each parameter, the goal of optimization has been defined. 
Sometimes, the goal of optimization somehow was adjusted 
that optimization process doing out of this range. But gener-
ally, there are five goals in the optimization process, which 
include: maximize, minimize, target, in rang and equal to 
(Kumar et al. 2018). In the optimization section, there is a 
section called importance, which the value of each optimi-
zation parameters from 1 to 5 plus is determined according 
to the optimization goal. Another part of the optimization is 
related to the solutions step that desirability function shows 
the probability of reaching optimization paths to the whole 
goal of research (Dinarvand et al. 2017). Desirability is a 
goal function that ranges from zero to one at the goal. The 
numerical optimization finds a point that maximizes the 
desirability function. The characteristics of a goal may be 
shifted by regulating the weight or significance. For several 
responses and factors, all goals combine into one desirabil-
ity function. Myers and Montgomery (Chabbi et al. 2017) 
explained a multiple response method called desirability. 
The method using an objective function, D(X), is called the 
desirability function. The desirable range for each response 
(di) is from zero to one. The concurrent objective function is 
a geometric mean of all converted responses (Eq. 3):

n is the number of responses. If any of the responses 
was outside of their desirability range, the overall function 
becomes zero. For synchronic optimization, each response 
must have a low and high value specified to each goal. On 
the worksheet, the “goal” field for responses must be one of 
five choices: “none,” “maximum,” “minimum,” “target,” or 
“in range.” Factors will always be included in the optimi-
zation, at their design range by default, or as a maximum, 
minimum of target goal. For simultaneous optimization, 
all goals have been combined into a desirability function, 
which is expressed by Eq. (4).

The goals of minimum and maximum for defining desir-
ability (di) were obtained using Eqs. (5) and (6), respectively.

(3)D =

(
d1 × d2 ×⋯ × dn

) 1

n =

(
n∑
i=1

di

) 1

n

(4)D =

��
d1
�P1

�
d2
�P2

…

�
dn
�Pn

� 1∑
Pi

=

�
n�
i=1

dPi
i

� 1∑
Pi

.

RSM for soil erosion modeling and optimization

The simulation and optimization processes using RSM 
consist of six consecutive steps (Fig. 2): (1) screening of 
independent factors and defining dependent factors, (2) 
selecting the strategy for experimental design, (3) running 
the experiments and measuring the results, (4) fitting and 
diagnosing mathematical model, (5) confirming the model 
using ANOVA and graphs and (6) determination of optimal 
conditions (Karimifard and Moghaddam 2018). In this study, 
ten parameters (independent variables) were defined at mini-
mum (− 1) and maximum (+ 1) levels for software (Table 2). 
Two responses in the output template (R1 = amount of soil 
erosion and R2 = soil erosion amount after management) 
were determined. The type of applied management scenario 
was a revision of crop cover and exclosure in the watershed. 
In the first step, a design for processing was selected. Then, 
the amounts of each input parameter (independent variables) 
were defined at minimum (− 1) and maximum (+ 1) levels. 
In the next step, the processing was begun after selecting the 
PTF and process order or regression models (mean, linear, 
2FI, quadratic and cubic). In the last section of this stage, the 
software was shown the relationships between parameters 
as individually and interacting effect on the dependent vari-
able (soil erosion) in the form of 2D and 3D graphs. In the 
optimization section, the optimization process was accom-
plished for both of the responses in two ways numerical and 
graphical that different stages of optimization and response 
parameters using RSM are shown (Fig. 2). 

Results and discussion

Statistical analysis of RSM parameters and model 
selection

Our results illustrated a significant relationship between 
all evaluated parameters and soil erosion, before and after 
application of management scenarios. Regarding the possi-
bility of RSM technique to select the best model among all 
assessed models using statistical parameters, the quadratic 

(5)d =

⎧
⎪⎨⎪⎩

0 if: yi ≤ ymin

i�
yi−y

min

i

ymax

i
−ymin

i

�wi

if: ymin

i
≤ yi ≤ ymax

i

1 if: yi ≥ ymax

i

(6)d =

⎧
⎪⎨⎪⎩

1 if: yi ≤ ymin

i�
ymin

i
−yi

ymax

i
−ymin

i

�wi

if: ymin

i
≤ yi ≤ ymax

i

0 if: yi ≥ ymax

i
.
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model was suggested as the best model (Table 3) (select 
the highest-order polynomial where the additional terms 
are significant and the model is not aliased). Based on the 
statistical analysis, the quadratic model was selected as the 
best model; therefore in the ANOVA section, all analyses 
were performed with this selected model. The value of 
“Prob2 > F” was smaller than 0.05, which defined as the α 
value of the test with a confidence interval of 95% (Table 4). 
This means that the quadratic model is significant and inde-
pendent variables (physical and hydraulic properties of soil) 

influenced soil erosion. Also, the F-value of 99.30 implies 
that the model is significant. The values of “Prob > F” less 
than 0.05 indicate that our model is significant, whereas 
the values more than 0.10 stated that the model is not sig-
nificant. Moreover, the R-square of the model with df equal 
to 65 (df = n − 1) was greater than 0.99, and the difference 
between R-square and adjusted R-square was smaller than 
0.01, which illustrated the high accuracy of the obtained 
model. The “Adeq3 Precision” measures the signal to noise 
ratio, and a ratio greater than 4 is desirable (Stat-Ease., 
1998). Our results showed that this ratio was 23.73 which 
confirmed an adequate signal; therefore, this model can be 
used to navigate the design space. Ultimately based on all 
above mentioned statistical parameters, the optimization of 
effective parameters on soil erosion was performed using 
the quadratic model that suggested with the RSM. There-
fore, using the RSM technique (Bezerra et al. 2008), the best 
model with the highest accuracy for simulation–optimization 
process was selected.

Interactive effects of sand and clay on soil erosion 
using RSM

The range of clay content was from 6 to 46%, and for sand 
content was 4 to 64%; therefore, results illustrated that mini-
mum amount of soil erosion occurred in the maximum lev-
els of both clay and sand contents which soil erosion was 
equal to 15.4 ton/ha (Fig. 3a). Also, the maximum amount 

Fig. 2   Steps of experimental 
design in the response surface 
methodology

Table 2   The D-optimal design of the independent variables

Parameters Coded values

Min (− 1) Max (+ 1)

Physical
 Sand − 1.000 = 6.0000 1.000 = 64.0000
 Silt − 1.000 = 14.0000 1.000 = 76.0000
 Clay − 1.000 = 6.0000 1.000 = 46.0000
 SP − 1.000 = 31.6000 1.000 = 68.1000
 Stone − 1.000 = 0.0900 1.000 = 5.2000

Hydraulic
 Theta r − 1.000 = 0.0339 1.000 = 0.0974
 Theta s − 1.000 = 0.3856 1.000 = 0.4874
 Alpha − 1.000 = 0.0052 1.000 = 0.0291
 n − 1.000 = 1.2767 1.000 = 1.6799
 KS − 1.000 = 6.8400 1.000 = 46.0100

2  Probability. 3  Adequate.
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of soil erosion (equal to 24 ton/ha) was at the minimum level 
of clay content and the sand content between 40 and 50% 
(Fig. 3c). According to the high amount of sand and increas-
ing clay content (Fig. 3a), it was expected that soil erosion 
was reduced from 22.8 to 15.4 ton/ha. The main reason for 
this result is the meaningful effect of clay and associated 
organic matter content on soil aggregation compared to silt 
and sand particles (Kumar et al. 2016; Mangalassery et al. 
2019). Therefore, in the soil conservation plan, one of the 
most important parts is the soil properties.

Moreover, according to Russell’s theory, clay particles 
owing to small size with high cation exchange capacity and 
high specific surface area, therefore, enhance soil aggrega-
tion and diminish the soil erosion potential (Shaikh et al. 
2017; Spagnoli and Shimobe 2019). However, based on the 
existing management situations in the studied watershed and 
the interaction effects of sand and clay content, the soil ero-
sion was around 15 ton/ha. To evaluate the effectiveness of 
management scenarios using WEPP model, the effect of the 
applied management strategies including revision of crop 
cover (RC) and exclosure (EX) was assessed as response 
2 (R2) using RSM. Results showed that after the applica-
tion of management scenarios as R2, the soil erosion was 
significantly decreased to around 1–2 ton/ha (Fig. 3b). This 
meaningful declining of soil erosion clearly confirmed the 
positive effects of convenient management strategies on soil 
preserving against erosive forces. Feng et al. (2006) showed 
that the establishment of a vegetation riparian buffer regard-
ing the crop cover revision is an effective scenario to reduce 
the on-site and off-site effects of soil erosion. Indeed, the 
riparian buffer is a permanent vegetation cover which is 
located between erosion site and water bodies with numer-
ous capabilities to mitigate soil erosion potential. Also, as 
Fig. 3b illustrates regarding the effectiveness of the applied 

management scenarios, the amount of deposited soil was 
− 0.06 ton/ha, which means the dramatical effects of the 
applied management scenarios on soil erosion controlling 
in the watershed. Results confirmed that the application of 
convenient management scenarios is able to conserve soil 
against erosive agents, therefore to mitigate on-site and off-
site effects of soil erosion. The evaluated management strate-
gies in our study were non-structural management scenarios 
which covered the purposes of sustainable management.

Interactive effects of sand and Ks on soil erosion 
using RSM

Our results depicted that by increasing the sand content 
and saturated hydraulic conductivity (Ks), the soil erosion 
was at the minimum level, which was equal to 21.7 ton/
ha (Fig. 4a). As Fig. 4a shows by decreasing of sand con-
tent and Ks, the soil erosion potential was enhanced to 
26 ton/ha while when the Ks was between 10 and 25 cm/
day, the soil erosion was at the lowest amount (22 ton/
ha) (Fig.  4c). As our results illustrated the hydraulic 
conductivity and sand content both are effective on soil 
erosion occurrence and this is an interactive effect. Soil 
erosion as a dynamic phenomenon is a function of differ-
ent factors; therefore, despite the increasing of hydraulic 
conductivity, this parameter is not sufficient to enhance 
the resistance of soil aggregates against erosive factors 
(Jarzyna et al. 2019; Barman et al. 2019). Considering 
the complexity of the soil erosion process, the RSM 
technique provides an advanced infrastructural analysis 
to evaluate the interaction effects of different parameters 
on soil erosion. Utilizing the interactive effects of several 
parameters on soil erosion is a suitable tool to select and 
apply the best management practice in the critical area. 

Table 3   Statistical parameters 
of different regression models 
based on dependents variables 
(including R1 and R2)

Additionally, mean ± standard deviation (SDEV) is shown (n = 66)

Source SDEV R-square Adjusted R-square

Response R1 R2 R1 R2 R1 R2

Linear 4.740 2.030 0.2789 0.0911 0.1587 − 0.0604
2FI 3.990 2.100 0.8720 0.7560 0.4027 − 0.1389
Quadratic 0.540 0.260 0.9992 0.9988 0.9892 0.9826 Suggested
Cubic 0 0 1 1 1 1 Aliased

Table 4   The ANOVA analysis 
for response surface quadratic 
model

ANOVA for response surface quadratic model

Source Sum of squares df Mean square F-value p value
prob > f

Response R1 R2 R1 R2 R1 R2 R1 R2 R1 R2

Model 1865.41 270.71 65 65 28.70 4.16 99.30 61.94 < 0.0001 < 0.0001 Significant
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Also, investigation of interactive factors presents a real 
situation of soil erosion occurrence in the watershed.

Results of management scenarios applications on soil 
erosion outcomes illustrated the significant effects of 
management strategies on soil erosion controlling and 
diminishing to 1.7–3 ton/ha (Fig. 4b). Actually, this miti-
gation of soil erosion (at the maximum level, 3 ton/ha) is 
significantly effective on different parts of conservational 
plan and reduces the costs of soil preserving. This result 
confirms the meaningful effects of land use and the type 
of management operations on soil erosion occurrence.

Interactive effects of clay and theta r on soil erosion 
using RSM

The relation between clay and residual moisture (theta r), 
which is associated with clay content increasing and the 
theta r decreasing, is shown (Fig. 5a). As Fig. 5a shows, 
by reducing theta r and clay content, the soil erosion was 
at the maximum level (equal to 25.7 ton/ha), whereas by 
increasing clay content the soil erosion was decreased and 
illustrated the minimum level (equal to 21.7 ton/ha). The 
clay particles have an essential role in soil aggregation pro-
cesses and meaningfully are effective on aggregate stability; 
therefore, with changing the soil clay content, the magnitude 
of soil erosion was varied (Arthur et al. 2019). The theta r as 

Fig. 3   The 3D diagram of clay and sand effects on the soil erosion. a Before application of management scenarios and b after application of 
management scenarios. The contour plot of clay and sand content (c)
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hydraulic parameter depends on soil porosity, and the heavy 
textured soils have higher theta r values. Our results show 
that the theta r is equal to 0.03393 for silty soils (Fig. 5a) 
and regarding the structural properties of silt particles, the 
existence of silt particles in the soil enhanced the soil ero-
sion potential. Also, the interaction between sand particles 
and theta r is same as the interaction between clay particles 
and theta r, because both of them can control the soil ero-
sion occurrence (Wee and Yap 2019). Besides, sand parti-
cles reduced the soil erosion by increasing permeability and 
saturated hydraulic conductivity (Ks) in the critical soils, 
therefore reduce the runoff potential. Based on the modeling 
results, the critical area was recognized; then for those areas, 
the specific management scenarios were defined.

Regarding the effectiveness of those management strategies 
(R2 in the RSM), the soil erosion was decreased to 1.6–3.5 ton/
ha (Fig. 5b). This significant decreasing in soil erosion con-
firmed the positive feedbacks of appropriate management 
scenarios to reduced soil erosion and the off-site effects of 

erosion. Dybkjær et al. (2012) showed the significant effects 
of plant cover properties that consist of density, length and 
width on soil erosion controlling; therefore, the plant opera-
tions in the form of management strategies are effective on 
soil erosional behaviors. Application of RSM technique with 
responses (mainly R2) clearly showed the positive impacts of 
clay particles and management scenarios on soil erosion con-
trolling in the watershed (Fig. 5b). Soil aggregation mainly 
depends on clay content, and beside the soil clay content, land 
use (the applied management scenarios) significantly deter-
mine the soil status against erosive forces.

Interactive effect of clay and theta s on soil erosion 
using RSM

The interaction effects of soil clay content and satura-
tion moisture (theta s) are shown (Fig. 6a). As Fig. 6a 
illustrates, the minimum level of soil erosion was at the 
maximum level of clay content and the minimum amount 

Fig. 4   The 3D diagram of sand content and saturated hydraulic conductivity (Ks) on the soil erosion. a Before application of management sce-
narios and b after application of management scenarios. The contour plot of sand content and saturated hydraulic conductivity (c)
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of theta s. As mentioned in other sections of the paper, 
clay particles are capable of creating and increasing the 
binding in the soil matrix; therefore by increasing the 
clay content individually, the soil erosion was decreased 

(Chen et al. 2014). Our results showed that the theta s 
was equal to 0.38, which means the soil texture could be 
sandy clay and clay, because theta s is an index of soil 
texture therefore could represent the soil hydrological 

Fig. 5   The 3D diagram of clay content and moisture residual (theta r) on the soil erosion. a Before application of management scenarios and b 
after application of management scenarios

Fig. 6   The 3D diagram of clay and saturation moisture (theta s) on the soil erosion. a Before application of management scenarios and b after 
application of management scenarios
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group. These results confirmed the relation and interac-
tion effects of clay content and the hydraulic proper-
ties. Application of RSM technique in the form of R2 
(Fig. 6b), to evaluate the interaction effects of clay con-
tent theta s and the management strategies, illustrated 
the positive effects of management scenarios to reduced 
soil erosion. Generally, the application of convenient and 
adaptive management programs in the watershed plays 
an effective role to diminish soil erosion and deposition. 
This is a milestone of RSM that based on response 2 
(R2) clearly presents the effectiveness of convenient man-
agement operations and is applicable for selecting the 
best management practice in the watershed. Generally, 
interactive effects of soil texture components, hydraulic 
characteristics and land use are effective on soil erosion 
occurrence (Table 5). 

Optimization of effective factors on erosion using 
RSM

The design factors, model responses and optimized values 
are shown (Tables 6, 7). In the optimization phase, the pur-
pose is finding the optimal value of the independent and 
dependent parameters shown in Table 7. In the present 
study, the desirability function was used for the optimiza-
tion (Ardebili et al. 2019). All parameters were weighted 
equally 1:1 with an importance of 3 for each of them other 
than silt and KS parameters that were set in 4. Also, the 
importance of dependent variables was 5. The bar graph 
is used to display desirability of the results and is shown 
as being a variable from to 1 denoting the vicinity of the 
output. The optimal solution for the problem is achieved 
with the following design parameters, and the entire results 
of the model are close to maximum anticipation set for the 
model (Fig. 7). Finally, the optimal blend was selected based 
on the result of the desirability function that so equals 1. 
This technique shows that by defining the KS parameter in 
the maximum of goal, silt and dependent variables in the 
minimum of goal, the R1 value is 11.54 ton/ha and R2 is 
equal − 2.25 ton/ha. Thus, the bar graph shows how each 
design factor is optimally set to get requirements, and total 
desirability equal 1 is excellent attainment (Fig. 8) (Pour 
et al. 2018). Therefore, using the RSM technique for selected 
parameters and the real situation in the studied watershed, 
the statistical parameters were obtained to apply the best one 
in the watershed.   

Table 5   The ANOVA result of quadratic model for responses (R1 and 
R2)

Response R1 R2 Response R1 R2

SDEV 0.54 0.26 R-square 0.9992 0.9988
Mean 20.76 1.48 C.V. % 2.59 17.52

Table 6   The range of input parameters and responses for optimization 
using RSM

a The codes of independent variables
b The importance values

Param-
eters

Unit Goal Lower 
limit

Upper 
limit

Importance

Aa: Sand % Is in 
range

6.0000 64.0000 ***b

B: Silt % Minimize 14.0000 76.0000 ****b

C: Clay % Is in 
range

6.0000 46.0000 ***

D: SP % Is in 
range

31.6000 68.1000 ***

E: Stone % Is in 
range

0.0900 5.2000 ***

F: Theta r – Is in 
range

0.0339 0.0974 ***

G: Theta s – Is in 
range

0.3856 0.4874 ***

H: Alpha – Is in 
range

0.0052 0.0291 ***

J: n – Is in 
range

1.2767 1.6799 ***

K: Ks cm/day Maximize 6.8400 46.0100 ****
R1 ton/ha Minimize 14.5900 26.8900 *****b

R2 ton/ha Minimize 0.0900 6.0100 *****

Table 7   The optimal values of input parameters and responses

Parameters Unit Goal Optimum values

A: Sand % Is in range 60.241
B: Silt % Minimize 14.000
C: Clay % Is in range 41.025
D: SP % Is in range 58.729
E: Stone % Is in range 3.830
F: Theta r – Is in range 0.090
J: Theta s – Is in range 0.457
H: Alpha – Is in range 0.014
J: n – Is in range 1.300
K: Ks cm/day Maximize 46.010
R1 ton/ha Minimize 11.537
R2 ton/ha Minimize − 2.253
Desirability – – 1
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Conclusion

RSM as a powerful methodology has high potential and 
optimizes modeling that can gain in more significant and 
comprehensive outcomes. Today, using of response surface 
methodology in optimization processes and analytical meth-
ods is expanding because of its benefits as one-variable-
a-time and providing large amounts of information from 
a small number of experiments. Presentation of several 
optimization scenarios could be ideal for future studies to 
fully to establish the process of optimization in different and 
diverse scopes which could result in a better understanding 
of the process and applicability of the optimization. The pur-
pose of this study was to optimize the physical and hydraulic 
properties of soil, providing the best management practices 

according to optimization results. The results showed that 
changes in physical and hydraulic parameters of soil have 
a significant effect on soil erosion. Also, the effect of the 
physical/hydraulic parameters on response variables was dis-
cussed using ANOVA results of suggested models. Accord-
ing to ANOVA results, it was found that all of the suggested 
models were significant at 1% level and the p value of model 
is equal to 0.0001. The optimized values of different physi-
cal parameters were 60.241 for sand, 14 for silt, 41.025 for 
clay, 58.729% for SP and 3.83% for stone. A theta r of 0.09, 
theta s of 0.457, alpha of 0.014, n of 1.3 and Ks of 46.01 
were found to be optimal values. The results of this study 
indicated that at optimal studied parameters the values of 
the soil erosion before and after management scenarios were 
found to be 11.537 and − 2.253, respectively. Results show 
that both physical and hydraulic parameters have signifi-
cant effects at the 1% level on the soil erosion. The obtained 
results could assist policy-makers with decisions aimed at 
minimizing soil erosion in this watershed.
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