
Vol.:(0123456789)1 3

Acta Geophysica (2019) 67:1451–1469 
https://doi.org/10.1007/s11600-019-00323-0

RESEARCH ARTICLE - HYDROLOGY

Development of a relationship between hydrometric 
and hydrographic observations to predict reservoir capacity loss

Y. C. Jabbar1   · S. M. Yadav1

Received: 24 September 2018 / Accepted: 4 July 2019 / Published online: 17 July 2019 
© Institute of Geophysics, Polish Academy of Sciences & Polish Academy of Sciences 2019

Abstract
Accuracy of reservoir capacity loss estimation on daily timescale is dependent on the certainty of sediment load prediction, 
density estimate and capacity observed by consecutive hydrographic surveys. Data-scarce and uncertain data conditions 
restrict the development of a relationship between hydrographic surveys and hydrometric observations. The present study 
has been carried for Ukai Reservoir, India. A novel sediment rating curve fitting approach by optimization technique has 
been proposed in order to accurately predict sediment load from low-frequency sampled discharge and sediment concentra-
tion observations. The study demonstrates the validation of the bulk density estimate using statistical hypothesis testing and 
identifies the correctness of the hydrographic survey results. Application of the developed hydrometric and hydrographic 
relationship indicated that about 50% of the capacity loss of a year might occur during a single extreme event. The proposed 
approach can serve as a decision support system to monitor and manage sedimentation for the reservoir having uncertain 
data conditions.

Keywords  Hydrometric observations · Hydrographic survey · Sediment rating curve · Representative sediment density · 
Reservoir capacity loss

Introduction

Rivers are the carrier channels for both water and sediment 
transported by the flow. Impoundment of water in the res-
ervoir is a prime objective, but in doing so silting of sedi-
ments carried with the flow needs to be checked. Under-
standing that reservoirs are non-renewable resources drives 
the research on their capacity loss (Kondolf et al. 2014). 
Initially, defining the rate of storage loss over a period of 
the dam’s operation was the sole interest. However, of late, 
attention is also being paid to augment the life of the res-
ervoirs despite the sediment inflow experienced by them 
(Chaudhuri 2006; Kondolf et al. 2014; Palmieri et al. 2001; 
Sumi and Hirose 2009). For achieving this goal, the inflow-
ing sediment load has to be associated with reservoir capac-
ity loss (RCL). Marineau and Wright (2017) quoted that a 
model that can relate the hydrological history to the reservoir 

sedimentation rates, at shorter timescales, can give precise 
estimates of the economic life of the reservoir.

The transportation and deposition of sediments in the 
reservoir can be studied by hydrometric observations and 
hydrographic surveys. Capacity loss noticed between two 
hydrographic surveys can be related to the suspended sedi-
ment concentration (SSC) observed at the hydrometric gaug-
ing station (Marineau and Wright 2017; Tebbi et al. 2012; 
Verstraeten and Poesen 2002); however, there are multiple 
practical limitations to it (Salas and Shin 1999).

If the bed load is unmeasured, then the use of empirical 
formulations and approximations may bring uncertainty to 
the predicted total sediment load (Swamee and Ojha 1991; 
Vanoni 1979). A low-frequency sampling (once a day) of 
the discharge and the SSC may generate an inaccurate sed-
iment load estimate (Arabkhedri et al. 2010; Bussi et al. 
2017; Harrington and Harrington 2013; Walling 1977a, 
b). In other words, hydrological sampling plan based on 
rising and falling limb of the hydrograph requires a couple 
of samples per day, while sampling once a day (time-based 
sampling) will bring inaccuracy in sediment load estima-
tion. Statistically, a fixed time-based sampling plan to 
measure SSC will limit the sensitivity of RCL analysis, as 
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the variation in the hydrograph and sediment graph is not 
captured adequately. In such instances, a sediment rating 
curve (SRC) can predict the continuous record of concen-
tration to estimate the sediment load. Yet, a stable SRC 
relationship can only be developed from high-frequency 
sampled data, (Bussi et al. 2017; Crawford 1991; Horowitz 
2003) and in its absence, different grouping and fitting 
procedures can be tested to identify a profound rating rela-
tionship. SRC can be obtained by grouping the data based 
on either time or the stage of the river (Walling 1977a, b). 
Seasonal variations in the SSC can be detected by time-
based grouping, while grouping based on the stage of the 
river (rising and falling limb of the hydrograph) incorpo-
rates the fluctuations resulting from the hysteresis effect 
(De Girolamo et al. 2015).

The power form of relationship, as an SRC model, relates 
SSC and discharge by means of nonlinear curve fitting. A 
nonlinear (power) form of relationship can be converted to 
a linear form by logarithmic data transfer (Heidarnejad et al. 
2006). Thus, ordinary least square (OLS) regression tech-
nique can be used to fit the linearized relationship of SSC 
and discharge. However, regression faces a limitation since 
the fitted model will possess the least square of residuals 
only for the concentration. Besides, regression between the 
suspended sediment load and discharge as an alternative to 
SSC and discharge is also considered to be a wrong practice. 
The suspended sediment load includes discharge in its com-
putation and generates a nonexistent superficial correlation 
(Annandale et al. 2016). Hence, to achieve the minimum dif-
ference of load estimates and to fit the suspended SRC such 
that the value of the coefficient of determination for SRC 
remains high, an optimization model approach is developed 
which further calibrates the SRC.

In the absence of the observed trap efficiency (TE), its 
estimation using empirical equations and curves (Brune 
1953) may cause uncertainty in the computation of reser-
voir-deposited sediments. The bulk density of the complete 
reservoir is hard to identify as no theoretical base has been 
established to obtain the reservoir density from the sample-
point densities. Bussi et al. (2013) found the predictability 
of the Lane and Koelzer (1943) empirical formulation to be 
satisfactory. For a small check dam, the authors validated the 
predicted dry bulk density using five sampled measurements. 
Yet, the complex distribution of sediments over the reservoir 
and neglecting the organic matter content compromised its 
validity (Verstraeten and Poesen 2001). Small et al. (2003) 
collected over 30 sediment samples from the Crombie Reser-
voir to determine the wet and dry densities. The researchers 
documented that the basal region had high density values 
(up to 2200 kg/m3) while the surface region had low density 
(500 kg/m3). Thus, the bulk density sampling might not give 
a representative value for the whole deposit and is usually 
estimated and not sampled. Tebbi et al. (2012) estimated a 

typical value of dry bulk density (1400 kg/m3) by consider-
ing the composition of the sediments.

The objective of this paper is to predict RCL (on a daily 
time step) from the hydrometric observations using low-
frequency (once a day) suspended sediment sampled data. 
The impact of the grouping and fitting procedures on the 
SRC for estimating the sediment load has been assessed, 
and a novel SRC model fitting approach by optimization 
technique has been proposed. A matrix of RCL is computed, 
using the SRC models and bulk density estimates, to assess 
the uncertainty of the predictions.

Study area and data collection

Ukai Reservoir, India, is chosen for the study, as it is 
equipped with an upstream gauging station having a long 
period of SSC record, reservoir sediment sampling data are 
available (for density estimate) and multiple hydrographic 
surveys are carried out on the reservoir. Ukai Dam reservoir 
lies in the middle of the Tapi basin (Fig. 1). Tapi River origi-
nates near Multai, Betul district, Madhya Pradesh, India, at 
an elevation of 752 m and drains in the Arabian Sea. The 
length of the Tapi River is 724 km; Purna (length of 274 km) 
and Girna (length of 260 km) are two major tributaries of 
the river. Tapi basin lies between 72°33′ and 78°17′ east 
longitudes and 20°9′ to 21°50′ north latitudes. The basin is 
surrounded by the Satpura Range (from the north), Mahadev 
Hills (from the east) and Ajanta Range (from the south). 
Tapi basin is covered with agriculture, forest and water bod-
ies by 66.19%, 25% and 2.99%, respectively, of the total 
area. The basin majorly consists of black cotton soil. The 
annual rainfall in the Tapi basin is 830 mm.

The first impoundment of the reservoir occurred in 1972. 
The gross reservoir capacity at the time of the first impound-
ment was 8510 × 106 m3. The full reservoir level (FRL) is 
at 105.15 m from the mean sea level, and its water spread 
area is 520 km2. The catchment area up to the dam wall 
is 62,225 km2. As per the last hydrographic survey report 
(2003), the total loss observed in reservoir capacity is 
1095.71 × 106 m3, the existing storage capacity is reduced 
to 7414.29 × 106 m3 and the distribution of loss is 51% in 
dead live and 49% in live storage.

Sarangkheda gauging station (21º25′55″N, 74º31′37″E) 
is the nearest upstream suspended sediment and discharge 
gauging station of the Central Water Commission (CWC). 
The discharge and sediment concentration data are avail-
able from 1984 at the gauging station. Discharge is meas-
ured at the station gauge line by the velocity-area method. 
The depth of flow in the cross section is measured at ver-
ticals of the segmented station gauge line, and observa-
tions of velocity are obtained with a current meter at 0.6 m 
depth point. The widths, depths and velocities observed 
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are used to compute discharge for each segment of the 
cross sections. Summation of these segmental discharges 
is the total discharge observed at the station gauge line. 
The Punjab-type bottle sampler is used to collect sus-
pended sediment at 0.6 m depth. The frequency of dis-
charge and sediment measurement at station gauge is once 

per day, whereas the water surface elevation is measured 
every hour (CWC 2014).

Sedimentation surveys (hydrographic surveys) of the 
Ukai Reservoir were conducted in 1979, 1983, 1992, 2001 
and 2003. A schematic representation of the Tapi basin up 
to the Ukai Dam is given in Fig. 2. Region A (58,400 m2) 

Fig. 1   Location of Ukai Reservoir in Tapi basin

Fig. 2   Schematic representation 
of the reservoir its upstream 
gauging station and ungauged 
catchment
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is the Tapi basin area up to the Sarangkheda gauging sta-
tion. The ungauged region B (3825 m2) is the area of the 
Tapi basin between the Ukai Dam and the gauging station. 
The distance between the reservoir’s tail and Sarangkheda 
is 113 km. The reservoir area at its full level (105.15 m) 
is 520 m2, as depicted in region C (Fig. 2). The mean of 
daily discharge and sediment concentration observed at the 
gauging station (period 1984–1992) is 276 m3 and 0.45 kg/
m3, respectively, while the maximum value of discharge 
and sediment concentration observed at the gauging station 
(period 1984–1992) is 13,750 m3 and 17.09 kg/m3, respec-
tively. Grain size analysis of the deposited sediment in the 
Ukai Reservoir at varying distances from the dam wall is 
provided in Table 1.

Methodology

Quantitative RCL is computed by converting the reservoir-
inflowing sediment load to the deposited sediment volume. 
Sediment load inflowing the reservoir can be predicted using 
a stable SRC, which can be then converted to deposition 
volume using the estimated reservoir sediment density. The 
predictability of the capacity loss from different SRC models 
and density estimates is checked in three phases (Fig. 3). In 
the first phase, emphasis has been made for the precise pre-
diction of the reservoir-inflowing sediment load. The second 
phase of the work deals with the estimation of sediment bulk 
density for the conversion of the inflowing sediment load to 
deposition volume. Four data grouping approaches and two 
fitting procedures are used to develop eight types of rating 
curve relationships. The predictions of these rating curves 
are subjected to three density estimates.

It is to be noted from phase three that if the RCL pre-
dicted is not equivalent to observed RCL, the best sediment 
load-estimating model (Phase 1) is to be used to fill the data 
gaps and inconsistencies. Then, an assessment of the esti-
mated bulk density should be done to correct the predicted 
RCL. From the above process, the established temporal-
lumped relationship is utilized to disintegrate the capacity 
loss on daily time step.

Computation of daily RCL is done from the daily trapped 
inflowing load (predicted using the SRC model) and esti-
mated sediment densities. Gross reservoir capacity at the 
end of the period is obtained by deducting the inflowing 
sediment volume from the gross capacity at the beginning 
of the period (Eq. 1):

where GRCt−1 = gross reservoir capacity at the beginning of 
period (106 × m3), GRCt = gross reservoir capacity at the end 
of period (106 × m3), Lt = predicted sediment load inflowing 
the reservoir during period t (Kg), TE = trap efficiency of 
the reservoir, BD = bulk reservoir density of the reservoir 
(kg/m3).

SRC model development

The gauged data were observed to be inconsistent with data 
gaps in the SSC measurements. In such a situation, the miss-
ing data were filled using suspended SRC (Walling 1977a, 
b). The available instantaneous daily time-stepped data may 
not reveal the hysteresis effect. Thus, in the present study, 
the SRCs are developed using time-based grouping, that is, 
daily, monthly average and yearly average data. Data group-
ing was carried out to reconnoiter a relationship between dis-
charge and concentration, while the application of the devel-
oped relationship was utilized to predict the concentration 
on a daily time step. Fitting of the rating curve to the data 
was achieved by two methods, namely ordinary least square 
(OLS) linear regression and fitting using optimization.

Data grouping

For developing the daily SRC model, directly available data 
were utilized. The monthly model was developed by group-
ing the data for the months in different years and calculating 
the average value of discharge and concentration for each 
month’s group in a year. A yearly average model was devel-
oped by categorizing the data according to the calendar year 
and then establishing the average value of discharge and con-
centration. Month-wise models were obtained by clustering 
the daily data of all the similar months.

(1)GRCt = GRCt−1 −

[

Lt ∗ TE

BD ∗ 106

]

Table 1   Grain size analysis of Ukai Dam Reservoir

The data were abstracted from the publication of the CWC (2015)
a PC, Percentage of clay/100 (particle size less than 0.002 × 10−3 m), 
bPM, Percentage of silt/100 (particle size 0.002 to 0.075 × 10−3  m), 
cPS, percentage of sand/100 (particle size 0.075 to 4.75 × 10−3 m)

Sample no. PC
a PM

b Ps
c

1 0.36 0.56 0.08
2 0.35 0.59 0.06
3 0.37 0.56 0.07
4 0.34 0.57 0.09
5 0.39 0.56 0.05
6 0.36 0.56 0.08
7 0.00 0.02 0.98
8 0.35 0.58 0.07
9 0.35 0.55 0.08
10 0.34 0.56 0.10
Average 0.32 0.51 0.17
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Fig. 3   Methodology adopted for identification of reservoir capacity loss
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Curve fitting by OLS regression and proposed 
optimization

After grouping, the conversion of the values to logarithms 
of base ten was performed for transforming the model from 
the power form (Eq. 2) to the linear form (Eq. 3). The scal-
ing coefficient, a, is transferred to the intercept (log a), and 
the exponent, b, becomes the slope of the transferred linear 
relationship:

Fitting a curve to the data is done by two methods, viz. 
ordinary least square (OLS) regression (linear fitting) and 
optimization technique. Both the fitting procedures are opti-
mization techniques that minimize a particular statistical 
error function (objective) with respect to certain constraints. 
OLS linear regression is derived from calculus while opti-
mization obtains solution numerically. The OLS regression 
would give a good relationship between discharge and con-
centration but may not necessarily produce a good sediment 
load estimate. On the other hand, the correlation between 
suspended sediment load and discharge is of interest; how-
ever, sediment load includes discharge in its computation 
and regression between them may generate a nonexistent 
superficial correlation (Annandale et al. 2016). The novel 
approach proposed in the present research is to calibrate the 
SRC coefficients in such a way that no significant change is 
observed in the coefficient of determination (obtained from 
OLS regression fitting procedure) between discharge and 
SSC relationship. Yet, the predictive accuracy of the accu-
mulated suspended sediment load is increased. That is, the 
SRC models developed using OLS regression are further 
calibrated to have a minimum difference in load estimates. 
In order to fit the SRC models by optimization, the coeffi-
cient of determination (obtained using the OLS regression) 
between discharge and SSC relationship is considered as a 
benchmark. The lower bound of the coefficient of determina-
tion (for the SRC model fitted by optimization technique) is 
selected as 5% lower than the benchmark value, while the 
upper bound for the coefficient of determination is given 
as one. Similarly, the upper and lower bounds of the scal-
ing coefficient, a, and the exponent, b were selected such 
that the range of bound was maintained between ± 5% of the 
SRC coefficients obtained using the OLS regression (Eq. 3). 
The objective of the daily, monthly average and yearly aver-
age SRC models fitted by optimization was to minimize the 
absolute percentage error in the suspended sediment load 
accumulated over a period (1984–1992) and is expressed 
mathematically in Eq. 4. On the other hand, the objective of 
the month-wise SRC was the minimization of the absolute 

(2)c = aQb

(3)Log c = b ∗ (logQ) + (log a)

percentage error in the load accumulated over the period of 
analysis for the respective month only:

The observed ( Lo ) and predicted ( Lp ) sediment loads 
(ton/day) were obtained using Eqs. 5 and 6, respectively, 
by summing the product of the SSC, ci , with the daily mean 
discharge, Qi , for the study period ( n days):

where average observed discharge Qi (m3/s) of a particu-
lar day is obtained from the gauge-discharge curve and the 
water surface elevation (observed every hour). The predicted 
concentration ci predicted (kg/m3) is obtained as per Eq. 2, and 
observed concentration ci observed (kg/m3) is the observed 
SSC for a given day. It is to be noted that observed sedi-
ment concentration does not represent the average sediment 
load of the day but is a single temporal-point measurement. 
Sediment transport rate throughout a day is majorly depend-
ent on the variation in precipitation. Hence, the measured 
concentration value is not aligned with the hydraulic and 
hydrological factors. Using such measurement brings intrin-
sic uncertainty in the load prediction (Singh et al. 2013).

Optimization of the objective function for the constraints 
is done utilizing Excel Solver optimization tool. The solver 
is a spreadsheet-based optimization tool that provides non-
linear generalized reduced gradient (GRG) and evolutionary 
method to optimize nonlinear problems. The GRG method 
starts with an initial solution. It looks at the gradient of the 
absolute percentage error (Eq. 4) as the SRC coefficients 
are changed and stops as the first derivatives equal zero. 
The evolutionary method starts with random values of the 
coefficients (parent population) and evaluates them by a fit-
ness function (Eq. 4). The population is mutated, a new set 
of SRC coefficients are created as offspring, the individual 
fitness of each SRC coefficient is evaluated and the least fit 
is replaced with new values.

Using both methods one after another, it is assured that a 
global optimal solution of the SRC coefficients is reached. 
In GRG method and evolutionary method, the convergence 
is given as 0.0001. In the evolutionary method, the popula-
tion size is given as 100 and the mutation rate is given as 
0.075. The limiting time bound in the evolutionary method 
is selected as 30 s; i.e., the optimization process is to be 

(4)Percentage error =
Lp − Lo

Lo
∗ 100

(5)Lo =

n
∑

i=1

(

ci observed ∗ Qi ∗
24 ∗ 60 ∗ 60

1000

)

(6)Lp =

n
∑

i=1

(

ci predicted ∗ Qi ∗
24 ∗ 60 ∗ 60

1000

)
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stopped if maximum time without improvement of the solu-
tion is more than 30 s.

The statistical function of the Nash–Sutcliffe model effi-
ciency factor NSMEF (Nash and Sutcliffe 1970) and the 
index of agreement d (Willmott 1981) signify the model 
efficiency and are used for comparing the observed and 
predicted suspended sediment loads. The NSMEF scores 
range from negative infinity to one. A value equal to or less 
than zero denotes that the developed model should be disre-
garded, while the value of unity indicates a perfect predic-
tion. The index of agreement d is a non-dimensional and 
bounded measure. It is bounded from zero to one, with one 
suggesting a perfect match and zero connoting a lack of 
match between the observed and predicted values.

Computation of the sediment volume

Analyzing the observed SSC and discharge data obtained 
on daily time step (period 1983–1992), it has been found 
that about 33% of SSC data were not measured but can be 
predicted by SRC. By applying the SRC, the spatial and 
temporal data gaps were filled and the time series of daily 
suspended sediment load was obtained. The daily sus-
pended sediment load records were summed up for the 
period between the two consecutive hydrographic surveys. 
The total load cannot be estimated if the bed load is not 
included in the predicted suspended load. The bed load was 
not measured during the study period; therefore, considering 
the grain size distribution of the sediment, it was assumed to 
be 20% of the measured load (BIS-12182 1987; Waikhom 
and Yadav 2017). Besides, the calculated sediment load was 
adjusted as per the reservoir TE, which was estimated from 
the Brune (1953) median curve. The mathematical relation-
ship of Brune (1953) median curve (Eq. 7) proposed by Garg 
and Jothiprakash (2008) was employed:

where TE = trap efficiency (%), Co = storage capacity of 
the reservoir (106 m3), I = inflow of water in the reservoir 
(106 m3).

The total load (kg) can be converted to volume (m3) based 
on the deposited sediment bulk density (hereafter merely 
referred to as density), which can be acquired by sampling 
the deposited sediment or by using empirical formulae. In 
the present analysis, sediment sampling was not a feasible 
approach due to the depth of the reservoir. Furthermore, 
point densities recorded in different locations need to be con-
verted into representative density (Annandale et al. 2016). 

(7)TE =

Co

I

0.00013 + 0.01
(

Co

I

)

+ 0.0000166

√

Co

I

The sediment volume was computed from the density based 
on the Lara and Pemberton (1963) and Miller (1953) (i.e., 
empirical approach), the observed mean density of Indian 
reservoirs and the typical value of density as per Tebbi et al. 
(2012).

Reservoir‑submerged sediment density

Lara and Pemberton (1963) and Miller (1953) empirical 
approach is used for the estimation of the submerged sedi-
ment bulk density. The initial density was calculated using 
the Lara–Pemberton method (Strand and Pemberton 1982) 
as shown in Eq. 8:

Wi = density in kg/m3, Pc,Pm and Ps = clay, silt and sand per-
centages of the incoming sediment, respectively. Wc,Wm and 
WS = clay, silt and sand coefficients of the incoming sedi-
ment, respectively.

Miller’s (1953) approach was applied to determine the 
average sediment density deposited in T years of the reser-
voir’s operation, as provided in Eq. 9:

WT = average density in kg/m3, after T years of reservoir 
operation, Wi = initial density in kg/m3, as derived from 
Eq. 8, K = constant, based on compacting characteristics of 
sediment and reservoir operation.

The value of K relates the compacting characteristics of 
the sediment based on the sediment size analysis. The bulk 
densities obtained from the Lara and Pemberton (1963) 
and Miller (1953) (cited in Strand and Pemberton 1982) 
approach depend on the grain size analysis.

In addition to the density computed by Lara and Pem-
berton (1963) and Miller (1953) approach, the typical value 
of density (1400 kg/m3; Tebbi et al. 2012) and the mean of 
observed sediment densities (i.e., 1191 kg/m3; CWC 2015) 
were utilized for the computation of sediment volume. 
Natural variability of the arithmetic mean sediment densi-
ties observed from 21 Indian reservoirs ranged from 780 to 
1555 kg/m3.

Results and discussion

SRC models

An SRC can represent flow and sediment transport rela-
tionship for a location under a certain range of environ-
mental, climatic and land use conditions. In other words, 
the relationship of sediment load and discharge together 
should be consistent during the period of analysis 

(8)Wi = WcPc +Wm Pm +WsPs

(9)WT = Wi + 0.4343K
[

T

T − 1

(

loge T
)

− 1
]
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(Asselman 2000; Warrick 2015). Before the development 
of SRCs, trend analysis was performed by nonparamet-
ric tests, which showed that discharges and suspended 
sediments have trend during the study period. However, 
the obtained trend between observed discharges is simi-
lar to the trend in observed concentrations; i.e., both the 
discharge and SSC are found consistent with each other. 
Hence, SRCs by different data grouping and curve fitting 
procedures were developed at Sarangkheda gauging sta-
tion for the period 1984–1992.

SRC developed by OLS regression

Figure 4 illustrates the SRC fitted with daily, monthly and 
yearly groups of data utilizing the OLS regression fitting 
procedure. The month-wise data-grouped SRC models fit-
ted by OLS regression are illustrated in Figs. 5 and 6. It is 
inferred from Figs. 5 and 6 that only the monsoon months’ 
discharge and SSC are correlated, while the non-monsoon 
months’ data exhibit no connection whatsoever. Statistical 
significance of the log of discharge and concentration data 
used in the regression model was checked by hypothesis 
testing (P values). It was found that all the SRCs produced 
in Figs. 4, 5 and 6 are statistically significant except the 
month-wise SRCs of the months February, April, May and 

Fig. 4   SRC fitted using OLS 
regression
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November. It is to be noted that during these months, very 
lean flow is observed and the sediment load contribution 
is less than 0.2%. Scaling (intercept) and exponent (slope) 
coefficients along with the coefficient of determination for 
the SRCs which are shown in Figs. 4, 5 and 6 are presented 
in Table 2. By conversion of the intercept [Log(a)] (pre-
sented in Table 2) to scaling coefficient (a), it is understood 
that for one unit of discharge, the concentration (kg/m3) will 
be its thousandth part.

SRC developed by optimization

The information of the relationship obtained between 
discharge and SSC was utilized to fit SRC models by 

optimization. Selected bounds for the SRC models to be 
fitted by optimization technique are listed in Table 3. The 
coefficient of determination (r2) between SSC and dis-
charge was considered as one of the constraining condi-
tions, and the lower limit of r2 was provided. The curves 
obtained for daily, monthly and yearly data by optimi-
zation are presented in Fig. 7. For the month-wise SRC 
model fitting by optimization, only the monsoon months 
were considered, as they exhibited a good correlation 
between the discharge and concentration. Fitted month-
wise SRCs are portrayed in Fig. 8. By considering the 
objective function as per Eq. 4 along with the constraints 
as mentioned in Table 3, SRC fitted by the optimization 
technique is presented in Table 4.

Fig. 6   SRC fitted using OLS 
regression for non-monsoon 
months (month-wise SRC)
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Table 2   SRC models developed 
using OLS regression

Here, a, scaling coefficient of the sediment rating curve [(kg/m3)/(m3/s)]; b, exponent coefficient of rating 
curve (unitless)

SRC model Log (a) b Coefficient of 
determination, 
R2Group of data No. of data 

points

Daily data-based SRC model 1889 − 2.9349 0.8628 0.6476
Monthly averaged data-based SRC model 76 − 2.9542 0.9701 0.7801
Yearly averaged data-based SRC model 9 − 2.1072 0.7076 0.6122
Month-wise data-based month-wise SRC models
 June 217 − 2.9349 0.8628 0.6476
 July 260 − 2.9862 1.0757 0.7900
 August 279 − 3.4197 1.0514 0.5947
 September 268 − 3.3142 0.8962 0.6430
 October 240 − 3.3467 0.8688 0.5916
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Table 3   Range of upper and lower bounds

Group of data Coefficient log (a) Coefficient b Coefficient of determina-
tion, R2

Upper bound Lower bound Upper bound Lower bound Upper bound Lower bound

Daily data-based SRC model − 2.79 − 3.08 0.91 0.82 1 0.62
Monthly averaged data-based SRC model − 2.81 − 3.10 1.02 0.92 1 0.74
Yearly averaged data-based SRC model − 2.00 − 2.81 0.74 0.67 1 0.58
Month-wise data-based month-wise SRC models
 June − 2.79 − 3.08 0.91 0.82 1 0.62
 July − 2.84 − 3.14 1.13 1.02 1 0.75
 August − 3.25 − 3.59 1.10 1.00 1 0.56
 September − 3.15 − 3.48 0.94 0.85 1 0.61
 October − 3.18 − 3.51 0.91 0.83 1 0.56

Fig. 7   SRC fitted by optimiza-
tion and OLS regression
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Fig. 8   Month-wise SRC fit-
ted by optimization and OLS 
regression
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Comparison of SRC developed by OLS regression 
and optimization

SRC models were obtained from different groups of data, 
i.e., daily, monthly, yearly and month-wise though they were 
applied to daily time step data (discharge) to predict daily 
concentration and sediment load. Comparison of observed 
and predicted sediment load passing Sarangkheda gauging 
station for the period 1984–1992 disclosed that SRC fitted 
by optimization gave better prediction than OLS regression-
fitted SRCs (Fig. 9). Table 5 shows the percentage error, 
NSMEF and d computed between observed and predicted 
load. The NSMEF scores of the yearly, monthly and daily 
models fitted by optimization are 0.4603, 0.4813 and 0.6240, 
respectively. The coefficient of determination obtained for 
the monthly SRC model fitted by optimization is 0.7796 and 
is the highest of all.  

Despite this close agreement of the optimization-fitted 
SRCs with predicted sediment load for the entire 9-year 
period, yearly sediment load predictability was investi-
gated. Not surprisingly, the accuracy of the yearly predic-
tions decreased. The percentage error ranged from − 79.87 
to 82.65% for optimization-fitted models while for OLS 
regression-fitted model the error ranged from − 88.24 to 
98.64%. The dissimilarity of the percentage error between 

the entire 9-year period and yearly sediment load prediction 
demonstrates the competence of the SRCs fitted by optimiza-
tion to round the error associated with longer periods.

The variability of predictions for yearly accumulated sedi-
ment loads with respect to data grouping was observed less 
for models fitted by optimization (Fig. 10), as compared to 
the models fitted by OLS regression (Fig. 11). This shows 
that the SRC models fitted by OLS regression are highly 
susceptible to data grouping and resolution, while those 
designed by the optimization technique are less influenced by 
the resolution of the data. This is due to the fact that the OLS 
regression models were further calibrated using the optimi-
zation technique by considering an objective function for 
minimizing the error between the observed and the predicted 
loads. From the results of the SRC models devised using the 
diversified approaches, it could be legitimated that the ones 
that were developed using optimization were the best.

The composition of the SRC fitting data significantly 
impacts the SRC produced (Horowitz 2003). Though results 
of the study have revealed that sediment load predictions 
obtained from SRCs fitted by optimization is independent 
of the composition of the dataset and hence, the coefficients 
of the obtained SRCs were analyzed. A negative correlation 
between the regression coefficients of the fitted SRCs is evi-
dent if the sediment flow regime is consistent (e.g., Asselman 

Table 4   SRC models developed 
using optimization technique

SRC model Log (a) b Coefficient of 
determination, 
R2Group of data No. of data 

points

Daily data-based SRC model 1889 − 3.0131 0.9016 0.6268
Monthly averaged data-based SRC model 76 − 2.9571 0.9593 0.7796
Yearly averaged data-based SRC model 9 − 2.1733 0.6751 0.6048
Month-wise data-based month-wise SRC models
 June month 217 − 2.9862 0.9031 0.6340
 July month 260 − 2.8546 1.0642 0.7751
 August month 279 − 3.5000 1.0980 0.5851
 September month 268 − 3.4000 0.9078 0.6114
 October month 240 − 3.5000 0.8785 0.5615

Fig. 9   Differences between 
actual and sediment rating 
curve-derived sediment load 
passing Sarangkheda gaug-
ing station during 1984–1992 
period
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Table 5   Statistical summary of developed SRC models

Italic values show the best performing model
The observed load is computed from the observed discharge and sediment concentration while the predicted load is computed using observed 
discharge and predicted sediment concentration

SRC model Percentage Error Nash–Sutcliffe model 
efficiency factor

Index of 
agreement, 
dGroup of data Fitting procedure used for 

fitting an SRC

Daily data-based SRC model OLS regression − 53.42 0.5892 0.9964
Optimization technique − 3.52E–07 0.4603 0.9953

Monthly averaged data-based SRC model OLS regression 13.32 0.3478 0.8699
Optimization technique − 1.33E–07 0.4813 0.8834

Yearly averaged data-based SRC model OLS regression − 14.29 0.6872 0.9018
Optimization technique − 2.01E–08 0.624 0.9031

Month-wise data-based month-wise SRC models
 June OLS regression − 84.24 0.1988 0.3991

Optimization technique 3.78E–07 0.6438 0.9148
 July OLS regression 17.24 0.0653 0.8324

Optimization technique − 3.48E–05 0.4406 0.8713
 August OLS regression − 4.08 0.5757 0.9106

Optimization technique 1.60E–11 0.579 0.9124
 September OLS regression − 49.98 0.6557 0.8387

Optimization technique − 1.54E–07 0.9143 0.9779
 October OLS regression − 71.19 0.3879 0.5945

Optimization technique − 7.90E–08 0.9371 0.9821

Fig. 10   Comparison of 
observed and predicted sedi-
ment load for the sediment rat-
ing curve fitted by optimization
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Fig. 11   Comparison of 
observed and predicted 
sediment load for the sediment 
rating curve fitted by OLS 
regression

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00

1984 1985 1986 1987 1988 1989 1990 1991 1992

Y
ea

rly
 su

m
 o

f s
us

pe
nd

ed
 

se
di

m
en

t l
oa

d
(1

06
x 

To
nn

e/
da

y)

Time (year)

Observed Daily Monthly Yearly Mothwise



1463Acta Geophysica (2019) 67:1451–1469	

1 3

2000; Syvitski et al. 2000). Sediment flow regime in the river 
reach of Sarangkheda gauging station is consistent during the 
1984–1992 period, as no major activity has occurred in the 
upstream catchment area. Furthermore, the SRCs are obtained 
by grouping the observed data at a fixed location and period. 
Therefore, it is likely that the SRC coefficients should exhibit 
a good relationship. SRC coefficients obtained from daily, 
monthly, yearly and month-wise groups of data were plotted 
and are presented in Fig. 12. July and August month fitted 
SRCs from the month-wise models were only used to assess 
the relationship of the coefficients because they contribute 
79% of the sediment load from a hydrological year. The coef-
ficient of determination was found to be 0.7651 between SRC 
coefficients fitted by OLS regression, while for the coefficients 
of the SRCs fitted by optimization approach, it increased to be 
0.8197. The upturn of the relationship between SRC coeffi-
cients indicates that the SRC fitted by optimization represents 
the flow and sediment transport regime in a better way, as 
compared to OLS regression-fitted SRCs.

Application of the SRC model to predict 
reservoir‑inflowing sediment load by filling spatial 
and temporal data gaps

The availability of temporal and spatial data from the 
hydrometric observations pertaining to two consecutive 

hydrographic surveys is presented in Table 6. The surveys 
were undertaken in 1983 and 1992. Since the Sarangkheda 
gauging station was established only in 1984, hydrometric 
observations of the entire catchment area for the preceding 
year were missing. Moreover, the gauging station’s observed 
data (1984–1992) do not account for the suspended sediment 
from region B (Fig. 2). Hence, the model was applied to 
bridge the spatiotemporal data gap. The SRC models devel-
oped at the Sarangkheda gauging station were transferred to 
the Ukai Reservoir head. Discharge inflow to the reservoir 
was identified from a water budget model in the form of a 
spreadsheet program. Elevation storage curve was utilized 
to obtain the storage volume. Daily inflow ( It=1 day ) was 
computed from the change in storage volume in accordance 
with the downstream release by the spillway, as well as the 
hydropower plant and reservoir water loss by evaporation 
(Eq. 10). Volume of evaporation was estimated using the 
observations of pan evaporimeter:

It = inflow at the end of the period, St−1 = storage at the 
beginning of the period, St = storage at the end of the period, 
VRph = volume of release through powerhouse during period 
t, VRULBMC = volume of release through Ukai left bank 
main canal during period t, VRSPILLWAY = volume of release 

(10)
It = St − St−1 +

(

VRph + VRULBMC + VRSPILLWAY + VREV

)

Table 6   Spatial and temporal suspended sediment concentration and discharge data gaps and inconsistency

Regions A and B are as shown in Figs. 1 and 2, region B is ungauged region and data are missing for the period 1983–1992. The Sarangkheda 
gauging station was established in 1984, and so data of 1983 are missing

Year 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992

Hydrometric 
observa-
tion data for 
regions A and 
B (Fig. 2)

A Missing 
data

Present but inconsistent
B Missing data (ungauged catchment area)

Hydrographic survey Survey 
done

– – – – – – – – Survey 
done

Fig. 12   Correlation between the 
coefficients of the SRC obtained 
from OLS regression and opti-
mization fitting
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through radial gates (spillway) during period t, VREV = vol-
ume of water lost by evaporation during period t. 

For the year 1983, discharge inflow was directly used as 
input in the SRC models to estimate the suspended sediment 
load contributed by the complete reservoir upstream catch-
ment. As per the monthly SRC fitted by optimization, sedi-
ment inflowing the reservoir in the year 1983 was computed 
to be 23.56 × 106 tonnes. For the period 1984–1992, the daily 
water volume contributed by region B was discerned and it 
was converted into the daily discharge contribution of the 
region. The discharge contributed by region B was thus used 
as input in the SRC models to ascertain the suspended sedi-
ment load contribution of the region. Region B (ungauged 
catchment area, 3825 km2) which includes the reservoir 
rim catchment contributes about 5% (8.36 × 106  tonnes) 
of sediment load of the region A (gauged catchment area) 
(Table 7). The suspended sediment load received by the res-
ervoir during the study period is furnished in Table 7.

Ukai Reservoir‑trapped sediments

Reservoir-trapped sediment is derived from the product of 
trap efficiency (TE) and total sediment load (suspended load 
and bed load). TE was predicted by Brune median curve, 
which ranged from 96.9 to 99.4% (period 1983–1992).

Reservoir‑deposited sediment density 
and deposition volume

Three approaches of sediment bulk density were used to 
compute deposition volume. First, density was computed 
using empirical approach (Lara and Pemberton 1963; Miller 

1953), second, based on the mean observed densities of 
Indian reservoirs having similar operational characteristics, 
density was computed (i.e., 1191 kg/m3) and third, typical 
value of density (i.e., 1400 kg/m3) was considered (Tebbi 
et al. 2012).

Estimation of the density by empirical approach was 
carried out in two steps. The initial sediment density was 
computed (Lara and Pemberton 1963), which was further 
processed for the effect of consolidation (Miller 1953). 
Sediment sampling of the submerged deposited sediments 
showed that the clay, silt and sand content of the sediment is 
32%, 51% and 17%, respectively (Table 1). According to the 
reservoir operation, the sediment always remains submerged 
in the reservoir and is never exposed to sunlight or air. The 
mean initial density obtained through Eq. 8 was 963.82 kg/
m3. The average density after 9 years of compaction (final 
density) as inferred from Miller (1953) was 966.07 kg/m3.

The three densities (viz. empirical approach based, mean 
observed density and typical density value) and sediment 
load trapped by the reservoir (obtained from different SRC 
models) were used to convert the sediment mass inflow to 
volumetric terms. RCL observed by two consecutive hydro-
graphic surveys performed in the years 1983 and 1992 is 
466.200 × 106 m3. Table 8 demonstrates the difference in 
the observed and predicted volumes. The percentage error 
noticed in Table 8 urged further investigation on the cer-
tainty of the estimated density.

Empirical density estimate

The RCL predicted from the density estimated by empiri-
cal formulation resulted in an underprediction ranging from 

Table 7   Total suspended load contributed by catchment

a Total suspended load contributed by region A in million tonnes for the period 1984–1992
b Total suspended load contributed by entire catchment in million tonnes for the year 1983
c Total suspended load contributed by region B in million tonnes for the period 1984–1992
d Total suspended load contributed by entire catchment in million tonnes for the period 1983–1992

SRC model
(1)

SSLA
a

(2)
SSLb

A+B
(3)

SSLB
c

(4)
SSLA

d 
(5)
(2) + (3) + (4) = (5)

Group of data used for SRC model development Fitting procedure used for 
fitting an SRC

Observed data 171.595 – – –
Daily data-based SRC model OLS regression 80.788 11.546 4.349 96.682

Optimization technique 173.379 23.021 7.771 204.171
Monthly averaged data-based SRC model OLS regression 191.286 25.840 8.936 226.062

Optimization technique 173.383 23.559 8.215 205.157
Yearly averaged data-based SRC model OLS regression 148.701 22.888 9.844 181.433

Optimization technique 173.409 25.911 10.531 209.850
Summation of month-wise SRC model OLS regression 157.993 12.551 6.238 176.782

Optimization technique 174.970 16.497 10.991 202.457
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39.77 to 74.24%. Such obtained underprediction cannot 
be considered for the estimation of daily RCL (Table 8), 
and uncertainty of the density estimate is assessed. The 
density estimated by the Lara and Pemberton (1963) and 
Miller (1953) approach using the sampled sand, silt and clay 
content depends on the particular specimens in the sample. 
Since these values can vary from sample to sample, par-
ticular samples can produce misleading values resulting in 
incorrect density estimates. The possibility of estimating a 
wrong density, on the basis of the collected sand silt and clay 
content, cannot be absolutely rejected except complete res-
ervoir area is accurately sampled. This is, of course, physi-
cally and economically challenging as the dam rises to a 
maximum height of 70 m above the river bed level (Ukai 
Dam authority). Generally, in reservoir sediment sampling, 
the depth of water becomes one of the major hindrances 
for sample collection. Hence, due to limited samples in the 
spatial domain, the density representing the complete reser-
voir area has to be inferred from the sample-obtained mean 
density. In order to obtain an objective or subjective bias 
correction factor, which can be multiplied to the sample-esti-
mated density, to infer reservoir representative density, the 
major sediment density influencing factors and the sampling 
program-related biases have to be evaluated. The inadequacy 
of such data limits us while deriving the bias correction fac-
tor. Nevertheless, in order to derive the corrected density 
estimate, the SRC that stood best for load prediction during 
SRC development stage (month-wise data-grouped SRC fit-
ted by optimization, Table 4) is considered as the best SRC 
and a submerged sediment density of the reservoir is derived 
as a ratio of accumulated sediment load to the observed 
RCL (observed from hydrographic surveys conducted dur-
ing 1983 and 1992). The computed representative density 
is found to be 528.075 kg/m3; such low value of computed 
density questions the validity of the derived sediment load 
or the 1992 hydrographic surveyed reservoir capacity.

Statistical evaluation of the density estimated by the 
empirical approach (Lara and Pemberton 1963; Miller 1953) 
and density obtained by equating sediment load (gravimet-
ric) with hydrographic surveyed RCL (volumetric) is per-
formed. Assuming that the statistical population of density 
follows a normal distribution and considering the empirical-
derived density estimate as mean of statistical sample and 
the density obtained by equating gravimetric sediment load 
with volumetric RCL as statistical-population mean, two-
tailed t test is performed to compare the mean of statistical 
sample and population for the known standard deviation of 
the sample (for ten sampled specimens).

T test statistic ( t ) is a standardized value calculated from 
the mean of sample and population, which incorporates both 
the sample size and its variability. The null hypothesis is 
exactly sufficed if t is found to be zero; as the absolute t is 
increased, the significance of accepting the null hypothesis 
is decreased (Johnson 2017). For the present study, the null 
hypothesis ( H0 ) proposes that the statistical-sample mean 
is not significantly different than the statistical-population 
mean, and on the other hand, the alternative hypothesis ( Ha ) 
states that the statistical-sample mean is significantly differ-
ent than the population mean. The critical T value ( t

�∕2, df ) 
for significance level (α) as 95% with nine degrees of free-
dom ( df ) is found to be 2.262, and t is calculated as 6.784. 
As t is higher than t0.975,9 , it is determined from hypothesis 
testing that H0 is rejected in favor of Ha . This does not nec-
essarily mean that Ha is true; it only suggests that there is 
not sufficient evidence to accept the null hypothesis suggest-
ing alternative hypothesis may become true. However, the 
statistical test clearly rejected the statistical significance of 
the two densities to be equal. Hence, the correctness of the 
reservoir capacity (observed during the hydrographic sur-
vey of 1992), the derived sediment load and the density esti-
mate remains a question. Therefore, four scenarios of RCL 
between the period 1983 and 2003 are generated using the 

Table 8   Percentage error 
between observed and computed 
sediment volume

PE, percentage error computed between observed and predicted reservoir-deposited sediment volume. Suf-
fix a, b and c stands for the density estimate used to derive the volume prediction, a implies volume com-
puted using the empirical formula of bulk density, b implies volume computed using density of Indian 
reservoirs having similar operational characteristics and c implies volume computed using typical value of 
density (1400 kg/m3)

SRC models PEa (%) PEb (%) PEc (%)

Data group Fitting technique

Daily data-based SRC model OLS regression − 74.24 − 79.1 − 82.22
Optimization technique − 45.6 − 55.87 − 62.46

Monthly averaged data-based SRC model OLS regression − 39.77 − 51.14 − 58.44
Optimization technique − 45.34 − 55.66 − 62.28

Yearly averaged data-based SRC model OLS regression − 51.66 − 60.79 − 66.64
Optimization technique − 44.09 − 54.65 − 61.42

Summation of month-wise SRC model OLS regression − 52.9 − 61.79 − 67.50
Optimization technique − 46.06 − 56.24 − 62.78



1466	 Acta Geophysica (2019) 67:1451–1469

1 3

month-wise data-grouped SRC fitted by optimization and 
different density estimates. It was expected that if the sedi-
ment load predictions are accurate, then the capacity loss 
predicted from one scenario will be in good agreement with 
the difference between the reservoir capacity observed dur-
ing the hydrographic surveys of 1983 and 2003, resulting in 
one true reservoir sediment density. Densities of 528.075 kg/
m3, 966.07 kg/m3, 1191 kg/m3 and 1400 kg/m3 are used to 
generate scenarios 1, 2, 3 and 4, respectively. Comparing the 
observed and predicted RCL, an overprediction of 82.10% is 
reported from scenario 1 while an underprediction of 0.46% 
is reported from scenario 2. However, scenarios 3 and 4 have 
produced an underprediction of 19.26% and 31.31%, respec-
tively. The discrepancy ratio of these estimates is presented in 
Table 9. The density estimated from the empirical approach 
(966.07 kg/m3) showed least deviation between observed and 
predicted capacity loss. A lower value of the error from sce-
nario 2 validates the SRC model to produce sediment load 
and the density obtained by empirical approach.

In order to relate hydrometric and hydrographic observa-
tions for the prediction of reservoir capacity loss on daily 
timescale, correct prediction of sediment load has to be done, 
density estimate has to be accurate and the uncertainty from 
the hydrographic survey should be narrowed. The present 
research has highlighted major problems, which can hinder 
the linking of the hydrometric observations with the RCL. 
Uncertainties of the predicted sediment load, density esti-
mate and hydrographic survey are interlinked. The proposed 
approach is beneficial as it assesses the correctness of the 
observed data by statistical evaluation of density estimates 
and generation of the capacity loss scenarios. The result of 
the study demonstrates the prediction of daily RCL in uncer-
tain data conditions. It is necessary to discuss here that, in 
the future, more consideration should be given to ensure the 
correctness of the hydrographic surveys. RCL obtained from 
hydrographic surveys should be cross-verified with the RCL 
derived from the hydrometric observation, using the present 
approach. In addition to it, from the ongoing research, few 

essential points identified for quality control, minimization 
of the surveying error and the uncertainty are listed here: (1) 
Hydrographic surveys should be carried out on standardized 
operating procedures providing a uniform method of plan-
ning, collecting, processing and analyzing data. (2) Before 
the execution of the hydrographic survey, by examining the 
reservoir bathymetry obtained from previous surveys, criti-
cal locations should be identified, so that a comparison over-
lay for those particular locations can be prepared. (3) The 
main survey lines directions (perpendicular to the general 
direction of contours) and their spacing should be identified 
from the previous surveys experience. (4) Crossline direc-
tion, i.e., at right angles to mainline direction, should be 
selected as a vital quality regulation measure. So when any 
interpolation algorithm is used, the results can be verified 
with such control lines. (5) Surveying vessel speed has to be 
assessed for the expected range of depths in the survey area 
and the type of echo sounder in use to reduce the measure-
ment and observation uncertainty. (6) A consistent datum 
must be used throughout all hydrographic survey projects, 
or the data has to be adjusted if comparison has to be made.

Gross reservoir capacity loss prediction

The temporal lumped relationship established between the 
hydrometric observations of the reservoir upstream gauging 
station and the reservoir capacity derived from hydrographic 
surveys were utilized to disintegrate the observed phenom-
ena on a daily time step.

Employing the SRC model, daily depositing sediment vol-
ume and continuous timeline of gross reservoir capacity are 
obtained (Fig. 13). Though the model is based on a simple 
approach, the validity of the developed relationship to predict 
the RCL was found considerable. The relationship was thus 
utilized to estimate the action of the extreme hydrological 
events to RCL (Table 10). During a flood event on August 08, 
2006, about 1991 × 106 m3 of water flowed into the reservoir 
in a single day, which brought about 42.16 × 106 tonnes (esti-
mated) of sediment load causing 43.64 × 106 m3 (estimated) of 
RCL (Fig. 14). This model estimate is 0.59% of 2003 surveyed 
reservoir capacity. The average RCL from its first impound-
ment in 1972 to the last bathymetry survey carried out in the 
year 2003 was 35.35 × 106 m3/year. The results have shown 
that about 50% of the capacity loss of a year may occur during 
a single extreme event. The design siltation rate of the Ukai 
Dam is 0.149 × 103 m3/km2/year, whereas the observed rate in 
the reservoir is 0.568 × 103 m3/km2/year (CWC 2015), which 
shows that the rate of siltation was underestimated by 73.77%.

Ten extreme flood events observed in the history of the 
Ukai Reservoir were analyzed for the inflowing sediment load 
and RCL (Table 10). With respect to initial reservoir capacity, 
RCL of 0.512% to 0.081% was observed. Through all these 

Table 9   Reservoir capacity loss with respect to estimated densities 
for the period 1983–2003

a RCLo , reservoir capacity loss derived from the gross reservoir capac-
ity observed in 1983 and 2003 hydrographic surveys
b RCLp , reservoir capacity loss computed from the sediment load 
trapped by the reservoir and different density estimates
c DR , discrepancy ratio between RCLo and RCLp

Scenario Sediment 
density

RCLa

o
 

(106 m3)
RCLb

p
 

(106 m3)
DRc (%)

Scenario 1 528.05 548.71 999.22 1.82
Scenario 2 966.07 546.20 1.00
Scenario 3 1191.00 443.05 0.81
Scenario 4 1400.00 376.91 0.69
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ten events, about 173.96 × 106 m3 of sediment volume settled 
in the reservoir, which reduced the capacity of the reservoir 
by 2.04%. It is to be noted that the estimated RCL by such 
hydrometric and hydrographic relationship may only provide a 
first-order capacity loss estimate. Yet, in data-scarce condition, 
it may stand as a very useful tool to understand the response 
of hydrological events directly on the RCL.

Conclusions

The certainty of the predicted sediment load trapped by the 
reservoir, estimated bulk density of the deposited sediment 
and the hydrographic survey observed reservoir capacity 

limits the accuracy of the reservoir capacity loss (RCL) 
prediction. Accurate prediction of sediment load using 
sediment rating curve (SRC) has been emphasized in the 
present study. A novel SRC fitting approach by means of 
optimization technique is proposed to predict sediment 
load using low-frequency (once a day) suspended sedi-
ment sampled data. Use of SRCs to produce sediment load 
predictions by different grouping and fitting procedures 
has produced the following learnings.

•	 Data grouping (composition of data) and curve fitting 
procedures adopted for the SRC model development will 
change the exponent and scaling coefficient of the SRC 
models.

Fig. 13   Time series of predicted 
reservoir capacity loss
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Table 10   Extreme events in 
reservoir catchment and its 
impact on capacity loss

S. no. Date Amount of water received by 
reservoir (106 × m3)

Estimated sediment 
inflow (103 × ton)

Estimated capac-
ity loss (106 × m3)

1 08-08-2006 1991.00 42.16 43.64
2 16-09-1998 1839.63 36.11 37.38
3 07-09-1994 1350.09 19.69 20.39
4 20-08-1984 1188.00 15.33 15.87
5 17-08-1990 1022.80 11.43 11.83
6 09-07-2007 1021.88 11.41 11.81
7 04-10-1988 909.02 9.07 9.39
8 07-09-2012 905.56 9.01 9.32
9 20-08-1989 803.52 7.12 7.37
10 02-08-2013 779.93 6.72 6.96
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•	 Degree of accuracy of the predicted load from low-
frequency observations varies with the composition of 
the data in case of SRCs fitted by ordinary least square 
regression, whereas the effect of data composition to pre-
dict sediment load was observed to be low in the case of 
SRCs fitted by the proposed optimization approach.

•	 The percentage error observed between the entire period 
and yearly sediment load prediction demonstrated that 
the competence of the SRCs fitted by optimization to 
round the error associated with longer periods is high.

•	 Assessment of the relationship between the SRC coeffi-
cients has suggested that the SRCs fitted by optimization 
represent the flow and sediment transport regime in a 
better way.

Hence, if the sampling frequency is low and observations 
are made independent of the hydrograph (as instantaneous 
temporal point measurement), then the observed data can be 
utilized effectively by employing the fitting procedure based 
on optimization.

The approach developed in this paper provides a means to 
validate the estimate of reservoir-submerged sediment den-
sity obtained from the sampled sediment sand, silt and clay 
content and the empirical density predicting models. Statisti-
cal hypothesis testing (P value or T value) is required to be 
performed between the mean density estimated from sedi-
ment samples and the density obtained by equating sediment 
load prediction to the observed capacity loss. The result of 
the hypothesis tested should prove that both of these densi-
ties do not differ. If they differ, further investigation of the 
estimated density, as well as the hydrographic surveys, is 
required, before utilizing it to derive RCL.

Application of the developed relationship between the 
hydrographic and hydrometric observations to disintegrate 
the RCL on a daily scale will enhance the understanding 

of event-based capacity loss, which may stand as a useful 
approximation to devise a sediment management strategy.
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