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Abstract
As an independent geothermal proxy, the Curie-point depth has important geodynamic implications, but its estimation from 
magnetic anomalies requires an understanding of the spatial correlation of source magnetization, mathematically charac-
terized by a fractal exponent. In this paper, we show that fractal exponent and Curie depth are so strongly inter-connected 
that attempts to simultaneous or iterative estimation of both of them often turn out to be futile. In cases of true large Curie 
depths, the iterative “de-fractal” method has a tendency of overcorrecting fractal exponents and thereby producing errone-
ously small Curie depths and smearing out true geological trends. While true fractal exponent can no way be constant over 
a large area, a regionally fixed fractal exponent is better than any mathematical treatments that are beyond the limit of data 
resolution and the underlying physics.

Keywords  Curie depth · Geothermal structure · Heat flow · Fractal magnetization · Magnetic anomalies · Inversion · North 
America

Introduction

A wide variety of spectral techniques has been proposed to 
detect the depth to the bottom of the magnetic layer of the 
lithosphere from near-surface (or sometimes satellite) mag-
netic anomalies. This is also coined the Curie-point depth, 
where the temperature reaches the Curie point and rocks 
lose their ferromagnetism. Curie depths reflect deep thermal 
structure of the lithosphere assuming that the Curie tem-
perature can be restricted to a narrow range (520–580 °C) 
for different mineralogy (Friedman et al. 2014). Curie tem-
peratures decrease linearly with an increasing Ti content for 
natural terrestrial titanomagnetites (O’Reilly 1984), which 

are chemically stable at crust and upper mantle tempera-
tures/pressures (Sauerzapf et al. 2008).

Among various techniques of detecting Curie depths, the 
linearized stepwise centroid method (Okubo et al. 1985; 
Tanaka et al. 1999), and its various extensions to fractal 
magnetization (Bansal et al. 2011; Li et al. 2009, 2010, 
2013; Salem et al. 2014; Wang and Li 2015; Ravat et al. 
2016), are theoretically simple but computationally stable. 
The reasoning behind this technique is simple; rather than 
seeking to directly estimate the Curie depth from nonlinear 
fitting between calculated and observed spectra of magnetic 
anomalies, Curie depth can be estimated indirectly from 
relatively easy linear inversion of the depths to the top and 
centroid of the magnetic layer, which are shallower than the 
magnetic bottom (Curie depth) and thereby more tractable 
computationally.

Curie depths are independent of Moho depths (or crustal 
thickness) and shallow radiogenic heat production, because 
the Moho is a lithological boundary, and radiogenic heat 
production decreases with depth (Turcotte and Schubert 
2002), to have minimal effects at the Curie depth.

Examining amplitude (or power) spectra of magnetic 
anomalies offers by far the most valid and efficient means 
of estimating Curie depths over a large region. There are 
also geothermal methods based on the temperature-depth 
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relationship (Lachenbruch 1968; Negi et al. 1987). Curie 
depth can be correlated with surface heat flow (Li et al. 2010, 
2017), and thereby is a good proxy to lithospheric thermal 
structure, particularly where heat flow measurements are 
sparse and hydrothermal activities could prevail (e.g., Li 
et al. 2017). Curie depths have been successfully applied to 
infer thermal evolution of oceanic lithosphere, global heat 
loss, lithospheric thermal conductivity, and regional geody-
namics (e.g., Bansal et al. 2011; Li et al. 2009, 2010, 2013; 
Salem et al. 2014; Ravat et al. 2016; Wang and Li 2015), 
and to correlate with regional magmatism and seismicity 
(Tanaka and Ishikawa 2002, 2005; Manea and Manea 2011; 
Wang and Li 2015; Wang et al. 2016).

Despite these important applications, there are many 
caveats in estimating Curie-point depth, particularly in the 
application of fractal exponent of source magnetization. 
This paper is to clarify some of the confusions in apply-
ing fractal exponent in Curie depth estimation and outline 
the pitfalls that should be avoided in future applications.

Numerical backgrounds

Three-dimensional source magnetizations are spatially 
correlated and can be characterized by a scaling law.

in which �p
3D
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Curie depths are dependent on wavenumber (or wave-
length) distribution of magnetic anomalies, because the 
deeper the base of the magnetic layer, the more present 
are longer wavelength components. Theoretically, the 
radially averaged power (or amplitude) spectrum of total-
field magnetic anomalies A

ΔT
 is linked to the spectrum of 

the magnetization and can be represented as a function 
of depths to the bottom (Zb) and top (Zt) of the magnetic 
layer, and the fractal exponent (Maus et al. 1997; Bouli-
gand et al. 2009; Blakely 1995; Li et al. 2009).

To estimate Curie depths based on spectral methods, 
magnetic anomalies are interpolated and gridded and then 
divided into overlapping windows. Within each window, a 
radially averaged amplitude (or power) spectrum is calcu-
lated, from which a Curie depth is estimated from fitting 
the calculated spectrum to the theoretical models of Blakely 
(1995) or Maus et al. (1997). This windowing scheme can 
be skipped using wavelet transform (Gaudreau et al. 2019).
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On the assumption of constant fractal 
exponent

In general, the fractal exponent of magnetization (named α in 
Ravat et al. 2016 in 2D, or β in 3D in many other papers, e.g., 
Bouligand et al. 2009; Li et al. 2013) is not known. In order 
to keep the inversion result stable and manageable, the fractal 
exponent is often assumed to be a known constant in a study 
area. Of course, it is unlikely that fractal exponent keeps con-
stant across a large area due to the differing magnetic source 
characteristics. Undoubtedly, any method for Curie depth esti-
mation is biased by the lack of knowledge of the fractal expo-
nent (Audet and Gosselin 2019), or by using a single fractal 
exponent. Previous attempts have been made to estimate the 
fractal exponent 

(

�
p

3D

)

 simultaneously with the depths to the 
top and bottom (Zb, Zt) from magnetic anomalies based on a 
nonlinear inversion scheme, but it turned out to be very dif-
ficult as these parameters are strongly inter-dependent (Ravat 
et al. 2007; Li et al. 2010). The best constraints on estimated 
Curie depths and the fractal exponent are from known geology, 
such as shallow geotherms associated with mid-ocean ridges 
and active volcanoes (Li et al. 2013, 2017). Alternatively, 
Mather and Fullea (2019) combined independent geophysi-
cal data with magnetic anomaly data in a probabilistic frame-
work to constrain geotherms. Gaudreau et al. (2019) determine 
the fractal exponent a posteriori by comparing Monte Carlo 
simulations of predicted heat flow with observed heat flow in 
various regions.

One of the strategies is a stepwise linearized inversion 
for Zt at intermediate to high wavenumbers and the depth to 
the centroid (Zo) at small wavenumbers (Tanaka et al. 1999), 
assuming a regionally constant fractal exponent. This constant 
assumption is found effective and valid in previous regional 
and global studies, giving useful geothermal information con-
formable to real geology (e.g., Bouligand et al. 2009; Li et al. 
2013, 2017).

Li et al. (2009, 2013) applied the centroid method assuming 
a constant fractal exponent. Bouligand et al. (2009) applied 
a one-step nonlinear fitting in their western North America 
study, also assuming a constant fractal exponent. Uncertainties 
are involved in selecting the best fitting intervals in the two-
step linearized method. However, with fixed fitting intervals, 
Li et al. (2010) showed that the two-step centroid method can 
give more stable Curie depth results than the one-step nonlin-
ear simultaneous inversion.

On the “de‑fractal” method

Salem et al. (2014) and Ravat et al. (2016) argued that they 
could test a set of fractal exponents β by visual inspec-
tion of fit between observed and modeled power spectra, 
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and found the optimal β for correcting observed spec-
trum before estimating Curie depth (Fig. 1). They coined 
their methods “de-fractal” spectral depth determination, 
which involves forward modeling to fit spectral peaks, and 
numerical iteration and visual inspection to select β. These 
iterative procedures are time-consuming.

Correction of the spatially correlated magnetization has 
been practiced in many other studies (e.g., Bouligand et al. 
2009; Bansal et al. 2011; Li et al. 2013). The terminology 
“de-fractal” is unnecessary for the following reasons.

(1)	 Magnetization is universally fractal, i.e., spatially cor-
related. Fitting an observed spectrum with a theoretical 
model can be done without “de-fractal” because the 
theoretical models can handle fractal magnetization 
neatly (Blakely 1995; Maus et al. 1997; Li et al. 2013).

(2)	 “De-fractal” is operated only in a relative sense because 
two-dimensional spatially uncorrelated magnetization 
can be spatially correlated in three dimensions. “De-
fractal” is meaningful only when the dimension of the 
reference space is identified. Randomness (uncorrela-
tion) is just a special form of fractal.

There are other three more important issues in both the 
visual (Salem et al. 2014) and semiautomatic (Ravat et al. 
2016) “de-fractal” method.

(1)	 The first is the often subjective and random selection 
of fitting intervals and wavenumbers of spectrum. 
Theoretical and numerical models suggested that the 
fitting intervals for estimating the centroid depth should 
be fixed to the smallest wavenumbers, unless a peak 
occurs in the fractal-corrected and wavenumber-scaled 
spectrum, which is likely due to windowing (Li et al. 
2013). In the case a peak occurs, points to the smallest 
wavenumber side of the spectral peak should be simply 
ignored in data fitting (Li et al. 2013). While estimat-
ing Curie depth from the steepest segment is theoreti-
cally sound (Li et al. 2013), fitting just on the steepest 
segment of the spectrum with only 2 or 3 controlling 
points is prone to large fitting uncertainties.

(2)	 The second major uncertainty rests upon changing 
fractal exponent β from window to window (Fig. 1). 
In each iteration, a modeled power spectrum is pro-
duced to match with the observed one, and when an 
acceptable visual fit is found with a particular fractal 
exponent, that fractal exponent is chosen as an a priori 
input for the next step of Curie depth estimation (Ravat 
et al. 2016). Identical to the number of unknowns in the 
inversion, an equal number of parameters are needed 
in the forward modeling of the “de-fractal” scheme. In 
other words, forward modeling is dependent not just 
on fractal exponent, but also on depths to the mag-
netic layer, which are also unknowns. A large Curie 
depth will induce magnetic anomalies with more 
long-wavelength signals, as if from a highly correlated 
magnetization of large fractal exponent, which also 
equivalently induces more long-wavelength magnetic 
signals. The reverse is also true. There is essentially 
no work-around to know the best-fit fractal exponent. 
Therefore, the “de-fractal” method is circular and does 
not have anything internal to the Curie depth calcu-
lation to tie results to. Consequently, the “de-fractal” 
method results in low resolution and likely high error 
(Fig. 1).

	   Changing fractal exponents β that are not well con-
strained from window to window introduces additional 
error, because this will smear out Curie depth anoma-
lies associated with true geological features. Although 
the “de-fractal” method appears to give a mechanism 
to constrain the fractal exponent β in an iterative way, 
in reality it can do more harm than help.

	   By plotting Curie depths from Table 2 of Salem 
et al. (2014), who applied the “de-fractal” method, 
we further demonstrate that their applied fractal expo-
nent is strongly correlated with Curie depth estimated 

Curie depth from "de−fractal" method (Salem et al., 2014)
Curie depth from centroid method with β =1 (Salem et al., 2014)
Linear fit of Curie depths from centroid method vs. applied β

Fig. 1   A positive correlation is noticed between Curie depths esti-
mated with a constant fractal exponent (red cross) and applied frac-
tal exponents in the “de-fractal” method in the central Red Sea. In 
other words, the “de-fractal” method tends to apply a larger fractal 
exponent where the Curie depths could be larger if keeping a constant 
fractal exponent, and consequently gives smaller Curie depth esti-
mates (data in blue squares). This over-correlation tendency (marked 
by the blue arrow) leads to systematic computational errors in the 
“de-fractal” method. The straight line is from least square fitting. 
Depths are below sea level from Salem et al. (2014)
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with a constant fractal exponent (Fig. 1). The larger 
the Curie depth, the larger were their applied fractal 
exponents for spectral correction, and the smaller were 
their finally estimated Curie depths. The consequence 
is that, wherever there are large Curie depths, this “de-
fractal” operation tends to systematically pick large 
fractal exponents and obtain small Curie depths with 
overcorrection. This can distort the final Curie depth 
map. In other words, the “de-fractal” method can mis-
takenly interpret large Curie depths as from large frac-
tal exponents. The best and likely the only constraints 
on estimated Curie depths are from known geology, 
such as shallow geotherms associated with mid-ocean 
ridges and active volcanoes (Li et al. 2013, 2017), or 
from other independent geophysical measurements 
such as heat flow (e.g., Mather and Fullea 2019; Gaud-
reau et al. 2019), but not from some calculated math-
ematical operations. With a tendency of overcorrection 
and almost a random selection of fractal exponent that 
is strongly dependent on the correlation of the treated 
magnetic anomalies (Fig. 1), the “de-fractal” method 
cannot map, in a consistent and systematic manner, true 
geological units of similar scaling in spatial magnetiza-
tion.

(3)	 The “de-fractal” method compensates for the fractal 
parameter of the magnetic anomaly field such that a 
spectral peak is formed. Whether a peak could occur 
or not is not solely dependent on the fractal parameter, 
but also on the Curie depth and applied window size 
(Li et al. 2010, 2013). For the same fractal parameter, 
shallow Curie depths can also give spectral peaks. 
Occurrence of a spectral peak is not a correct criterion 
for judging the fractal exponent of the underlying mag-
netization.

On the detection limit

With a 500 km window length and the recommended wave-
number range of Li et al. (2013), Ravat et al. (2016) com-
pared their results from the “de-fractal” method with those 
of Li et al. (2013), who applied an automatic fractal centroid 
method. Ravat et al. (2016) showed that they can get even 
more accurate Curie depth estimate with the smallest error 
bar for the deepest 40 km depth test.

It is all known in geophysics that the deeper the target, 
the more uncertainties and difficulties are in geophysi-
cal inversion. Ravat et al. (2016) did not state how they 
obtained the Curie depths from the method of Li et al. 
(2013) and showed neither numerical/synthetic models 
(like Fig. 4 of Li et al. 2013), upon which these tests were 

performed, nor power spectra for fitting. Numerical and 
synthetic models of 3D magnetization and correspond-
ing magnetic anomalies and power spectra are needed to 
validate their argument. A regional map of their applied 
fractal exponents should also be presented to aid in the 
interpretation and assessment of their results, because the 
degree of correction affects the estimated Curie depths.

Ravat et al. (2016) showed that they estimated the cen-
troid depth directly from fitting the spectrum itself, not 
from the required wavenumber-scaled spectrum, because 
the vertical axes of these two figures are labeled with 
“Annular Average of ln of Amplitude (nT).” This might 
be just a typo, and they stated in the caption that the 
calculation was based on wavenumber-scaled spectrum. 
However, the labeled unit “nT” is misleading, because the 
amplitude here is the spectral strength at certain wave-
numbers, surely no longer the original magnetic anomaly 
amplitudes with the unit “nT.” Furthermore, using only 2 
or 3 controlling points for linear regression for the steep-
est segment of the spectrum introduces large uncertainties 
and inconsistencies.

Numerical synthetic modeling with known and fixed 
fractal exponents showed that, with a set of input Curie 
depths of 10.0, 20.0, 30.0 and 40.0 km, the inverted depths 
are 9.5, 13.1, 26.2, and 35.0 km, respectively (Li et al. 
2013). Plotting this early result of synthetic test on Fig. A2 
of Ravat et al. (2016) shows that the two-step linearized 
method captures the overall trend of input Curie depth, but 
tends to underestimate it (Fig. 2). There are several reasons 
behind this underestimation.

Firstly, magnetic anomalies from deeper sources are 
more attenuated by the Earth filter, and we have to deal 
with a narrow band of long wavelengths and work on very 
small wavenumbers containing the centroid depth informa-
tion. Secondly, we apply windowing in practice on mag-
netic anomalies, whereas the mathematical models assume 
infinite horizontal extension (Blakely 1995; Maus et al. 
1997). Thirdly, the linearized centroid technique is itself 
based on an approximation of the nonlinear system.

These theoretical and practical limitations apply to all 
Curie depth inversion techniques. We can partly circum-
vent these issues of underestimation by choosing a smaller 
fractal exponent in spectrum correction. Nonlinear inver-
sion can be tested on synthetic models to expect larger, 
albeit unstable, Curie depths (Li et al. 2010). However, 
there is a mutual dependence of depths to the top and bot-
tom of the magnetic layer in the nonlinear inversion, and 
solutions can be non-unique. In addition, the nonlinear 
method also requires data fitting only at the very narrow-
banded low-wavenumber portion of the spectrum, produc-
ing highly fluctuating results with just a few controlling 
data points (Li et al. 2010).
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Comparison between known Curie depth 
results in North America

We here make a comparison among published Curie depth 
results in the Northern Colorado–Wyoming Craton area 
(Fig. 3; Table 1). Bouligand et al. (2009) mapped Curie 
depths in the western USA with a fractal magnetization 
model based on nonlinear inversion (Fig. 3d). Based on 
the linearized centroid method, Li et al. (2017) developed a 
global Curie depth model (GCDM), using nearly the same 
window size range and fractal exponent as Bouligand et al. 
(2009), but a different magnetic dataset of lower resolution 
(Maus et al. 2009) (Table 1). Part of the GCDM is shown 
here for comparison (Fig. 3b). One can easily notice that 
these two maps show very similar features. The Yellowstone 
hotspot trail, the northern and southern Rocky Mountains, 
and a large part of Colorado Plateau have smaller Curie 
depths. There is also a belt of small Curie depths to the east 
margin of the study area in the Great Plains. By contrast, the 
Wyoming Craton shows mostly large Curie depths (Fig. 3b, 
d). It can also be seen that, as expected and mentioned above, 
nonlinear inversion resulted in more fluctuating estimates 
(Fig. 3d) than the centroid method (Fig. 3b), producing many 
points shallower than 10 km and deeper than 30 km. The 
apparent higher resolution of Fig. 3d is mostly likely due to 
the higher resolution of the North America magnetic grid 
(NAMAG 2002) applied by Bouligand et al. (2009), as well 
as to more fluctuating nonlinear estimates.

Also based on this high-resolution NAMAG, Wang and 
Li (2015) examined Curie depths with smaller windows in 

western North America (Fig. 3c). Figure 3b, c is from dif-
ferent data sources of different resolution and from apply-
ing different window sizes, and thereby some differences 
in resolution and values between them are expected. Both 
the high-resolution input data and smaller window size gave 
high resolution in the mapped Curie depths that conform to 
real geology (Fig. 3c). The central eroded and rifted drainage 
basin of the Colorado River in the Colorado Plateau shows 
smaller Curie depths (Fig. 3c), which could indicate thermal 
rejuvenation at depth. The two areas of smaller Curie depths 
of the Snake River Plain and the northern Rocky Mountains 
can be distinguished from each other on the high-resolution 
result. Overall, these three Curie depth results (Fig. 3b–d) 
show similar features that are consistent to known geology 
and can be correlated with surface heat flow (Fig. 3f).

The Yellowstone hotspot turns out not to be a good 
control point on Curie depth because presently it has very 
strong hydrothermal activity (Bryan 2008), which can lower 
the regional deep temperature considerably, like in young 
oceanic lithospheres. Li and Wang (2018) have shown that 
strong hydrothermal activity along the fast spreading mid-
ocean ridge can lower the mantle temperature and increase 
the Curie depth. Our reasoning of strong hydrothermal 
influence on the deep temperature is also drawn from the 
discrepancy between heat flow (Fig. 3f) and Curie depth 
(Fig. 3b–d) along the Snake River Plain. Instead of in the 
central Snake River Plain of the smallest Curie depths, the 
highest heat flow is found in the surrounding uplifted shoul-
ders of the plain, where fractures, evident on the topographic 
map (Fig. 1), may drain deep hot hydrothermal fluids.

Again, one cannot guarantee that Curie depth estimation 
using different window sizes and data of different resolution 
can give identical result at the same single location, because 
different window sizes focus on different anomalies, and 
different data resolution focuses on different wavelengths. 
Nonetheless, regional features should remain the same and 
should be captured, such as the shallow Curie depths of the 
Yellowstone hotspot trail (Snake River Plain, Fig. 3).

The “de-fractal” result (Fig. 3e) is quite different from 
the other three, neither revealing the large Curie depth con-
trast between the Colorado Plateau and the Wyoming Cra-
ton, nor showing small Curie depth zones associated with 
the Snake River Plain and the northern Rocky Mountains. 
Instead, Fig. 3e shows smaller Curie depths to the east of 
the southern Rocky Mountains, which are not present on 
other three maps. Without knowing areal distribution of the 
fractal exponents, it is very difficult to assess the “de-fractal” 
result. Surface heat flow (Fig. 3f) has better correlations to 
the Curie depths of Bouligand et al. (2009) and Li et al. 
(2017) than to the “de-fractal” result (Fig. 3e). This demon-
strates again that the “de-fractal” method, with variable frac-
tal exponents that cannot be accurately determined and are 
strongly correlated with Curie depths themselves (Fig. 1), 

Claimed by Ravat et al. (2016) based on “de-fractal” method.
Claimed by Ravat et al. (2016) based on their implemented Li et al. (2013) method.
Curie depths estimated from synthetic modelling (Li et al., 2013).
Input depths in the synthetic models of Li et al. (2013) and Ravat et al. (2016).

Fig. 2   Comparison of numerical results from the “de-fractal” method 
with a 500 km window by Ravat et al. (2016), from Li et al. (2013) 
fractal correction centroid method implemented by Ravat et  al. 
(2016), and from synthetic modeling of 3D magnetization of Li et al. 
(2013)
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can smear out true geological features with distorted Curie 
depth maps.

Application of “de-fractal” Curie depths casts doubt on 
the derived geothermal result, which shows that Wyoming 
geotherm is hotter by ~ 200 °C at the Curie depth than the 
Decker et al. (1988) model. The Wyoming Craton shows 
largely low heat flow (Fig. 3f) and deep and heterogeneous 
Curie depths (Fig. 3b–d). The heterogeneity in the Wyoming 
Craton stems from late tectonism, which has already divided 
it into different subunits of contrasting topography (Fig. 3a) 
and heat flow (Fig. 3f). Strictly, the Wyoming Craton can 
no longer be regarded as a typical craton. The anomalously 
hotter and uniform geotherm of Ravat et al. (2016) is, in 
our opinion, due to their estimated shallow Curie isotherm, 
which makes no distinction of the Wyoming Craton on their 
Curie depth map (Fig. 3e).

A very large applied window size of 500.0 km may also 
contribute to this loss of information. Ideally, the long-wave-
length components carrying the information of Curie depth 
can be best captured by using very large windows, but the 
incorporation of fractal exponent, which deals with the wide 
(correlated) but shallow anomalies, partially relieves this 
requirement. Increasing window size does not appreciably 

increase calculated Curie depth, but merely leads to a low 
resolution (Li et al. 2010, 2013). This is because the extra 
information we can gain at the smallest wavenumbers (or 
longest wavelengths) is rather minimal (Fig. 4); one can 
never approach the theoretically required scale of infinity 
by just attempting to increase the window length by several 
hundred kilometers. The strong averaging effect of large 
windows can decrease, not increase, locally large Curie 
depths, for example, those associated with a cold accre-
tionary wedge. Features smaller than the chosen window 
size will not be properly imaged, because normally only 
one Curie depth is estimated in each window, and the small 
feature contributes only partially to the radially averaged 
spectrum in that window. It can also be seen that most of 
the “de-fractal” Curie depths in the study area are between 
15 and 40 km, although the color bar shows much larger 
values (Fig. 3e), and are not appreciably larger than those 
from using the centroid method (Fig. 3b, c). A Curie depth 
comparison between using a larger window size (Fig. 3b) 
and a smaller window sizes (Fig. 3c) also shows that a sig-
nificantly large window size at 500.0 km is not necessary.

Conclusion

This paper intends to clarify that mathematical treatment 
beyond the limit of data resolution and the underlying phys-
ics could introduce additional errors to Curie depth esti-
mation. Wherever there are true large Curie depths, the 
“de-fractal” method, by its very nature, has a tendency of 
overcorrecting fractal exponents and thereby producing 
small Curie depths and smearing out true geological trends.

For Curie depth estimation in a large area, the fractal 
exponent cannot be a constant, but it can be better fixed than 
variable but just loosely controlled purely by mathematical 
overtreatment. At long wavelengths containing primarily the 
Curie depth information, fractal exponents of source mag-
netizations are expected to be rather stable over a large area. 
Long-distance spatial correlation in source magnetization 

Fig. 3   Comparison between known Curie depth results in the western 
North America. a Topography of the study area. The white dashed 
line outlines the Wyoming Craton shown in Ravat et al. (2016). Thick 
black lines outline major tectonic units. The red triangle marks the 
Yellowstone hotspot. b Curie depths from the global reference Curie 
depth model (GCDM) of Li et al. (2017). c Curie depths from Wang 
and Li (2015). The green dashed line outlines the Wyoming Craton 
shown in Ravat et al. (2016). No Curie depths were obtained to the 
east of the 255° longitude line. d Curie depths from Bouligand et al. 
(2009). e Curie depths from the “de-fractal” method, and the black 
solid line outlines the Wyoming Craton (Ravat et al. 2016). f Surface 
heat flow gridded in a 30′ interval using the minimum curvature algo-
rithm with tension (Briggs 1974) (heat flow data from the interna-
tional heat flow commission database https​://www.heatf​low.und.edu/; 
last updated in January 2011). No preselection or preprocessing is 
done on the original raw heat flow data. Red line shows the location 
of a thermal property profile in Ravat et al. (2016). Data mapping is 
supported by GMT (Wessel and Smith 1995)

◂

Table 1   Comparison of parameters applied in four different Curie depth results

Author Method Window size (km) 3D fractal exponent β Data source

Bouligand et al. (2009) Nonlinear inversion 100.0 to 300.0 3.0 Magnetic anomaly map of North 
America (NAMAG 2002) and the 
state map of Nevada (Kucks et al. 
2006)

Wang and Li (2015) Centroid 80.0, 100.0 and 120.0 2.5 Magnetic anomaly map of North 
America (NAMAG 2002)

Li et al. (2017) Centroid 98.8, 195.0, and 296.4 3.0 Earth Magnetic Anomaly Grid of 2′ 
resolution (EMAG2, Maus et al. 
2009)

Ravat et al. (2016) “De-fractal,” based on centroid 500.0 Variable but unknown Unknown

https://www.heatflow.und.edu/
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is related to more regional geological features, whose geo-
thermal conditions and source magnetizations are unlikely 
to alter swiftly in short distances or between two nearby 
windows. Therefore, a constant fractal exponent constrained 
by geology is preferred, when the true fractal exponent is not 
obtainable, over a method trying to vary the fractal expo-
nents but in an overcorrection tendency.

Significantly large window lengths at ~ 500.0 km are not 
necessary for capturing large Curie depths. Normally using 

multiple window sizes ranging from tens of kilometers to 
200.0 km is sufficient, and an average from these different 
windows can suppress random noise and increase the resolu-
tion of Curie depths. With magnetic anomalies of increasing 
resolutions to be available in the future, the calculated Curie 
depths should be improved, mostly from better calibrating 
the depths to the magnetic top in the intermediate to large 
wavenumbers. But since Curie depths are more dependent on 
long wavelengths, better data coverage is even more critical.

The linearized stepwise centroid method has proven to be 
stable and efficient, and gained more applications. In recent 
years, new techniques, such as Bayesian inversion (Mather 
and Fullea 2019; Audet and Gosselin 2019), multitaper 
spectral analysis (Audet and Gosselin 2019), and wavelet 
transform (Gaudreau et al. 2019), are being applied in Curie 
depth estimation. By statistically incorporating independ-
ent geological and geophysical constraints, the fractal expo-
nent could be better estimated prior to the inversion of Curie 
depth. Ensemble-based approaches can produce probability 
distributions and provide greater confidence for the recov-
ered parameters.
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