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Abstract
In this research article, we have addressed the T-S (Takagi–Sugeno) fuzzymodeling and controlling and adaptive synchroniza-
tion of chaotic systems. Based on the T-S fuzzy model, the fuzzy logic for controlling and synchronization for chaotic systems
are designed via linear matrix inequality (LMI). We have illustrated the new chaotic Chen system. Lyapunov exponents and
bifurcation diagrams of new Chen system are obtained to justify the chaos in system. Analytical and computational studies of
new Chen systems with triangular fuzzy membership function have been performed by using LMI toolbox. Numerical simu-
lation illustrates the controlling chaos as well as adaptive synchronization for the identical systems. Feedback gain matrices
and Lyapunov positive definite matrix for the synchronization of identical new Chen systems are obtained.

Keywords Adaptive control · T-S fuzzy model · Linear matrix inequalities · Synchronization

1 Introduction

Chaos, bounded aperiodic in nature, is the inevitable phe-
nomenon. It is highly sensitive to the initial conditions.
Last several decades, it has become the attractive subject
in the field of nonlinear dynamical systems due to its poten-
tial applications in various inter-disciplines activities such
as mechanical engineering, chemical reaction, power con-
verters, signal process, secure communication and biological
system, etc. (Pecora and Carroll 1990; Chang et al. 2009).

Controlling chaos and synchronization of chaotic sys-
tems is the important application of chaos. Chaotic systems
can be controlled and synchronized due to their potential
application in sciences and technologies. These applications
have been done through linear or nonlinear feedback con-
trol, sliding mode control, robust control, optimal control,
adaptive control, fuzzy control, anti-synchronization using
fuzzy logic constant controller, adaptive sliding mode con-
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trol techniques, etc. ( Pecora and Carroll 1990; Khan and
Kumar 2018, 2016; Ahn 2011).

Zadeh’s fuzzy logic theory made a revolution in recent
research and development of sciences and technologies.
Fuzzy logic has played the vital role in the control theory.
It has given the new insight in reasoning (Zadeh 1988).
T-S (Takagi–Sugeno ) fuzzy model has mathematical sim-
plicity. It has been widely accepted tools for designing and
analysis of control systems (Tanaka and Wang 2001). Lian
et al. (2001) have presented a synthesis approach for the
synchronization of chaotic systems based on T-S fuzzy mod-
els. Complete Takagi–Sugeno (T-S) fuzzy logic has been
addressed by many researchers and scientists (Tanaka and
Wang2001;Khan andKumar 2019;Reddy andSamuel 2019;
Saidi et al. 2019;Khan andKumar 2016, 2017;Kumar 2020).

Fuzzy adaptive control technique is generally applied
when the parameters are unknown or time varying (Kim
2005). It is classified into direct and indirect adaptive con-
trollers. In direct fuzzy adaptive control, the parameters of
the controller are constructed initially from human control
knowledge, and then, iteratively it is adjusted to reduce the
output error between master and slave systems. In indirect
fuzzy adaptive control, parameters are constructed through
human knowledge for the systems and then, it is adjusted
iteratively to reduce the output error between master and
slave systems (Kim 2005). Wang et al. (2003) has estab-
lished the fuzzy LMI stabilization and synchronization of
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Chen system. Wang et al. (2004) has addressed the adaptive
synchronization for Chen chaotic systemwith fully unknown
parameters. Khan and Tyagi (2016) have proposed the anal-
ysis of a new 4-D hyper-chaotic system by using optimal and
adaptive control. Khan and Singh (2016) has established the
hybrid function projective synchronization of chaotic sys-
tems via adaptive control. Lin and Liao (2005), Kim (2005),
Ting (2005) have addressed an adaptive robust observer-
based synchronization of chaotic systems with time-delay.
(Fradkov et al. 1919; Fradkov 2017, 2019a, b) have written
a lot of research articles on adaptive control techniques.

In this article,we represent the controlling chaos and adap-
tive synchronization of chaotic systems based on T-S fuzzy
modeling using feedback control techniques. We investigate
the adaptive law to stabilize the error systems and stability
analysis via Lyapunov approach of chaotic systems. Main
contribution of this paper lies in four features. First, the
chaotic systems are mainly redesigned by T-S fuzzy model.
Second, fuzzy feedback control methodologies are used for
synchronization of systems. Fuzzy triangular membership
function with respect to one of state variables of fuzzy sys-
tem is drawn. Third, Lyapunov exponent and bifurcation
diagrams of new Chen systems are obtained to justify the
chaos in the system. Fourth, numerical simulations are pre-
sented to verify the controlling and adaptive synchronization
of systems. It yields themore robustness and efficient results.
These studies can help the researchers and scientists of chaos
control in thefield secure communication. These establish the
novelty of our research paper.

This article is organized as follows: Sect. 1 is introduction;
Sect. 2 describes the system description fuzzy modeling of
master–slave systems on the basis on adaptive control tech-
niques; in Sect. 3,we describe stability analysis viaLyapunov
approach; numerical simulations is used for verify the effec-
tiveness of proposed adaptive synchronization of identical
new Chen systems in Sect. 4; finally, conclusion is given in
Sect. 5.

2 SystemDescription of FuzzyModeling of
Chaotic System

Consider a continuous-time nonlinear dynamical system as

ẋ(t) = Ax(t) + f (x(t)), (1)

where x(t) ∈ Rn is the state variable of the system, A is the
n × n matrix of the system parameters and f : Rn −→ Rn

is the nonlinear part of the system. The system (1) is taken
as the master or drive system. Its slave or response system is
written as

ẏ(t) = By(t) + g(y(t)) + u(t), (2)

where y(t) ∈ Rn is the state variable of the slave system, B
is the n×n matrix of the system parameters, g : Rn −→ Rn

is nonlinear part of the system and u(t) ∈ Rn is the controller
of the slave system. If A = B and f = g, then x(t) and y(t)
are known as the two identical chaotic systems. If A �= B or
f �= g, then x(t) and y(t) are said to be two nonidentical
chaotic systems.

A Takagi–Sugeno fuzzy model based on IF-THEN rules
is described by a set of fuzzy implications. It is characterized
as local relations of the system in the state space. T-S fuzzy
master (drive) system (1) can be represented as

Ri :

⎧
⎪⎨

⎪⎩

IF s1(t) is in Mi1, s2(t) is in Mi2,

· · · sn(t) is inMin, THEN

ẋ(t) = Ai x(t) + Aui x(t) + Buiφ(t), i = 1, 2, . . . , n,

(3)

where Ri (i = 1, 2 . . . n) denotes the i th fuzzy rules.
s1(t), s2(t), · · · sn(t) are the premise variables which con-
sist of state vectors of the system, Mi j ( j = 1, 2, . . . , n) are
fuzzy sets, Ai ∈ Rn×n(i = 1, 2, . . . n) are constant matrices
and (Aui ,Bui ) are unknown parameters matrices of master
(drive) system, φ(t) ∈ Rm is the oscillated force or constant
value in the chaotic dynamics systems. Using the fuzzifier,
the output of the fuzzy master system is written as

ẋ(t) =
n∑

i=1

hi (s(t))(Ai x(t) + Aui x(t) + Buiφ(t)), (4)

where

hi (s(t)) = wi (s(t))
∑r

i=1 wi (s(t))
,

wi (s(t)) =
n∏

j=1

Mi j (s(t)),

hi (s(t)) is denoted as the normalized weight of the IF-THEN
rules which satisfies

0 ≤ hi (s(t)) ≤ 1 and
n∑

i=1

hi (s(t)) = 1.

Similarly, fuzzy slave (response) system can bewritten as:

Ri :

⎧
⎪⎨

⎪⎩

IF ŝ1(t) is in Mi1, ŝ2(t) is in Mi2,

· · · ŝn(t) is inMin, THEN

ẏ(t) = Ai y(t) + Âui y(t) + B̂uiφ(t) + u(t), i = 1, 2, · · · , n,

(5)

where ŝ(t) = (ŝ1(t), ŝ2(t) . . . ŝn(t))T ∈ Rn are the premise
variables which consist of state vectors of the system,
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Fig. 1 Three-dimensional phase portrait of new chaotic Chen system
(without controller)

Mi j ( j = 1, 2, . . . n) are fuzzy sets. u(t) ∈ Rn is the con-
trol input vector, Âui and B̂ui are the estimates of Aui and
Bui of the master system, which is generated by an adaptive

law. The total fuzzy response system can be rewritten as

ẏ(t) =
n∑

i=1

hi (ŝ(t))(Ai y(t)+ Âui y(t)+ B̂uiφ(t))+u(t), (6)

The error signal is written as

e(t) = y(t) − x(t). (7)

The error dynamics of e(t) is obtained as

ė(t) = ẏ(t) − ẋ(t)

=
n∑

i=1

hi (ŝ(t))(Ai y(t) + Âui y(t) + B̂uiφ(t))

−
n∑

i=1

hi (s(t))(Ai x(t) + Aui x(t)

+Buiφ(t)) + u(t). (8)

Fig. 2 Two-dimensional phase
portrait of new chaotic Chen
system (without controller)
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Fig. 3 Time series graphs of new chaotic Chen system (without controller)

It can be rewritten as

ė(t) =
n∑

i=1

hi (ŝ(t))(Aie(t) + Âui e(t) + Ãui x(t)

+B̃uiφ(t)) + u(t) + ψ(t), (9)

where Ãui = Âui − Aui , B̃ui = B̂ui − Bui and

ψ(t) =
n∑

i=1

(hi (s(t))−hi (ŝ(t)))(Ai x(t)+Aui x(t)+Biφ(t)).

(10)

We design the adaptive control law to stabilize the error
dynamics (8).

Control rule i :

Ri :
{
IF ŝ1(t) is in Mi1, ŝ2(t) is in Mi2, · · · ŝn(t) is in Min , THEN

u(t) = Âui e(t) + Ki e(t), i = 1, 2, . . . , p,

(11)

where Ki are the feedback gain matrices.
The inferred control law is written as

u(t) =
n∑

i=1

hi (ŝ(t)) Âui e(t) +
n∑

i=1

hi (ŝ(t))Kie(t). (12)

We assume that the adaptive law is represented by

˙̂Aui = σAui hi (ŝ(t))e(t)x
T (t),

˙̂Bui = σBui hi (ŝ(t))e(t)φ
T (t),

(13)
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Fig. 4 Membership function of x1(t)
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Fig. 5 Lyapunov exponent of new chaotic Chen System

where σAui and σBui are the constant adaptation gains. With
(9) and (10) , the synchronized error dynamics by control
law is obtained as

ė(t) =
n∑

i=1

hi (ŝ(t))(Ai − Ki )e(t) + Âui x(t) + B̂uiφ(t) + ψ(t), (14)

Let us consider the following robust performance

∫ t f

0
eT (t)τe(t)dt ≤ χ0 + η2

∫ t f

0
ψT (t)τψ(t)dt, (15)

where t f is the terminal time; in t f , the letter f is index; τ is
a positive definite matrix, χ0 is a value related to the system
initial conditions and η is a prescribed attenuation level.

We define the Lyapunov function as

V (e(t), Ãui , B̃ui ) = eT (t)Pe(t) +
n∑

i=1

tr

(
ÃT
ui P Ãui

σAui

)

+
n∑

i=1

tr

(
ÃT
ui P Ãui

σAui

)

, (16)

where P is a positive definite matrix and tr(A) represents
the trace of A. The time derivative of V along the trajectory
of (13) and (14) is written as

V̇ (e(t)) = ėT (t)Pe(t) + eT (t)Pė(t)

+
n∑

i=1

tr

( ˙̃AT
ui P Ãui

σAui

+ ÃT
ui P

˙̃Aui

σAui

)

+
n∑

i=1

tr

( ˙̃BT
ui P B̃ui

σBui
+ B̃T

ui P
˙̃Bui

σBui

)

. (17)

=
n∑

i=1

hi ŝ(t)(Ai − Ki )
T P(Ai − Ki )e(t)

+2eT (t)P
n∑

i=1

hi (ŝ(t)) Ãui x(t)

+2eT (t)P
n∑

i=1

hi (ŝ(t))B̃uiφ(t) + eT (t)Pψ(t)

+ψT (t)Pe(t) −
n∑

i=1

2tr

( ˙̃AT
ui P

˙̃Aui

σAui

)

−
n∑

i=1

2tr

( ˙̃BT
ui P

˙̃Bui

σBui

)

.

After some algebraic manipulations, we have

V̇ ≤
n∑

i=1

hi (ŝ(t))e(t)((Ai − Ki )
T P + P(Ai − Ki )

+τ + 1

η2
PP)e(t) − eT (t)τe(t) + η2ψTψ

+2tr

(
n∑

i=1

hi (ŝ(t)) Ãui Pe(t)x
T (t) −

n∑

i=1

ÃT
ui P

˙̃Aui

σAui

)

+2tr

(
n∑

i=1

hi (ŝ(t))B̃ui Pe(t)φ
T (t) −

n∑

i=1

B̃T
ui P

˙̃Bui

σBui

)

.

If there exists a symmetric and positive definite matrix P
such that the following linear matrix inequalities (17) hold,

((Ai − Ki )
T P + P(Ai − Ki ) + τ + 1

η2
PP) < 0, (18)
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Fig. 6 Bifurcation of new
chaotic Chen system with
respect to the parameters α, β,

and γ , respectively
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we obtain that

V̇ ≤ eT (t)τe(t) + η2ψTψ. (19)

Integrating on both sides of (19) from t = 0 to t = t f
yields

V (e(t f ), Ãui (t f ), B̃ui (t f )) − V (e(0), Ãui (0), B̃ui (0))

≤ −
∫ t f

0
eT (t)τe(t)dt + η2

∫ t f

0
ψT (t)τψ(t)dt, (20)

which implies

∫ t f

0
eT (t)τe(t)dt

≤ V (e(0), Ãui (0), B̃ui (0)) + η2
∫ t f

0
ψT (t)τψ(t)dt .

(21)

Letting χ(0) = V (e(0), Ãui (0), B̃ui (0)), then the robust
performance (15) is guaranteed for i = 1, 2 . . . n. Using
Equation (12) and (18), V̇ < 0 if ψ(t) = 0 . Therefore, the

total synchronization system (14) is asymptotically stable,
i.e., the two fuzzy chaotic system (3) and (5) can be synchro-
nized. Equation (18) can be rewritten in Schur complement
form as
[
AT
i P + PAi − XT

i − Xi P
P −η2 I

]

< 0, i = 1, 2, . . . n.

(22)

We determine the feedback gain matrices Ki from the fact
that Ki = P−1Xi for i = 1, 2, . . . n.

The trajectories of e(t), Ãui and B̃ui are bounded for all
t > 0, e(t) and x(t) ∈ L∞ space. Thismeans that y(t) ∈ L∞
space. Therefore, all signals in (13) and (14) are uniformly
bounded. ψ ∈ L2 space and V is bounded.

lim
t→∞ V (e(t), Ãui , B̃ui ) = V∞ < ∞. (23)

Using (20) and (23), we get

∫ t f

0
eT (t)τe(t)dt ≤ V0 − V∞ + η2

∫ t f

0
ψT (t)τψ(t)dt,

(24)
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Fig. 7 Stabilization of state of trajectory of 3D new chaotic Chen system in a x1, y1 b x2, y2 and c x3, y3 , respectively ( with controller)

where V0 = V (e(0), Ãui (0), B̃ui (0)). φ(t), ψ(t), Âui , B̂ui ,

x̂(t), e(t) belong to L∞ space.
Using equation (14), ė(t) ∈ L∞ ⇒ e(t) ∈ L∞
Thus,

lim
t→∞ e(t) = 0. (25)

That is, master and slave systems are in synchronization.
It means e(t) → 0 when t → ∞.

3 Stability Conditions Via Lyapunov
Approach

Proposition Duan and Yu (2013): The continuous-time lin-
ear system in the form of

ẋ(t) = Ax(t), (26)

with A ∈ Rn×n is Hurwitz stable if and only if there exists a
matrix P ∈ Rn×n , such that
[

P > 0
AT P + PA < 0.

]

(27)

Lemma 1 (Tanaka and Wang 2001; Duan and Yu 2013):
Equilibrium of the synchronization error system (18) is
asymptotically stable if the following condition holds

GT
i P + PGi < 0, i = 1, 2, . . . r . (28)

where Gi = Ai − Ki and P is a common matrix.

4 Numerical Simulation

Consider the newChen system (Cermak andNechvatal 2019)
as
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Fig. 8 Controlling of drive new
chaotic Chen System in
component-wise activated at
t = 100
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⎧
⎪⎨

⎪⎩

ẋ1 = α(x2 − x1),

ẋ2 = γ x1 − αx1 − x1x3 + γ x2,

ẋ3 = x1x2 − βx3,

where α, β, γ > 0 are assumed as constant parameters.
For simplicity, we assume that x1(t) is observable. Because
“x1(t) contains all nonlinear terms” in the 3D new Chen
system. It is also assumed that x1(t) ∈ [xmin, xmax ] =
[−k, k] with k = 30.

The fuzzy master (drive) system of new Chen attractor is
written as

Rule Ri :

{
IF x1(t) is in Mi ,THEN

ẋ(t) = Ai x(t) + Aui x(t) + Buiφ(t), i = 1, 2,

where x(t) = (x1, x2, x3)T , A1 =
⎡

⎣
0 0 0
0 0 −k
0 k 0

⎤

⎦ , A2 =
⎡

⎣
0 0 0
0 0 k
0 −k 0

⎤

⎦ , Au1 = Au2 =
⎡

⎣
−α α 0

(γ − α) γ 0
0 0 −β

⎤

⎦ .

The corresponding membership functions fuzzy sets are

M1(x1(t)) = 1
2

(
1 + (x1(t))

k

)
, M2(x1(t)) = 1

2

(
1 − (x1(t))

k

)
.

We take k = 30. Slave new Chen system is written as:
⎧
⎪⎨

⎪⎩

ẋ1 = α(x2 − x1) + u1,

ẋ2 = γ x1 − αx1 − x1x3 + γ x2 + u2,

ẋ3 = x1x2 − βx3 + u3,

The fuzzy response system of new Chen systems is written
as

Rule Ri :

{
IF y1(t) is in Mi ,THEN

ẏ(t) = Ai y(t) + Aui y(t) + u(t), i = 1, 2.

where Âu1 =
⎡

⎣
−α̂11 α̂12 0

(γ̂11 − α̂13) γ̂12 0
0 0 β̂1

⎤

⎦ , Âu2 =
⎡

⎣
−α̂21 α̂22 0

(γ̂21 − α̂23) γ̂22 0
0 0 β̂2

⎤

⎦

Here, u(t) = (u1, u2, u3). (α̂11, α̂12, α̂13, α̂21, α̂22, α̂23, )

, (β̂1, β̂2) and γ̂11, γ̂12, γ̂21, γ̂22 are the estimated unknown
parameters of α, β and γ , respectively.

Simulation results for the new chaotic Chen system:
Take the initial conditions of master and slave new chaotic
Chen systems, x(0) = (5, 17, 25) and y(0) = (10, 15, 20).
Figure 1 represents the three-dimensional phase portraits of
system. Figure 2a–c represents the two-dimensional phase
portraits of system in x1x2, x2x3 and x3x1 , respectively. Fig-
ure 3a–c represents the time-series graphs of system. Fuzzy
membership function of x1(t) of the system is shown in Fig.
4.We have computed the Lyapunov exponents of system.We
have λ1 = 2.0647, λ2 = −0.0046717 and λ3 = 12.06. On
calculating the Lyapunov exponents, we observe that out of
these three Lyapunov exponent values, one is positive, one is
negative, and one of these tends to zero. It verified the chaos
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(a) (b)

(c)

Fig. 9 Synchronization of error dynamics of new chaotic Chen systems

in the newChen system. It is shown in Fig. (5). Figure (6)a–c
shows the bifurcation diagramswith respect to the parameters
α, β and γ , respectively. The parameters range of the chaotic
system is taken as α = 30−35, β = 1−5 and γ = 25−30.
These show the strange points. The unknown parameters of
α̂11, α̂12, α̂21, α̂22, α̂13, α̂23, β̂1, β̂2, γ̂11, γ̂12, γ̂21, γ̂22 with
zero initial conditions are adjusted by an adaptive law (13),
where the adaption gains σAu1 = 1, σAu2 = 3.5 are used. The
state of slave trajectories of the system tracks that of mas-
ter system (a) x1, y1 (b) x2, y2, (c) x3, y3 which is shown in
Fig. 7a–c. Figure 8 shows the controlling of newchaoticChen
system in component-wise. These are activated at t = 100.
At the initial conditions, e(0) = (5,−2,−5), Fig. 9a–c rep-
resents the synchronization of error dynamics for identical
systems. Figure 10a–d shows the estimation parameters of
(a)α̂11, α̂12, α̂21, α̂22, α̂13 and α̂23 (b) β̂1 and β̂2 and (c) γ̂11,
γ̂12, γ̂21, and γ̂22 tend to the actual parameters values of α, β

and γ , respectively. That is,

lim
t→∞ e(t) = 0.

The feedback gain matrices and Lyapunov positive definite
matrix of system are simulated with the parameter values
α = 35, β = 3 and γ = 28. Estimated parameters for
system are shown in Fig. 10a–d. To examine the validity of
stability conditions for chaotic system, we use the MATLAB
LMI toolbox to obtain the feedback gain matrices, K1 and
K2 and Lyapunov positive definite matrices for η = 0.001
as:

K1 = 1.0e−12

⎡

⎣
0.1600 0.1570 0.1514
0.1570 0.3446 0.0221
0.1514 0.0221 0.2364

⎤

⎦ ,

K2 = 1.0e−10

⎡

⎣
0.0607 0.0191 −0.0208
0.1016 0.0325 −0.0378
0.0281 0.0085 −0.0074

⎤

⎦ .
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Fig. 10 Estimated parameters for the new chaotic Chen system a α̂11, α̂12, α̂21, α̂22, α̂13 and α̂23 b β̂1 and β̂2, c γ̂11, γ̂12, γ̂21, and γ̂22 and d α, β, γ

P =
⎡

⎣
0.2361 −0.3377 0.3024

−0.3377 1.0915 −0.0591
0.3024 −0.0591 0.7564

⎤

⎦ .

5 Conclusions

In this research article, we have investigated the T-S fuzzy
model based on controlling and adaptive synchronization
of chaotic systems. These methodologies provide the new
insight in control systems using LMI techniques. T-S fuzzy

modeling with the help of LMI technique is an effective and
fruitful results for controlling and synchronization chaotic
systems. New Chen system illustrates the effectiveness of
the proposed approach. Lyapunov exponents and bifurcation
diagrams for new Chen system are calculated. In numerical
solution, the feedback gain matrices and Lyapunov positive
definite matrix have been obtained. It confirms the stabil-
ity of fuzzy control systems and satisfies the linear matrix
inequalities (LMIs). These results verify the efficiency of the
feedback gains and T-S fuzzy control theory application to
the synchronization for two identical new Chen systems.
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