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Abstract
This paper is about scheduling problems for a class of flexible manufacturing systems (FMS) that have some operations with 
total precedence constraints and other operations with full routing flexibility (namely hybrid FMS). The objective is to find 
a control sequence from an initial state to a reference one in minimal time. For that, a systematic multi-level formalism is 
introduced to model the hybrid FMS based on the hierarchical structuration of the operations. Transition-timed Petri nets 
(T-TPN) that behave under earliest firing policy are used for that purpose. Then a new cost function is introduced to estimate 
the residual time to the reference. This estimation is proved to be a lower bound of the true duration. A modified Beam 
Search algorithm is proposed that uses the cost function to selectively explore the Petri net (PN) state space. Computational 
experiments illustrate the efficiency of the approach in comparison with other existing methods.

Keywords  Complex discrete event systems · T-TPN · Scheduling · Beam search

1  Introduction

Flexible manufacturing systems (FMS) consist of a finite set 
of operations and resources and can process different types 
of parts based on a prescribed sequence of operations. In an 
FMS, there is some amount of flexibility that makes it able to 
respond to varying conditions. The purpose of this work is to 
solve scheduling problems for flexible and smart FMS used 
by the industry of the future. Nowadays production with 
large series of identical products is no longer competitive. 
Consumers ask for personalized products. Consequently, the 
great challenge of Industry 4.0 is to offer personalized prod-
ucts, and despite low manufacturing volumes, to maintain 
gains. The consumers also like to communicate with the 
processes and the machines during the production phases. 
The concept of industry 4.0 or industry of the future cor-
responds to such new organizations of the means of produc-
tion called "smart production". Smart production requires, 
for example, to give flexibility to some operations (and to 
maintain precedence constraints to other ones) as shown in 

Fig. 1: in the first job, the controller could start by M1 then 
M2 or by M2 then M1. Smart production also requires to use 
the same machines or servers to achieve different operations: 
in Fig. 1, M1 is used for an operation with a duration of 60 s 
in the first job and for another operation (different from the 
previous one) with a duration of 100 s in the second job.

In this context, a particular class of FMS that combines 
operations with total precedence constraints and operations 
with full routing flexibility (namely hybrid FMS) is proposed 
in this work.

Petri nets (PN) have been widely used for the design, 
modelling and analysing of FMS with concurrency, syn-
chronization, sequencing and sharing of resources. The 
optimization of a specific cost function is a main objective 
of many scheduling problems aiming to allocate a limited 
number of resources within several operations. However, 
the scheduling problem of complex FMS is NP-hard and 
the computational time to obtain an optimal schedule grows 
exponentially with respect to the problem size. The problem 
becomes even more challenging in the context of Industry 
4.0. Thus, a large literature has been devoted to such opti-
mization problems (Cassandras 1993; Lee and DiCesare 
1994; Luo et al. 2015). In this paper, we develop first a sys-
tematic structured formalism that is suitable to represent 
hybrid FMS from the industry of the future. Then, based 
on the obtained model and on a new cost function that is 
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proved to be a lower bound of the true makespan, a variant 
of the Beam Search method is detailed to compute sequences 
of minimal duration by exploring selectively the PN state 
space. The approach should also avoid deadlocks and dead 
branches that are a priori unknown for the controller.

The paper is organized as follows. Section 2 is about 
the state of the art and gives the position of the paper with 
respect to the usual organizations of FMS and the con-
trol issues of scheduling problems. In Sect. 3, we present 
timed Petri nets (TPN) and Sect. 4 details the method used 
to model the hybrid jobs with transition-timed Petri nets 
(T-TPN). In Sect. 5, the approach used for scheduling control 
of hybrid FMS is described. Finally, computational experi-
ments and results are exposed in Sect. 6.

2 � State of the Art

PN have been widely used to model scheduling problems 
for discrete event systems (DES). Liu and Barkaoui (2016) 
have listed and discussed the subclasses of PN used for this 
purpose. In this section, we remind some usual organizations 
of FMS and the use of PN for scheduling problems.

2.1 � Job Shop Modelling

A job shop is a manufacturing process structure in which 
a set of jobs are processed on multiple resources with total 
precedence constraints. In a job shop, called also multi-path 
workshop, each job is composed of a sequence of operations 
performed according to a well-defined order a priori fixed. 
Each operation is processed on a specific resource. In order 
to model the job shop scheduling problem, a subclass of 
ordinary and conservative PN referred to as S3PR (System 
of Simple Sequential Processes with Resources) has been 
defined (Ezpeleta et al. 1995; Xing et al. 1996).

Later, in order to extend the use of resources in job shop, 
a generalization of S3PR model referred to as S4R (Sys-
tems of Sequential Systems with Shared Resources) has 
been defined by Barkaoui and Ben Abdallah (1996). This 
extension exceeds the limitation of the use of resources and 
concerns especially the modelling of concurrently cyclic 
sequential processes sharing common resources: in S3PR, 
only one resource is allowed per operation which is not the 
case for S4R where the use of resources is almost arbitrary 
and only requires conservativeness.

2.2 � Open Shop Modelling

An open shop is a workshop with full routing flexibility 
where a set of jobs are processed on multiple resources with-
out any precedence constraints. In order to model the open 
shop scheduling problem, the S3PR nets could be used. The 
problem is that due to complexity issues, this representa-
tion becomes quickly difficult to handle especially for large 
systems. Therefore, the use of S3PR leads to an exponential 
explosion of the size of the net with regard to the number of 
operations because there are n! possible routes for n opera-
tions of a single job. An extension of S3PR, referred to as 
S2OPR (Set of Simple Open Processes with Resources), has 
been proposed to overcome the problem (Mejía et al. 2017). 
This extension is a compact representation for the open shop 
problem, and the net is much smaller compared to its equiva-
lent S3PR model, but it needs to be 1-bounded.

2.3 � Scheduling Control

PN are largely used for control issues of DES (Cassandras 
1993). They are also a popular graphical and mathemati-
cal tool used to handle the scheduling problems with rout-
ing flexibility in the presence of shared resources. The key 
concept is to explore selectively the state space of the PN 
model with the intention of finding a firing sequence, with 
the minimum duration. The firing sequence is computed by 
optimizing a specific cost function.

A first approach concerns global methods where the 
whole reachability graph is explored (Lefebvre and Daoui 
2018; Lefebvre 2018). This approach leads surely to opti-
mal solutions, but the problem is the exponential explosion 
of the computational time and memory especially for large 
systems. Consequently, the search space grows exponentially 
with problem scale and makes the scheduling method appli-
cable to small systems only. To overcome the limitation of 
global methods, a large literature has been devoted in order 
to search solutions with weak complexity.

The A* search algorithm is a very well-known algorithm 
used to accelerate the search of solutions. This technique 
expands only the most promising branches of a search tree. 
Lee and DiCesare (1994) proposed an algorithm which 

Fig. 1   Example of an FMS organization in Industry 4.0
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combines the Petri net reachability graph and the A* to 
schedule FMS. However, the result leads to an explosion 
of the state space of the net (Pearl 1984). To improve the 
exploration, researchers developed several improvements 
on it, for example best-first strategy with controlled back-
tracking (Xiong and Zhou 1998; Lefebvre 2016), dynamic 
programing (Xiong et al. 2014), hybrid A* search in order 
to relax the evaluation scope (Lee and Lee 2010), dynamic 
window search algorithm in which a policy is applied to 
select the most promising paths (Reyes et al. 2002), A* algo-
rithm with depth-first strategy (Huang et al. 2008), iterative 
deepening A* with backtracking (Baruwa et al. 2015) and 
more informed heuristics (Liu et al. 2014; Moro et al. 2000; 
Huang et al. 2014; Mejía and Niño 2017).

Contrary to the A* algorithm where the previously 
explored candidates during search are all conserved, an 
informed graph search referred to as Beam Search (BS) 
algorithm (Ow and Morton 1988) conserves only the best β 
previously explored candidates. The complexity in time and 
memory remains polynomial thanks to this restriction, but 
the main drawback is that promising candidates could be 
eventually eliminated due to the selection method. Several 
variants of the Beam Search algorithm in combination with 
Petri nets have been proposed (Mejía and Odrey 2005; Mejía 
and Montoya 2009; Luo et al. 2015). However, for complex 
FMS, these improvements remain either insufficient or inap-
plicable to reach the optimal scheduling.

3 � Timed Petri Nets

A PN structure is defined as <P, T, WPR, WPO>, where 
P = {p1,…, pm} is a set of m places and T = {t1,…, tq} is 
a set of q transitions. WPO ∈ (N)m×q and WPR ∈ (N)m×q are 
the post- and pre-incidence matrices (N is the set of non-
negative integer numbers), and W = WPO − WPR ∈ (Z)m×q (Z 
is the set of positive and negative integer numbers) is the 
incidence matrix. For any node x ∈ T ⋃ P, x• stands for the 
postset of x and •x stands for the preset of x. < G, M0 > is a 
PN system with initial marking M0 and M ∈ (N)m represents 
the PN marking vector. For each marking M, P(M) ⊆ P is 
defined as the subset of non-empty places at marking M (i.e. 
the support of M). A transition tj is enabled at M if there are 
enough tokens in the preset of tj: ∀ pi ∈ P, M(pi) ≥ WPR(pi,tj) 
where M(pi) stands for the number of tokens in place pi and 
WPR(pi,tj) is the element of matrix WPR at row i and column 
j. The firing of a transition t at marking M removes WPR(p, 
t) tokens from each place p in •t and adds WPO(p, t) tokens 
to each place p in t•. This is written as M [t > M’ (Ezpeleta 
et al. 1995; Mejía et al. 2017) where M’ is the resulting 
marking when the enabled transition t fires at marking M.

There are several classes of TPN, in particular T-TPN, 
that associate a firing duration to each transition in the net 
(Ramchandani 1974), place-timed Petri net (P-TPN) that 
associate a sojourn duration to each place of the net (Sifakis 
1979) and time PN that associate a time interval with each 
transitions (Merlin 1974). In this paper, T-TPN are used to 
represent the time required to perform the operations.

A T-TPN is a 6-tuple N =  < P, T, WPR, WPO, D, 
M0 > where < P, T, WPR, WPO, M0 > is a marked PN, and 
D: T → R+ is a firing time function that assigns a positive 
real delay D(t) to each transition t of the net. A transition 
t may fire at earliest after the minimal delay D(t) from the 
date it has been enabled. The residual firing time is defined 
for each transition tj at each marking M. If a transition tj 
becomes enabled at time τenabled(tj), it will fire at earliest at 
time τenabled(tj) + D(tj). In this paper, the residual firing time 
RFT(tj) ∈ [0, D(tj)] of transition tj is defined as the minimum 
value between the non-negative difference between the cur-
rent time τ and the enabled time τenabled(tj) and the minimal 
delay D(tj): RFT(tj) = min(τ—τenabled(tj), D(tj)).

A timed firing sequence σ of length | σ |= K and of dura-
tion τK is defined as σ = t(τ1)t(τ2)…t(τK) where τ1,…, τK rep-
resent the times of the firings that satisfy 0 ≤ τ1 ≤ τ2 ≤ … ≤ τK. 
The timed firing sequence σ fired at M leads to the timed 
trajectory (σ, M) = M(0) [t(τ1) > M(1)…. M(K  −  1) 
[t(τK) > M(K) with M(0) = M. The notation M [σ > M(K) 
denotes that there exists such a valid timed firing sequence 
σ from marking M to marking M(K).

In a PN structure, a Path is an orderly succession of K 
nodes x1 x2 … xK with xk ∈ T ⋃ P such as xk+1 ∈ xk• for 
k = 1,…, K − 1. The duration of Path is defined as:

A Path is said of minimal duration if there exists no other 
path from x1 to xK with a smaller path duration and we refer 
to the path of minimal duration from x1 to xN as to Path*(x1, 
xN). We refer to the duration of Path*(x1, xN) as to χ*(x1, xN).

4 � Complex FMS Modelling

A FMS is a system composed of several jobs and resources. 
Each job is composed by a set of operations which per-
form on the resources. Usual FMS are job shops and open 
shops but more general organizations could be considered 
as hybrid FMS studied in this work. Let J and R be, respec-
tively, a set of jobs and a set of resources. Each job J ∈ J con-
sists of a set of operations OJ = {oi, i ∈ {1,…,n}}, where oi is 
the operation i of job J. The set of all operations is denoted 
O =  ∪ {OJ, J ∈ J}. Note that for simplicity the reference of a 
given operation oi to the corresponding job J is not explicitly 

(1)�(Path) =
∑

t∈Path
D(t)
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reported, but since each operation oi belongs to a single job 
J there is no confusion.

An operation oi is defined by a duration di representing 
the time required to be performed and a subset of resources 
Ri ⊆ R required for its execution: oi = (di, Ri). An operation 
oi is modelled using one place pi and one timed transition 
toi so-called operation transition with D(toi) = di as shown 
in Fig. 2. Resource places are connected to the operation 
transition toi by means of self-loops: when oi is executed, 
the set of resources Ri needed is reserved from the enabling 
time to the firing time of toi.

4.1 � T‑TPN Model of a Sequence of Operations

T-TPN are used to model sequences of operations. In the 
following, we assume for simplicity that the capacities of 
the jobs of the FMS are limited to 1. The minimal duration 
of a single execution of the job J composed by a sequence 
of operations and without shared resource is given by (2):

An example of a cyclic sequence of two operations with 
a minimal duration D(J) = d1 + d2 is shown in Fig. 3. The 
operations of the job are ordered, the job processes o1 that 
requires the resource r1 and then o2 that requires r2.

When the capacity is equal to 1, only one token can pass 
to perform the job and the others will stand on the start place 
sJ (s1 in the example of Fig. 3), waiting for the first token to 
finish all the operations of the job (o1 and o2 in the example 
of Fig. 3). When the first token passes to perform the job, 
the capacity becomes 0 (there is no token in the place cp1 of 
this example) and no more token in sJ can pass. Then, once 
the token has passed through all the operations of the job, 
the capacity returns to 1 and another token from sJ can be 
used to perform the job.

4.2 � T‑TPN Model of a Set of Operations with Full 
Routing Flexibility

T-TPN are also used to model a set of operations per-
formed with full routing flexibility. The open shop could 
be modelled using S3PR or S2OPR. A comparison of sizes 
of both the S3PR and the equivalent S2OPR has been done 

(2)D(J) =
∑

to∈J
D(to)

(Mejía et al. 2017): for large systems where operations are 
performed with full routing flexibility, the S2OPR net is 
much smaller than its equivalent S3PR model.

A controller composed by flag and counter places is 
used with S2OPR (Mejía et al. 2017). For each job with 
full routing flexibility, a set of flag places PF = {fi, oi ∈ OJ} 
is connected to the postset of the start transition ts to 
ensure that the system executes each operation only once. 
In addition, a single counter place c is used to ensure that 
the system executes all operations. An example of two 
operations with full routing flexibility is shown in Fig. 4. 
The S3PR model is shown in Fig. 4a while its equiva-
lent S2OPR model is shown in Fig. 4b. Operations of the 
job are not ordered: the job can process o1 that requires 
the resource r1 then o2 that requires r2 or o2 then o1. For 
S2OPR model, the controller is composed of the flag 
places f1 and f2 and the counter place c12.

A set of operations performed with full routing flexibil-
ity without shared resource has a minimal duration D(J) 
computed with (2). The minimal duration of the example 
shown in Fig. 4 is D(J) = d1 + d2.

Fig. 2   T-TPN model of an 
operation with a single resource

Fig. 3   T-TPN model of a 
sequence of operations

Fig. 4   T-TPN model of a set of operations with full routing flexibility
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4.3 � T‑TPN Model of Hybrid Jobs

A FMS could include more complex organizations (and not 
only job shops and open shops) with partial routing flexibil-
ity. A particular class of complex shops, referred to as hybrid 
jobs, which satisfy some specific organization properties, 
is considered next. The organization of a hybrid job could 
be iteratively decomposed in a set of basic jobs. Such jobs 
could be either sequences of operations performed with total 
precedence constraints or sets of operations performed with 
full routing flexibility. The systematic design method intro-
duced in our previous work (Cherif et al. 2018) to encode the 
iterated organization is improved here to be more efficient 
for the modelling of complex workshops. The modelling is 
based on some basic functions.

Operation (di, Ri) is the function used to model the opera-
tion oi. The duration di of the operation and the set of needed 
resources Ri are given as inputs. It returns the object “opera-
tion” which may be considered as an elementary job.

Sequential (J1, J2,…,Jh) is the function used to model a 
sequence of h jobs (eventually elementary jobs) given as 
inputs. It returns the resulting job “sequence” which is mod-
elled as a sequence of J1 to Jh.

Open (J1, J2,…,Jh) is the function used to model a set of 
h jobs (eventually elementary jobs) with full routing flex-
ibility. It returns the resulting job “open” as the set of jobs 
J1 to Jh.

In addition, the operations in the hybrid job could share 
some resources.

Example:  An example of hybrid FMS is described below. 
The hybrid FMS has two jobs J1 and J2 with 9 resources 
including 4 shared resources r2, r3, r7 and r9. J1 consists of 
the sequence of operations o1, o2, o3 and o4. J2 is a hybrid job 
composed of five operations o5, o6, o7, o8 and o9. Figure 5 
shows the organization of the FMS according to the three 
basic functions previously described. The T-TPN model of 
this hybrid FMS is presented in Fig. 6.

5 � Beam Search for Scheduling Control

In this paper, an algorithm which is inspired from Hybrid 
Filtered Beam Search (HFBS) presented in (Mejía and Niño 
2017) is proposed. The HFBS combines the main princi-
ples of the Beam Search (Sabuncuoglu and Bayiz 1999), 
the Filtered Beam Search (FBS) (Ow and Morton 1988) 
and the Beam A* Search (Mejía and Montoya 2009; Mejía 
and Odrey 2005). The idea of HFBS algorithm is to provide 
diversification at early steps and intensification at late steps 
of the search. Indeed, the algorithm aims to select multiple 
candidates from different branches at the first steps but only 
fewer candidates at the later steps. The algorithm depends 

on two parameters: a global filter parameter βg which pre-
sents the maximum number of expanded candidates at one 
iteration of the algorithm (global beam width) and a local 
filter parameter βl which presents the maximum number 
of expanded successors from one given parent node (local 
beam width). The search algorithm starts with an initial 
marking that is the initial population. The search is based 
on iterations: at the first iteration, the algorithm generates 

Fig. 5   Hybrid FMS organization

Fig. 6   Model of T-TPN model of the hybrid FMS
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the successors of the initial population and selects the best 
βg candidates, and a new population is created. Then at each 
iteration, it expands the population obtained at the previous 
iteration and creates a new population composed of the best 
βg candidates. The algorithm terminates in two cases: it may 
stop when the reference marking is reached or when all can-
didates have been expanded. One drawback is the selection 
of the best parameter combination (βg and βl) for a given 
instance which is not obvious even though large values of 
βg and βl do not ensure to result in the optimal solution but 
certainly to expand unpromising candidates. However, when 
the selection of the nodes is good, a near optimal solution 
or even an optimal solution can be obtained. The selection 
of candidates that will be expanded is based on a heuristic 
cost function which is defined next. The priority of expan-
sion is given to the candidates that have the lowest values 
of the cost function.

5.1 � Objective Function

In this section, a new cost function is defined to be relevant 
to complex FMS which consist of hybrid jobs where opera-
tions are performed which partial precedence constraints. 
The objective function calculates a value used to select the 
candidates to be expanded at each iteration of the search. 
Consider an initial marking M0 and a reference marking Mref 
such that one or more trajectories exist between M0 and Mref. 
Imagine that (σ, M0) is one of these trajectories and that (σ, 
M0) is incrementally computed. For each intermediate mark-
ing M of (σ, M0), the firing sequence σ is divided into two 
parts according to σ = σ1 σ2. The first part corresponds to 
the already computed trajectory (σ1, M0) from M0 to M (i.e., 
M0 [σ1 > M), and the second part corresponds to the residual 
trajectory (σ2, M) with an unknown sequence σ2 from M to 
Mref. The following cost function is reformulated as:

where M is defined as M0 [σ1 > M.
For the trajectory (σ1,M0) already computed, a system-

atic algorithm computes the duration g(σ1,M0) of (σ1,M0) by 
transforming the untimed trajectory into a timed trajectory 
under earliest firing policy (i.e. each transition t in σ1 fires as 
soon as its time constraint D(t) is satisfied). The algorithm, 
detailed in (Lefebvre 2017a, b), updates at each new marking 
M the remaining durations of the enabled transitions. The 
estimation of the residual time to the reference is simply 
the sum of durations of unperformed operations which does 
not take into account the availability of resources. Indeed, 
to estimate the residual time with the function h(M,Mref), 
a reduced PN model Nr =  < Pr, T, WrPR, WrPO, D > is first 
introduced where Pr = P \ R is a set of mr places where 
resource places are removed and T is conserved as a set 

(3)f
(

M0, �1,Mref

)

= g
(

�1,M0

)

+ h
(

M,Mref

)

of q transitions. WrPO ∈ (N)mr×q and WrPR ∈ (N) mr×q are the 
reduced post- and pre-incidence matrices, and Wr = WrPO 
– WrPR ∈ (Z) mr×q is the reduced incidence matrix. The mark-
ing of the reduced PN is referred to as Mr.

For a sequence J of operations (for example, a job J in 
job shop problems), several estimation functions hJ(M, Mref) 
of the residual duration of job J have been proposed: in Luo 
et al. (2015), hJ is based on the search of resource and opera-
tional places; in (Lefebvre 2017a), hJ is based on the residual 
firing count vector. In this work, we propose an estimation 
function hJ based on the search of the shortest paths from the 
marked places to a given reference place pref that is added 
as the end place to the global model of the FMS (Mejía and 
Nino 2017; Lefebvre and Mejía 2018). The objective func-
tion is improved here and adapted to deal with the modelling 
of the new organization of the FMS. The estimation hJ is 
defined depending on the type of the job. For a set of opera-
tions with total precedence constraints, the approximation 
hJ(M, Mref) of the cost of the unknown part of the trajectory 
is given by (4):

where Mr = Reduce(M) is the reduced marking obtained 
from M by removing capacity and resource places, sJ is the 
unique start place of the job J, eJ is the unique end place of 
the job J and RFT(toi) is a correction term that corresponds 
to the residual firing time of the first transition toi of the 
path of minimal cost between pi and eJ. In simple words, 
hJ(M, Mref) corresponds to the sum of the durations of opera-
tions that are not yet performed corrected according to the 
operation that is currently in progress: the first part of Eq. (4) 
refers to the product of the time needed to perform the job 
D(J) by the number of tokens in the start place Mr(sJ) (that 
should wait the end of the current execution of the job), and 
the second part refers to the maximum of the shortest paths 
from the marked places pi to the reference place eJ. One can 
notice that the reduced model of a set of operations with 
total precedence constraints is a single path with minimal 
duration between the unique start place sJ and the unique 
end place eJ. As long as the capacity of the job is 1, only the 
start place sJ could be marked with more than one token and 
there exists at most one place pi ∈ J\{sJ} such that M(pi) = 1. 
Consequently, Eq. (4) can be reformulated with (5):

The estimation function hJ(M, Mref) of the residual dura-
tion for a job J composed of a set of operations with full 
routing flexibility is also obtained as the corrected sum 

(4)

hJ
(

M,Mref

)

= Mr

(

sJ
)

D(J)

+max{∀pi ∈ P
(

Mr

)

�
{

sJ
}

,�∗
(

pi, eJ
)

−RFT
(

toi
)

with toi ∈
(

pi
)

∙}

(5)
hJ
(

M,Mref

)

= M
(

sJ
)

× D(J) + �
∗
(

pi, eJ
)

−RFT
(

toi
)

with toi ∈
(

pi
)

∙
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of the durations of operations that are not yet performed. 
Such a duration is no longer computed according to the 
paths of the PN structure but depends on the sum of the 
operation durations.

In a set of operations with full flexibility, the status of 
each operation oi is defined by an operation place pi and 
a flag fi. Three cases may occur: (1) the flag place fi is 
marked and the operation place pi is unmarked, and then 
the operation is not yet performed; (2) the operation place 
pi is marked and the flag place fi is unmarked, and then 
the operation is currently performing; (3) the flag place fi 
and the operation place pi are both unmarked, and then the 
operation oi is already performed.

Note that the flag place and the operation place of a 
given operation could not be marked together. Thus, the 
approximation hJ(M, Mref) of the duration of the unknown 
part of the trajectory, which is given by the sum of the 
operations duration that are not yet performed, is equal 
to the product of the flag place marking M(fi) by opera-
tion duration D(toi) plus the product of the operation place 
marking M(pi) by the operation duration D(toi). Observe 
that a correction term is added for the operation that is cur-
rently performing. The residual time to Mref is estimated 
by (6):

where PF = {fi, oi ∈ OJ}is the set of flag places.
To calculate the residual duration for a hybrid job, we 

use the iterated organization presented in Sect. 4 with a 
set of basic jobs and we reformulate the whole model as 
a layered PN with L different levels. The idea, we pro-
pose here, is to introduce dynamic transitions (that will be 
represented with small rectangles in the next figures) and 
dynamic places (that will be represented with double cir-
cles in the next figures). Dynamic transitions have variable 
firing times in order to propagate the residual times from 
one layer to the next one. Dynamic places report the whole 
marking of a given basic job from one layer to another 
one. The combined use of dynamic transitions and places 
embeds the models at levels 1,…, l − 1 into the dynamic 
transitions and dynamic places at level l: the marking and 
residual duration of each basic job at level 1,…, l − 1 are 
propagated at level l to change, respectively, the marking 
of the dynamic places and the firing time of the dynamic 
transitions. The other places and transitions of the model 
will be referred to as static places and transitions.

Let J be a given job and Jl ={J1l,..,Jkl} be the set of 
basic jobs at level l and {1,..,L} be the set of levels. For 
any given marking M, the evaluation of hJ(M,Mref) is cal-
culated as below:

(6)hJ
(

M,Mref

)

= M
(

sJ
)

× D(J) +
∑

fi∈PF

M
(

fi
)

× D
(

toi
)

+
(

M
(

pi
)

× D
(

toi
)

−RFT
(

toi
))

with toi ∈
(

pi
)

∙

At level 1, all places and transitions are static ones. The 
marking of the basic jobs is a simple copy of the PN mark-
ing and the firing duration D(to) of any timed transition to 
is equal to the duration of operation o.

At level l > 1, the marking of the static places is a copy 
of the PN marking the firing duration D(to) of a static 
transition to is equal to the duration of operation o. On 
the contrary, the marking of the dynamic places reports 
the number of tokens in the basic job Jk’l’ at level l’ < l, 
and the firing duration D(to) of a dynamic transition to is 
equal to the residual duration hJ,k’l’(M,Mref) of the basic 
job Jk’l’ at level l’ < l. The job Jk’l’ is defined by the FMS 
organization.

The estimation hJ(M, Mref) of the residual duration for 
the whole hybrid job J is obtained from the value hJL, 
obtained for the unique basic job at level L.

Example:  Consider the hybrid job J2 in Fig. 7 with 3 levels 
and 4 basic jobs {J11, J21, J12, J13}. The residual durations for 
the basic jobs J11 and J21 of the first level are estimated using 
(5). Then the time parameters d11 and d21 of the dynamic 
transitions {to11, to21, ti1121, ti2111} of the basic job J12 at 
level 2 are updated. The marking of the dynamic places pi11 
and pi21 is also updated. Then, the residual duration for J12 is 

Fig. 7   Propagation of the marking and residual duration for a hybrid 
job
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calculated using (6). The time parameter d12 of the dynamic 
transition to12 and the marking of the dynamic place pi21 
in the basic job J13 at level 3 are updated. Thereafter, the 
estimation of the residual duration for J13 is evaluated using 
(5) and the residual duration of the hybrid job is obtained as 
hJ(M, Mref) = h13(M, Mref).

The residual duration for the FMS is obtained as the 
maximum value of the residual durations over all hybrid 
jobs of the FMS:

In order to guarantee that the algorithm can find an opti-
mal solution, h(M, Mref) must be admissible (Nilsson 1980) 
for any reachable marking M, i.e. h(M, Mref) ≤ h*(M, Mref), 
where h*(M, Mref) is the actual minimum time from M to 
Mref under earliest firing policy.

Proposition: Let us consider a hybrid FMS. The estima-
tion h(M, Mref) computed with (7) is a lower bound of the 
actual duration of the residual trajectory (σ2, M) from M to 
Mref (i.e. is admissible).
Proof:  According to the iterated organization, previously 
introduced, each job J of the FMS is described with one 
or several basic jobs Jkl organized in L levels and a set of 
resources that are shared by the operations. Jkl is either a 
simple operation, or a sequence of jobs or a set of jobs with 
full routing flexibility.

At level 1, for a sequence of operations Jk1 with a capacity 
of 1 and without any resource, the estimation of the residual 
duration is given by (5). This estimation is the actual duration. 
When resources are considered, this duration increases if some 
resources become unavailable. Thus, the true duration is at 
least equal to (5). The reasoning is similar for a set of opera-
tions Jk1 with full routing flexibility. The actual duration is at 
least equal to (6) because an additional waiting time should be 
considered when the resources become unavailable.

At level l > 1, the reasoning is quite the same, but 
sequences of jobs should be considered instead of sequences 
of operations (resp. sets of jobs with full routing flexibility 
instead of sets of operations). From the marking M and the 
computation of the estimation hJ,k’l’(M, Mref) of the residual 
duration for the basic jobs Jk’l’ with l’ < l, the markings of the 
dynamic places and the firing durations of the dynamic tran-
sitions of basic job Jkl are first updated and then the estima-
tion hJ,kl(M, Mref) of the residual duration for the basic job Jkl 
is computed. This estimation is equal to the actual duration 
when resources are not considered. Adding shared resources 
increases the actual duration but does not change the value 

(7)h
(

M,Mref

)

= max
{

hJ
(

M,Mref

)

with J ∈ J
}

of hJ,kl(M, Mref). Propagating the estimations hJ,kl(M, Mref) up 
to level L leads to the estimation hJL(M, Mref) for job J that 
is a lower bound of the actual duration required to execute 
the job J. Finally, (7) is a lower bound of the actual duration 
required to execute all jobs in the FMS.

5.2 � Generation Beam Search Algorithm

In the next, we call generation the new population composed 
by all direct successors (candidates generated from all the par-
ents of one generation) from a given population of parents. 
With usual FBS, the comparison is made between the succes-
sors of one parent and all other parents. Since the selection 
of candidates is based on the objective function composed of 
the cost of the already computed trajectory and the estimation 
of the residual one which is a lower bound of the real cost, 
parents have more chance to be selected.

In this section a modified Beam Search algorithm, based 
on the notion of generation, is proposed in order to give equal 
chance to all candidates issued from the same generation to be 
selected. For each parent node, the algorithm starts by explor-
ing their successors, then sorting them according to the total 
cost f to place the best βl candidates in a temporary list. Once 
the expansion of all parent nodes is done, the algorithm selects 
the best βg candidates from the temporary list to create a new 
generation. This routine is iterated according to the successive 
generations. The main innovation of the proposed algorithm 
is that the global sorting is made after expansion of all parent 
nodes which is not the case for the usual HFBS where the 
global sorting is made after the expansion of only the best par-
ent. We refer to this variant of the FBS algorithm as Genera-
tion Filtered Beam Search (GFBS) (Cherif et al. 2019).

The objective is to explore selectively the PN state space 
according to the successive generations of candidates in order 
to reach the reference marking Mref starting from an initial 
marking M0 with a trajectory of minimal duration. The idea 
is to provide diversification at early steps and intensification 
at late steps while maintaining equal chances when selecting 
the candidates of a given generation. We present below the 
pseudo-code of the GFBS algorithm. The algorithm aims to 
return a valid sequence of transition firings Seq and the result-
ing cost Cmax. The algorithm uses a list, called OPEN, to store 
to-be-expanded candidates of a given generation. The cost 
function f detailed in Sect. 5.1 is used to sort candidates of 
one generation for selection purpose. The list OPEN is updated 
after each iteration (an iteration is the expansion of all candi-
dates of a given generation).
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_______________________________________________ 

Algorithm: GFBS optimization  
Inputs: N, M0, βg, βl, Mref Outputs: Seq, Cmax

1. Place M0 into OPEN.  
2. For each candidate M remaining into OPEN do

a. Generate the successors of M.
b. For each successor M’of M.

i. If the successor M’ is equal to Mref, construct the 
sequence of transition firings Seq’ from M0 to Mref and 
return Seq and Cmax as the duration of Seq. 
ii. Otherwise, calculate the cost function f(M0, M’, Mref) 
and place M’ into a temporary list TEMPLIST. 

c. Select up to the βl best children markings from 
TEMPLIST and place them into a temporary list 
GENERATION respecting: 

i. If M’ is equal to some markings in GENERATION, 
verify if g’(M’) < g(M). In that case, a new better path 
was found, then replace M by M’. 
ii. Otherwise, place M’ into GENERATION. 

d. Clear TEMPLIST. 
3. Clear OPEN. 
4. Select up to the βg best markings from GENERATION and 
place them into OPEN. 
5. Clear GENERATION. 
6. If OPEN is empty, exit return Seq = ∅ and Cmax = ,
otherwise, go to step 2. 
_____________________________________________________ 

This algorithm avoids implicitly deadlocks and dead 
branches that are a priori unknown for the controller: an 
infinite cost is associated with the candidates which could 
not achieve the objective marking Mref (deadlocks and dead 
branches). Consequently, these candidates are not selected 
for the next generation because their cost is higher compar-
ing to other candidates.

6 � Computational Experiments and Results

This section is devoted to illustrate the use of GFBS algo-
rithm. The algorithm runs on a 1.8 GHz computer with 
16G RAM memory. The first example is the hybrid FMS 
presented in Fig.  6 and aims to illustrate the proposed 
method based on the iterated organization. Then, two sets 
of instances are taken from the literature in order to compare 
the GFBS to other methods.

6.1 � Details of the GFBS Algorithm on a Hybrid FMS

In this section, the GFBS algorithm is performed on the 
FMS modelled in Fig. 6. The processing times and resources 
required by the operations are given in Table 1.

The capacity of the jobs and the resources equal to 1: 
M0(rk) = M0(cpJ) = 1, J = 1,2, k = 1,..,9. The initial marking 
is such that M0(sJ) = 1. The reference marking is such that 
Mref(sJ) = 0 and Mref(cpJ) = Mref(rk) = 1. With parameters βg 
= 3 and βl = 2 the algorithm returns a makespan: Cmax = 21.

The details of the exploration are given in Fig. 8: the 
selected candidates at each iteration (the new generation) are 
shown as the already computed sequence (seq), the duration 
of the already computed sequence (g) and the estimation 
to the reference (h). The candidates in each population are 
generated with firing sequences that have an equal number 
of transitions, and the selection is made on the best value of 
g + h cost function. All candidates of a given generation have 
different markings (if two candidates have the same marking 
only the one with the minimal cost is saved for the future 
generations). The idea is to improve the diversification by 
giving other candidates, with different markings, the chance 
to be selected. In order to reach the reference and obtain the 
optimal result, 16 successive iterations were computed as 
shown in Fig. 8. The obtained makespan is optimal, and this 
has been validated by applying a global method (Lefebvre 
and Daoui 2018; Lefebvre 2018). This example illustrates 
that the proposed method is suitable for scheduling problems 
with hybrid FMS. Observe that the successive generations 
are of maximal size 3 and that no more than 2 candidates are 
generated from each parent.

6.2 � Qualitative Comparison with Other Methods

The second example is taken from (Muth and Thompson 
1963; Crowston et al. 1963). The scheduling problem is 
composed of six jobs, and each has to be processed on six 
resources with total precedence constraints. This well-known 
benchmark referred to as Ft06 was also tested in numerous 
papers based on the branch and bound methods (Carlier 
and Pinson 1989; Perregaard and Clausen 1998; AitZai and 
Boudhar 2013; Dabah et al. 2016), the genetic algorithms 
(Asadzadeh and Zamanifar 2010; Koblasa and Kloud 2011; 
Goncalves and Resende 2014), the taboo search (Watson 
et al. 2003; Kuo-Ling and Ching-Jong 2008; Peng et al. 
2015), the Simulated Annealing Algorithm with Cooperative 

Table 1   Operation processing times in TU and resources for the FMS 
in Fig. 6

Operation R Processing 
time

Operation R Pro-
cessing 
time

o1 r1, r7 5 o5 r5 2
o2 r2 4 o6 r6 4
o3 r3 2 o7 r2, r7 5
o4 r4, r9 5 o8 r3, r8 5

o9 r9 2
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Threads (SACT) (Cruz-Chávez et al. 2019) and the Particle 
Swarm Optimization (PSO) (Huang et al. 2019). The details 
of the problems are given in Table 2. The range of process-
ing times on each resource, shown in Table 3, was from one 
to ten days. The objective is to perform one part for each 
job of the FMS.

The optimal solution as given in the literature is 
Cmax = 55 days. Using parameters Bg = 20 and Bl = 2, our 
approach gives results as good as the ones taken from the 
literature (i.e., Cmax = 55 days). In addition, the GFBS does 
not need more than 1 s, which matches also the literature 
results. This example also illustrates the large variety of 

Fig. 8   Details of the exploration for the hybrid FMS of Fig. 6
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existing approaches studied for such kind of scheduling 
problems.

6.3 � Performance Comparison with Other Methods

The third example presented in Han et al. (2015) and used in 
Mejia and Nino (2017) consists of 20 instances. The FMS is 
composed of 2 jobs and 4 resources. The example is origi-
nally modelled as a P-TPN, and we generate its equivalent 
T-TPN by replacing each timed place by two places and one 
timed transition (Sifakis 1979) as shown in Fig. 9.

The P-TPN and its equivalent T-TPN are presented in 
Fig. 10. Note that the size of the generated T-TPN with 22 
places and 17 transitions is bigger than its equivalent P-TPN 
with 15 places and 10 transitions. Consequently, the size of 
the reachability graph of the T-TPN model is also bigger 
than the size of the reachability graph of the P-TPN model. 
This penalizes our method compared to other methods that 
are based on P-TPN models.

The processing times of operations are d11 = 25, d12 = 23, 
d13 = 27, d14 = 25, d21 = 25, d22 = 25 and d23 = 25. Twenty 
instances with different resource capacities and job sizes 
are considered.

The instances are denoted by FMS01-FMS20 as shown 
in Table 4. The GFBS algorithm is performed on these 
instances with different values of the parameters βg in the 
range [20:100] and different values of the parameters βl in 
the range [2:10]. The obtained results are given in Table 4.

The results are compared with the Hybrid Particle Swarm 
Optimization algorithm (HPSO) used in (Han et al. 2015) 
and the Iterated Hybrid Filtered Beam Search (IHFBS) used 
in Mejia and Nino (2017). HPSO algorithms used the dead-
lock controller proposed by (Piroddi et al. 2008). The IHFBS 
is based on the repeated call of the search algorithm where 
the value of the objective function of the current call is used 
as upper bound for the next call.

The comparison with HPSO algorithm can be made from 
the perspective of the memory and the computational time: 
in term of memory, the search space of T-TPN model used 
with GFBS algorithm is much bigger than its equivalents 
P-TPN used with HPSO.

Contrary to GFBS, the HPSO algorithm uses deadlock 
controllers which further reduce the search space when it 
avoids deadlocks and dead branches. In addition, for HPSO 
the search stops only if a predefined maximum running time 

Table 2   Operation processing 
times in TU and resources for 
Ft06 benchmark

J1 J2 J3 J4 J5 J6

OJ Ri di Ri di Ri di Ri di Ri di Ri di

oJ1 3 1 2 8 3 5 2 5 3 9 2 3
oJ2 1 3 3 5 4 4 1 5 2 3 4 3
oJ3 2 6 5 10 6 8 3 5 5 5 6 9
oJ4 4 7 6 10 1 9 4 3 6 4 1 10
oJ5 6 3 1 10 2 1 5 8 1 3 5 4
oJ6 5 6 4 4 5 7 6 9 4 1 3 1

Table 3   Comparison of methods and performances for Ft06 benchmark

Methods References Cmax CPU (s) Characteristics

GFBS 55  ≤ 1 Generations; Populations; T-TPN; Heuristic
Genetic algorithm Asadzadeh and Zamanifar, (2010), Koblasa and 

Kloud (2011), Goncalves and Resende (2014)
55  ≤ 1 Generations; Populations; Metaheuristic; Evolu-

tionary algorithm
Branch and bound methods Carlier and Pinson (1989), Perregaard and 

Clausen (1998), AitZai and Boudhar (2013), 
Dabah et al. (2016)

55  ≤ 1 Combinatorial optimization problems; math-
ematical optimization

Taboo Search method Watson et al. (2003), Kuo-Ling and Ching-Jong 
(2008), Peng et al. (2015)

55  ≤ 1 Disjunctive graph of nodes; metaheuristic; 
evolutionary algorithm

PSO Huang et al. (2019) 55  ≤ 1 Populations; disjunctive graph of nodes; 
metaheuristic; evolutionary algorithm

SACT​ Cruz-Chávez et al. (2019) 55  ≤ 1 Disjunctive graph of nodes; metaheuristic; 
evolutionary algorithm

Fig. 9   From P-TPN to T-TPN
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Fig. 10   Model of second set of instances

Table 4   20 instances of the 
first set

Instance M(sj) M(ri) HPSO CPU(s) IHFBS CPU(s) GFBS CPU(s)

FMS1 5 1 293 500 293 40 293 1
FMS2 10 1 557 1000 557 80 557 3
FMS3 20 1 1087 2000 1087 160 1087 10
FMS4 30 1 1617 3000 1617 240 1617 19
FMS5 50 1 2677 5000 2677 800 2677 31
FMS6 5 2 150 500 150 80 150 6
FMS7 10 2 273 1000 273 160 273 18
FMS8 20 2 547 2000 531 320 531 26
FMS9 30 2 833 3000 795 480 795 39
FMS10 50 2 1461 5000 1325 800 1325 53
FMS11 5 3 106 500 106 120 106 17
FMS12 10 3 185 1000 185 240 185 32
FMS13 20 3 371 2000 368 480 368 40
FMS14 30 3 591 3000 532 720 534 53
FMS15 50 3 1092 5000 897 1200 921 69
FMS16 5 4 99 500 99 160 99 22
FMS17 10 4 150 1000 149 320 149 39
FMS18 20 4 287 2000 274 640 274 51
FMS19 30 4 445 3000 401 960 421 62
FMS20 50 4 877 5000 664 1600 687 80
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is reached. Indeed, even using a processor with higher per-
formances (2.6 GHz computer with 4G RAM memory), the 
running time of HPSO algorithm is ranged from 500 s on 
FMS1 to 5000 s on FMS20. For GFBS algorithm, the run-
ning time is ranged from 1 s on FMS1 to 80 s on FMS20.

Although its complexity in time and memory, GFBS 
algorithm found better solutions in 10 out of 20 instances 
and matches the solutions of the 10 remaining instances.

The comparison with IHFBS algorithm leads to the fol-
lowing comments: in terms of memory, the IHFBS algo-
rithm uses, as well as HPSO, the P-TPN model which is less 
complicated than its equivalent T-TPN used with GFBS. In 
addition, contrary to GFBS algorithm which is performed 
only once, IHFBS is based on repeated call of the search 
algorithm where the value of the objective function of the 
current call is used as an upper bound for the next call. Thus, 
the number of explored candidates is much bigger which 
influences the computational time needed to perform the 
algorithm. GFBS algorithm does not need more than 1 s to 
obtain the result for the smallest instance FMS1 while the 
time needed for the largest instance FMS20 was 80 s. For 
IHFBS, even using a processor with higher performances 
(3.2 GHz computer with 8G RAM memory), the running 
times ranged from 40 s on FMS1 to 1600 s on FMS20. 
Although its complexity in time and memory, GFBS algo-
rithm found the same results for 16 of 20 instances. In the 
remaining 4 instances, the results obtained with IHFBS are 
slightly better.

Note that we have reported the CPU times as mentioned 
in the literature but that the processors used were differ-
ent from our processor: GFBS runs on 1.8 GHz computer, 
HPSO runs on a 2.6 GHz computer (Han et al. 2015) and 
IHFBS runs on a 3.2 GHz computer (Mejia and Nino 2017).

Consequently, definitive conclusions about the compari-
son of the time complexity are difficult to draw. Neverthe-
less, the values reported in Table 4 illustrate that the time 
complexity of the approaches developed in (Han et al. 2015) 
and (Mejia and Nino 2017) exceeds widely the time required 
by GFBS even if the frequency of the used processor was 
larger.

7 � Conclusion

In this paper, we have studied the modelling of hybrid FMS 
with partial routing flexibility and solve scheduling problems 
for such FMS. First, we have developed a T-TPN modelling 
methodology for FMS where some operations are proceeded 
with total precedence constraints and others with full routing 
flexibility. Second, a new scheduling method, which incre-
mentally computes control sequences for hybrid FMS, was 
presented. The method uses T-TPN, an iterated organization 
of the operations for hybrid jobs and a new variant of beam 

search methods that selectively explores the PN state space 
according to successive generations of candidates. The cost 
function used by the GFBS method was proved to provide a 
lower bound of the trajectory duration. A set of instances has 
been detailed in order to illustrate that the GFBS algorithm 
is suitable for a large variety of FMS organizations, includ-
ing job shops, open shops and hybrid FMS.

In our future works, we will introduce, uncertain envi-
ronments by considering unreliable resources and failures 
of operations for hybrid FMS. The cost function will be 
updated in order to take into account the risk of deviation 
for the computed trajectory. Adding to that, models with 
more complicated time constraints (for example, maximal 
time constraints with time Petri nets (Merlin 1974)) will be 
considered.
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