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Abstract
In this paper, we propose an extension of the binary model reference adaptive control (BMRAC) for uncertain multivariable
linear plants with non-uniform arbitrary relative degree. The BMRAC is a robust adaptive strategy which has good transient
properties and robustness of sliding mode control with the important advantage of having a continuous control signal free of
chattering. The relative degree obstacle is circumvented using a multivariable version of a hybrid estimation scheme, named
global robust exact differentiator (GRED). The hybrid estimator switches between robust exact differentiators (RED) based on
higher-order sliding modes and lead filters in a way that the exact derivatives are globally obtained in finite time. To improve
the robustness and the transient performance of the GRED, we propose a modification of the switching scheme replacing the
conventional RED with a non-homogeneous one. Global exact output tracking is obtained with robustness and guaranteed
transient performance without requiring stringent symmetry assumptions on the plant high-frequency-gain matrix.

Keywords Multivariable adaptive control · Global exact tracking · Higher-order sliding modes · Arbitrary relative degree ·
Output feedback · Uncertain systems · Binary adaptive control

1 Introduction

Recent progress regarding the relaxation of the symmetry
assumption have brought renewed attention to the multi-
variable model reference adaptive control (MIMO MRAC)
problem.While conventional direct1 MIMOMRACbased on

1 In direct adaptive control, the controller parameters are directly
updated from an adaptive law.
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bilinear parametric model, referred here as bilinear MRAC,
techniques require the knowledge of a multiplier Sp for the
plant high-frequency-gain (HFG)matrix K p, such that Sp K p

is symmetric positive definite (SPD) (Tao 2003; Ioannou and
Sun 1996), newly proposed techniques exempt such require-
ment. This is an important result, since symmetry conditions
are not generic and can be destroyed by arbitrarily small
parametric perturbations.

Some quite general solutions use matrix factorization to
exempt the need of a symmetrizing matrix Sp to deal with
uncertain and possibly non-symmetric HFG such as Tao
(2003), Costa et al. (2003), Xie and Zhang (2005) and Xie
(2008). However, these approaches lead to controller over-
parametrization,whichmaybe anundesirable drawback. The
necessity of overparametrization not only increases the num-
ber of adapted parameters in a square system of M inputs and
M outputs by a scale of M(M − 1)/2 as it can lead to loss
of robustness, since the matching parameters form a linear,
and therefore unbounded, manifold (Tao and Ioannou 1990;
Hsu et al. 2015).

New designs were recently proposed to plants of rela-
tive degree one (Gerasimov et al. 2018), plants with HFG
with nonzero leading minors of unknown sign (Wang et al.
2020) and process with actuator faults (Arici andKara 2020).
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Some new possibilities appeared recently based on the gener-
alized passivity concept named WSPR (Fradkov 2003). The
WASPR concept was also introduced in Barkana et al. (2006)
and consists in requiring the plant to becomeWSPR through
some static output feedback. In Hsu et al. (2015), it is shown
that the condition for minimum phase plants with uniform
relative degree one to be WASPR is that the HFG matrix
has a positive real diagonal Jordan form (referred as PDJ
condition). Inspired by these results, a new bilinear MRAC
solution for plants with non-uniform arbitrary relative degree
was proposed in Hsu et al. (2014). In contrast to the con-
ventional solutions (Tao 2003; Ioannou and Sun 1996) that
require stringent assumption of symmetry or symmetrization
of the plant HFG, the result established in Hsu et al. (2014)
requires only the PDJ condition and avoids controller over-
parametrization.

However, it is known that pure gradient adaptive con-
trol may suffer from lack of robustness and poor adaptation
transient. This has motivated the proposal of the BMRAC
(binary model reference adaptive control) (Hsu and Costa
1994) which combines desirable features of sliding mode
control with those of parameter adaptation algorithms. The
BMRAC consists basically of a conventional MRAC modi-
fied by parameter projection combined with high adaptation
gain. The BMRAC tends to behave as a sliding mode con-
troller as the adaptation gain is increased. However, since
the BMRAC has a continuous control signal such gain can
be tuned up to a sufficient value while avoiding chattering
achieving robustness with predictable transient behavior. An
indirect adaptive approach toBMRACwas recently proposed
in Teixeira et al. (2015) and, however, restricted to SISO
plants of relative degree one.

Considering the generalized passivity concepts, a MIMO
extension of the BMRAC was developed in Yanque et al.
(2012) successfully mitigating the symmetry assumption
related to the plant HFG matrix. As in Hsu et al. (2014),
the method proposed in Yanque et al. (2012) relies only
on the PDJ condition and does not lead to controller over-
parametrization. However, the development was restricted to
plants of uniform relative degree one.

In this context, this paper seeks a MIMO MRAC that (i)
circumvents symmetry requirements; (ii) deals with plants
with non-uniform arbitrary relative degree; (iii) achieves
robustness and global exact tracking with predictable tran-
sient behavior; and (iv) does not present overparametrization.

This can be obtained through a further extension toMIMO
BMRAC that uses a hybrid estimation scheme recently gen-
eralized to a MIMO framework in Nunes et al. (2014). Such
estimator, named global robust exact differentiator (GRED),
switches between a standard MIMO lead filter and a nonlin-
ear onewhichuses robust exact differentiators (RED) (Levant
2003) based on higher-order sliding modes. The conven-
tional RED, proposed in Levant (1998, 2003), is based on the

homogeneity principle and is derived from the super-twisting
algorithm (STA) introduced in Levant (1993). Such differen-
tiator is not only able to obtain exact derivatives, but also
presents asymptotic optimal performance in the presence of
small noise (Levant 2003). However, its convergence can be
slowwhen the initial errors are large, which is a consequence
of the homogeneity.

More recently, the seminal work (Moreno and Osorio
2008) has proposed a simple strong Lyapunov function
for the STA, which has allowed further developments and
improvements for the STA and STA-based observers (Shtes-
sel et al. 2010; Gonzalez et al. 2012; Nagesh and Edwards
2014; Oliveira et al. 2017). A modification to the conven-
tional RED was proposed in Levant (2009) by introducing
non-homogeneous higher-order linear terms, which allow
faster convergence with large initial errors while preserv-
ing finite time convergence. Moreover, as shown in Moreno
and Osorio (2008) the inclusion of linear terms into the STA
not only enhances the performance, but also improves the
robustness to perturbations.

In this paper, we introduce a modification to the hybrid
estimator of Nunes et al. (2014), replacing the conventional
REDwith a non-homogeneous RED in the switching scheme
to take advantage of its improved robustness and fast con-
vergence. Thus, the derivatives of the output provided by
the modified hybrid estimator can be used to render a sys-
tem with uniform relative degree one to which the MIMO
BMRAC can be applied. We show that global exact output
tracking is obtained with the new controller with predictable
transient performance.

Note that the main added complexity is the inclusion of
MIMOGRED, since the stabilizingmultiplier is of little com-
plexity. This is a solution to allow the use of the BMRAC
approach which requires the error equation to be of relative
degree one with respect to the input u. The overall trade-off
is worth since overparameterization is avoided while main-
taining the good performance and predictable transient of the
BMRAC.

2 ProblemDescription

Consider an uncertain square MIMO LTI plant described by

ẋ p = Apx p + Bpu , y = Hpx p , (1)

where x p ∈ R
n is the state, u ∈ R

M is the input, y ∈ R
M is

the output and Ap, Bp and Hp are constant uncertain matri-
ces. All the uncertain parameters belong to some compact set
Υ , such that the necessary uncertainty bounds to be defined
later are available for design. The plant input–output model
is given by
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y = G(s)u, G(s) = Hp(s I − Ap)
−1Bp .

The variable s is used to denote both the Laplace variable
and the differential operator, according to the context. The
following assumptions are made as usual in MIMO adaptive
control literature:

(A1) G(s) is minimum phase and has full rank.
(A2) The plant is controllable and observable.
(A3) Theobservability indexν ofG(s), or anupper bound

of ν, is known.
(A4) There exists a known diagonal polynomial matrix

ιm(s), defined as the modified left interactor (MLI)
matrix of G(s) of the form ιm(s) = diag
{d1(s), d2(s), . . . , dM (s)} where di (s) are monic
stable polynomials of degrees ρi > 0.

Despite the fact that Assumption (A4) may seem restrictive,
it can be argued that a diagonal interactor can be achieved
by means of an appropriate precompensator. According to
Lemma 2.6 in Tao and Ioannou (1988), a precompensator
Wp(s) exists so that G(s)Wp(s) has diagonal interactor
matrix.Moreover,Wp(s)does not dependon theplant param-
eters. Once the interactor is known to be diagonal and if the
relative degree of each element of G(s) (or G(s)Wp(s)) is
known, then ξ(s) can be determinedwithout any prior knowl-
edge on the transfer function parameters.

(A5) The high-frequency-gain matrix of G(s) defined
as K p = lims→∞ ξm(s)G(s) is finite and non-
singular, with positive eigenvalues and diagonal
Jordan form (PDJ condition).

Hence, from Assumption (A4) the vector relative degree
[ρ1, ρ2, . . . , ρM ]T is arbitrary and known.

Let the reference signal ym be generated by the following
reference model2

ym = Wm(s) r ; r , ym ∈ IRM (2)

Wm(s) = diag
{
(s + a)−1, . . . , (s + a)−1

}
L−1(s), (3)

where a > 0 and L(s) is given by

L(s) = diag {L1(s), L2(s), . . . , L M (s)} , (4)

where Li (s), i = 1, . . . , M are Hurwitz polynomials

Li (s) = s(ρi −1) + l[i]ρi −2s(ρi −2) + · · · + l[i]1 s + l[i]0 . (5)

2 The tracking of more general reference models could be obtained by
simply preshaping the reference signal r through a precompensator at
the input of the above model.

The choice of the reference model follows the idea of reduc-
ing an arbitrary relative degree problem to one with uniform
relative degree one, which is achieved through differentiation
of output signals. The transfer matrix Wm(s) has the same
vector relative degree as G(s) and its HFG is the identity
matrix. The tracking error is then given by

e = y − ym . (6)

When the plant is known, matching between the closed-loop
transfer functionmatrix and Wm(s) is achieved by the control
law

u∗ = θ∗T
ω, (7)

where the parameter matrix is written as

θ∗ =
[
θ∗T

1 θ∗T

2 θ∗T

3 θ∗T

4

]T
, (8)

with θ∗
1 , θ∗

2 ∈ IRM(ν−1)×M , θ∗
3 , θ∗

4 ∈ IRM×M and the regressor
vector

ω = [ωT
u ωT

y yT r T ]T , wu, wy ∈ IRM(ν−1) (9)

is obtained from I/O state variable filters given by:

ωu = A(s)Λ−1(s)u , ωy = A(s)Λ−1(s)y , (10)

where A(s) = [I sν−2 I sν−3 · · · I s I ]T , Λ(s) = λ(s)I
with λ(s) being a monic stable polynomial of degree ν − 1.
The matching conditions require that θ∗T

4 = K −1
p .

The plant transfer matrix can be expresses as a product
G(s) = Z0(s)P−1

0 (s). With the matching control of Eq. (7),
the parameter matrix (8) and the regressor (9), the matching
equation

θ∗T
1 A(s)P0(s) +

(
θ∗T
2 A(s) + θ∗T

3 Λ(s)
)

Z0(s)

= Λ(s)
(

P0(s) − θ∗T
4 ξm(s)

)
(11)

defines the matching parameters θ∗T
1 , θ∗T

2 θ∗T
3 , and θ∗T

4 (Tao
2003). However, since the plant is unknown, the desired
parameters matrix θ∗ is also unknown. In this case, the fol-
lowing control law can be used

u(t) = θT (t)ω(t). (12)

It is important to note that in the MIMO case, solution of
matching equation is possibly non-unique, such that Eq. (11)
may admit a set of solutions to θ∗. This is worthy of atten-
tion since in this case it is not possible to identify the plant
even with a rich signal (Mathelin and Bodson 1994). In this
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work, we are interested in boundedness of the closed-loop
signals and tracking of the reference model. The problem of
parameter convergence is discussed in detail in Mathelin and
Bodson (1994) and Willner et al. (1992).

An error equation can be developed extending the usual
approach for SISO MRAC to the multivariable case (Tao

2003). Defining the state vector X =
[
xT

p , ωT
u , ωT

y

]T

Ẋ = A0X + B0u, y = H0X . (13)

Then, adding and subtracting B0u∗ and noting that there are
matrices Ω1 and Ω2 such that ω = Ω1X + Ω2r , one has

Ẋ = Ac X + Bc K p
[
u − u∗] + Bcr , y = H0X (14)

with Ac = A0 + B0θ
∗T Ω1, Bc = B0θ

∗T Ω2 = B0θ
∗T
4 =

B0K −1
p . The reference model can be described by

Ẋm = Ac Xm + Bcr , ym = H0Xm . (15)

The error state xe := X − Xm dynamics is given by

ẋe = Ac xe + Bc K p[u − θ∗T ω], e = H0 xe, (16)

where {Ac, Bc, H0} is a non-minimal realization of Wm(s),
so that the error equation can bewritten in input–output form:

e = Wm(s)K p

[
u − θ∗T ω

]
. (17)

In Yanque et al. (2012), an extension of the BMRAC
to MIMO systems with uniform vector relative degree one
was proposed. A simple way to extend the result to the
non-uniform arbitrary relative degree case would be to use
the derivatives of y such that a system with relative degree
one is rendered. Thus, instead of using the tracking error
e = y − ym , one could use a modified error of uniform rela-
tive degree one

ē = ξy − ξm = L(s)Wm(s)K p

[
u − θ∗T ω

]
, (18)

where the modified outputs are defined as

ξy = L(s)y, ξm = L(s)ym = L(s)Wm(s)r = 1

s + a
Ir

ξy = L(s)y =

⎡
⎢⎢⎣

y(ρ1−1)
1 + · · · + l[1]1 ẏ1 + l[1]0 y1

...

y(ρM −1)
M + · · · + l[M]

1 ẏM + l[M]
0 yM

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

∑ρ1−1
j=0 l[1]j hT

1 A( j)
c X

...∑ρM −1
j=0 l[M]

j hT
M A( j)

c X

⎤
⎥⎥⎦ = H̄ X , (19)

where hT
i ∈ R

n+2M(ν−1) is the i th row of matrix H0 and the
second equality comes from Assumption (A4) and (14).

Thus, to overcome the relative degree restriction, the idea
would be to employ the operator defined in Eq. (4) such
that L(s)G(s) and L(s)Wm(s) have uniform vector relative
degree one. Note that since Wm(s) is chosen by design, ξm is
easily generated without the need of calculating derivatives.
A further requirement to guarantee stability is a passivity
property of the error system. The generalized WSPR pas-
sivity concept will be used to cope with uncertain and not
necessarily symmetric K p. Main results and further discus-
sion on WSPR and WASPR can be found in Barkana et al.
(2006), Hsu et al. (2011). If K p is PDJ, it is possible to
conclude that the error system of Eq. (18) is WSPR since
L(s)Wm(s) = 1

s+a I . However, if the PDJ condition is not
satisfied on K p, it is possible to use a stabilizing multiplier
L̄ such that L̄ K p is PDJ. The modified tracking error is, in
this case,

ēL = L̄
(
ξy − ξm

)
ẋe = Acxe + Bc K p

[
u − u∗] , ēL = L̄ H̄ xe

(20)

which can also be rewritten in input–output form as follows,
since L(s)Wm(s) commutes with L̄

ēL(t) = L(s)Wm(s)L̄ K p
[
u − θ∗T ω

]
. (21)

However, we still have to address the problem of obtaining
ξy since it is not directly available as the operator (4) is not
implementable. To solve this problem, we use a global robust
exact differentiator (GRED) that switches between a lead
filter and a non-homogenous RED.

3 BMRAC Using aMIMO Lead Filter

Note that ξm is directly available for implementation, while
the signal ξy needed to overcome the relative degree obstacle
is not. A possible way to solve this problem is to estimate ξy

by means of a lead filter.

ξ̂l = La(s)y, La(s) = L(s)F−1(τ s), (22)

where F(τ s)=diag{(τ s+1)ρ1−1, . . . , (τ s+1)ρm−1}. One can
note that as τ >0 tends to zero, ξ̂l approximates ξy . Defining
the lead filter estimation error as the difference between the
estimate of ξy obtained by the lead filter and its actual value

εl = ξ̂l − ξy, (23)
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its dynamics can be described by:

ẋε = 1

τ
Aεxε + Bεξ̇y, εl = Hεxε , (24)

where ξ̇y = H̄ Ac X + H̄ Bc K pϑ̃
T Ω + H̄ Bcr (see (14) and

(19), Aε = block diag {A[1]
ε , . . . , A[M]

ε },
Bε = block diag {B[1]

ε , . . . , B[M]
ε } , Hε = block diag

{H [1]
ε , . . . , H [M]

ε }, with A[i]
ε ∈ R

ρi −1×ρi −1, B[i]
ε ∈ R

ρi −1×1,

H [i]
ε ∈ R

1×ρi −1,

A[i]
ε =

⎡
⎢⎢⎢⎢⎢⎢⎣

−a[i]
ρi −2 1 0 . . . 0

−a[i]
ρi −3 0 1 . . . 0
...

...
...

. . .
...

−a[i]
1 0 0 . . . 1

−a[i]
0 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, B[i]
ε =

⎡
⎢⎢⎢⎢⎢⎢⎣

−b[i]
ρi −2

−b[i]
ρi −3
...

−b[i]
1

−b[i]
0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

H [i]
ε = [

1 0 0 . . . 0
]
,

a[i]
j = Cρi −1

ρi −1− j , b[i]
j = Cρi −1

j+1 , and Cn
l = n!/(k!(n − k)!).

In the stability analysis of the closed-loop error system,
with state zT = [

xT
e xT

ε

]
, we will consider the presence of

a uniformly bounded output disturbance βα(t) of order τ .
Further, the following parametrization is adopted in order to
extend the BMRAC to theMIMO case in a more natural way

ϑ =vec(θ)=

⎡
⎢⎢⎢⎣

θ [1]
θ [2]
...

θ [N ]

⎤
⎥⎥⎥⎦ , Ω = IM ⊗ ω=

⎡
⎢⎣

ω

. . .

ω

⎤
⎥⎦ (25)

with Ω ∈ IRN M×M , ϑ ∈ IRN M , where N is the number
of elements of the regressor vector ω, θ [i] is the ith column
of the parameter matrix θ and ⊗ is the Kronecker product.
Taking into account the presence of βα(t), the adaptation law
of the MIMO BMRAC using a lead filter is given by

ϑ̇ = −ϑσ − γΩ L̄(ξ̂l − ξm + βα) (26)

with σ given by a projection

σ =
{
0, if ||ϑ || < Mϑ or σeq < 0
σeq, if ||ϑ || ≥ Mϑ and σeq ≥ 0

(27)

σeq = −γϑT Ω L̄(ξ̂l − ξm + βα)

||ϑ ||2 (28)

where Mϑ > ||ϑ∗||. The control law can be rewritten as

u(t) = θT (t)ω(t) = ΩT (t)ϑ(t). (29)

At this point, the following theorem can be stated.

Theorem 1 Consider the plant (1) and the reference model
(2)–(4) with control signal (29) and adaptation law (26)–
(28). Suppose that assumptions (A1) to (A4) hold and
ϑ(0) ≤ Mϑ . If the disturbance βα(t) is uniformly bounded
by ||βα(t)|| ≤ τ K R, where K R > 0 is a constant, then for
sufficiently small τ > 0 and sufficiently large γ > 0, the
closed-loop error system (20), (29), (19), (24), (26)–(28)
with state zT = [

xT
e xT

ε

]
, is uniformly globally exponen-

tially practically stable (GEpS) with respect to a residual
set, i.e., there exist constants cz, a > 0 such that ||z(t)|| ≤
cze−a(t−t0) ||z(t0)||+O(

√
τ)+O(

√
1/γ ) holds ∀z(t0), ∀t ≥

t0 > 0.

Proof See Battistel et al. (2014). ��
Corollary 1 For all R > 0, there exists τ > 0 sufficiently
small and γ sufficiently large to an invariant compact set
DR := {z : ||z||≤ R}.
Corollary 2 Signals y(i)

j (t), i = 0,. . ., ρ j , j = 1,. . ., M are

uniformly bounded, i.e., ∃K [ j]
i > 0 such that |y(i)

j (t)| ≤
K [ j]

i ,∀ t ≥ t0 ≥ 0, i = 0,. . ., ρ j , j = 1,. . ., M. Moreover,

if ||xe(t)||≤ R,∀t >T , then, ∃C [ j]
ρ j >0 such that

∣∣∣
∣∣∣y(ρ j )

j[T ,t]

∣∣∣
∣∣∣∞ ≤

C [ j]
ρ j , j = 1, . . . , M. ��

Proof The proof follows the same steps of the proof of Corol-
lary 2 in Nunes et al. (2014). ��

4 MIMO Robust Exact Differentiators

The control scheme based on BMRAC and an estimate of
ξy obtained by a MIMO lead filter presented in the previous
section cannot guarantee exact tracking, though it can ensure
global stability properties.

Exact tracking can be achieved following similar steps
to Nunes et al. (2014), where the conventional homoge-
neous REDs (Levant 2003) were used in a hybrid estimation
scheme. In this work, we employ a modified scheme pro-
posed in Levant (2009) where higher-order termswere added
to improve robustness and provide faster convergence while
preserving the optimal asymptotic features of the conven-
tional RED.

Let the input signal f (t) be a function defined on [0,∞)

with the nth derivative having a known Lipschitz constant,
which means that f (n+1) is uniformly bounded. The non-
homogeneous RED can be described by Levant (2009):

ζ̇i = vi ,

vi = −λi |ζi − vi−1| n−i
n−i+1 sgn (ζi − vi−1)+

− μi (ζi − vi−1) + ζi+1,

...
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ζ̇n = −λn sgn (ζn − vn−1) + μn(ζn − vn−1) (30)

v−1 = f . (31)

If the positive sequences {λi } and {μi } are properly recur-
sively chosen, then the equalities

ζ0 = f (t); ζi = f (i)(t), i = 1, . . . , n

are established in finite time [see Levant (2009)].
The sequences {λi } and {μi } are to be chosen recursively

in such a way that {λ1, . . . , λn} and {μ1, . . . , μn} provide for
the convergence of the (n −1)th-order differentiator with the
same Lipschitz constant, and λ0,μ0 be sufficiently large [see
Levant (2009)]. A possible sequences choice for the second-
order differentiator is {λi } = {3C1/3

3 , 1.5C1/2
3 , 1.1C3} and

{μi } = {8, 6, 3}, where C3 is such that the inequality∣∣ f (3)(t)
∣∣ ≤ C3 holds.

In this paper, the idea is to modify the hybrid estimator
such that non-homogeneous REDs are employed. The idea
is to use a non-homogeneous RED of order p j = ρ j − 1 for
each output y j ∈ R, j = 1, . . . , M .

v
[ j]
−1 = y j (t)

ζ̇
[ j]
i = v

[ j]
i , (32)

v
[ j]
i = −λ

[ j]
i

∣∣∣ζ [ j]
i − v

[ j]
i−1

∣∣∣
p j −i

p j −i+1
sgn(ζ [ j]

i − v
[ j]
i−1)+

− μ
[ j]
i (ζi − vi−1) + ζ

[ j]
i+1

...

ζ̇
[ j]
p j = −λ

[ j]
p j sgn(ζ

[ j]
p j − v

[ j]
p j −1) − μp j (ζ

[ j]
p j − v

[ j]
p j −1), (33)

where i = 0, . . . , p j and v
[ j]
−1 = y j (t). A similar approach

was considered in Fridman et al. (2008) and Nunes et al.
(2014).

Under the foregoing conditions, the above differentiator
can provide the exact y j (t) derivatives. According to Lev-
ant (2003, 2009), the RED’s performance is asymptotically
optimal in the presence of small Lebesgue-measurable input
noise. Moreover, it is important to stress that the variables
of each individual RED, described in (32), cannot escape in
finite time if each y j is bounded together with its ρ j first
derivatives. As in Nunes et al. (2014), this result is essen-
tial in the development of the hybrid estimator scheme and
allows the use of the non-homogeneous RED not only in the
BMRAC arbitrary relative degree extension, but in any other
GRED application. It is formalized in the following lemma.

Lemma 1 Consider system (30), with state ζ = [ζ0 . . . ζn]T .
If

∣∣ f (i)(t)
∣∣ ≤ Ki , i = 0, . . . , n + 1, ∀t (finite), for some

positive constants Ki , i = 0, . . . , n + 1, then ζ(t) cannot
diverge in finite time.

Proof See “Appendix A.1”. ��
Using a MIMO RED, composed by M REDs of order

ρ j − 1 for each output y j , the following estimate for ξy can
be obtained:

ξ̂r =

⎡
⎢⎢⎣

ζ
[1]
ρ1−1 + · · · + l[1]1 ζ

[1]
1 + l[1]0 ζ

[1]
0

...

ζ
[M]
ρM −1 + · · · + l[M]

1 ζ
[M]
1 + l[M]

0 ζ
[M]
0

⎤
⎥⎥⎦ . (34)

Using the non-homogeneous MIMO RED, the adaptation
law is given by

ϑ̇ = −ϑσ − γΩ L̄(ξ̂r − ξm) (35)

with σ given by a projection

σ =
{
0, if ||ϑ || < Mϑ or σeq < 0
σeq, if ||ϑ || ≥ Mϑ and σeq ≥ 0

(36)

σeq = −γϑT Ω L̄(ξ̂r − ξm)

||ϑ ||2 (37)

where Mϑ > ||ϑ∗||.
However, only local/semi-global stability properties can

be guaranteed if the control (29) is combined with the

adaptation law (35)–(37), since the signals y
(ρ j )

j (t), j =
1, . . . , M should be uniformly bounded to ensure the non-
homogeneous MIMO RED convergence.

5 Global RED-Based BMRAC

The global RED is a hybrid compensator which consists of
a (time-varying) convex combination of a lead filter estimate
(22) and a RED estimate (34) according to:

ξ̂g = α(ν̃rl) ξ̂l + [
1 − α(ν̃rl)

]
ξ̂r , (38)

where ν̃rl = ξ̂r − ξ̂l is the difference between both
estimates. The switching function α(ν̃rl) is a continuous,
state-dependent modulation which assumes values in the
interval [0, 1] and allows the controller to smoothly change
from one estimator to the other.

Specifically, α(·) is designed such that
∣∣∣
∣∣∣ξ̂g − ξ̂l

∣∣∣
∣∣∣ ≤ τ K R :

α(ν̃rl)

⎧⎨
⎩
0, ||ν̃rl || < εM − Δ

(||ν̃rl || − εM + Δ)/Δ, εM − Δ ≤ ||ν̃rl || < εM

1, ||ν̃rl || ≥ εM

(39)

where 0 < Δ < εM is a boundary layer used to smoothen
the switching function, and εM := τ K R with K R being an
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Fig. 1 Block diagram of GRED-BMRAC

appropriate positive design parameter that is selected such
that εM −Δ > ε̄l . This implies that after somefinite time only
theMIMORED is active (α = 0), providing exact estimation
of the output derivatives ξy , as desired. Some insight into how
to tune MIMO GRED parameters is given below [for further
reference, see Nunes et al. (2014)].

In order to guarantee global exponential stability with
respect to a small residual set and to achieve global con-
vergence of the error state to zero, we show that the BMRAC
using a MIMO lead filter presented in Sect. 3 can be com-
bined with the MIMO RED (Sect. 4).

It should be noted that global stability to an invariant
compact set DR is guaranteed independently of switching
between both estimators since it is possible to show that the
resulting system is equivalent to a BMRAC using a MIMO
lead filter with a uniformly bounded output disturbance of
order τ . Thus, global practical stability and convergence to
the compact set DR are guaranteed, according to Theorem 1.
The switching function is properly chosen to ensure that after
some finite time only the estimate provided by the MIMO
RED is used.

Using the GRED to estimate ξy , the adaptive law is

ϑ̇ = −ϑσ − γΩ ˆ̄eL , (40)

where ˆ̄eL = L̄(ξ̂g − ξm) and σ is given by a projection

σ =
{
0, if ||ϑ || < Mϑ or σeq < 0
σeq, if ||ϑ || ≥ Mϑ and σeq ≥ 0

(41)

σeq = −γϑT Ω ˆ̄eL

||ϑ ||2 , (42)

where Mϑ > ||ϑ∗||. The stability and convergence results
of the proposed control scheme are stated in the following
theorem. A block diagram of such scheme is shown in Fig. 1.

Fig. 2 Camera–robot system representation

Theorem 2 Consider the plant (1) and the reference model
(2)–(4) with control law given by (29) and adaptation law
(40)–(42). The switching function α(·) is defined in (39). Sup-
pose that assumptions (A1) to (A5) hold and ϑ(0) ≤ Mϑ .
Then, for sufficiently small τ > 0 and sufficiently large
γ > 0, the closed-loop error system, with state zT =[

xT
e xT

ε

]
,

described by (29), (20), (19), (24), (40)–(42) is uniformly
globally exponentially practically stable (GEpS) with respect
to a residual set and the non-homogeneous MIMO RED esti-
mation and all closed-loop signals are uniformly bounded.
Moreover, for λ

[ j]
i , j = 1, . . . , M, i = 0, . . . , ρ j −1, and

K R properly chosen, the estimation of the output derivatives
ξy becomes exact, being made exclusively by the non-
homogeneous MIMO RED (α(·) = 0) after some finite time
and then, the output tracking error e, converge exponentially
to zero.

Proof See Appendix A.2. ��

6 Application to Visual Servoing and
Simulation Results

Consider the problem of direct adaptive visual tracking for
planar manipulators using a fixed camera (plant) with optical
axis orthogonal to the robot workspace. The camera ori-
entation is uncertain with respect to the robot workspace
coordinates (Hsu and Lizarralde 2000).

The objective is to control the robot such that the image
of the effectuator tracks the desired trajectory in the image
plane (Fig. 2). The motivation to choose this example is that
the HFG is essentially a rotation matrix which, except for the
trivial cases, is neither symmetric nor PDJ since its eigenval-
ues are complex.

As inHsu et al. (2007), the following linear uncertain 2×2
plant inspired from the visual servoing problem is considered

G(s) = 1

s2
K p, K p =

[
h1 cos (α) h1 sin (α)

−h2 sin (α) h2 cos (α)

]

where the camera misalignment angle α ∈ (−π/2, π/2),
and the scaling factors h1 and h2 are unknown parameters.

123



Journal of Control, Automation and Electrical Systems (2021) 32:378–389 385

The reference model is given by

Wm(s) = λ2c

(s + λc)2
I , λc > 0

with L(s) = (s + λc)I .
Considering the fact that K p is the only unknown param-

eter of the plant, it is possible to reduce the number of
parameters to be adjusted. Let ū = K pu, then y = (1/s2)ū
and the control law ū∗ that ensures the matching between the
closed-loop transfer function matrix and the reference model
is given by

ū∗ = −2λc
s(s+λ0)
(s+λ0)

y − λ2c y + λ2cr

= −2λc

{
1

(s+λ0)
ū + λ0y − λ20

(s+λ0)
y

}
− λ2c y + λ2cr ,

where λ0 > 0. However, ū is not measurable, since K p is
unknown. Therefore, since u = K −1

p ū, the model matching
control law u∗ is given by

u∗ = θ∗T ω − 2λc

(s + λ0)
u,

with

ω = 2λcλ
2
0

(s + λ0)
y − (λ2c + 2λcλ0)y + λ2cr

and θ∗ = K −T
p . Note that θ∗ is the only unknown parameter

in the model matching control law.
In order to achieve the model following objective, the fol-

lowing GRED-BMRAC-based control law can be used

u = θT ω − 2λc

(s + λ0)
u

where θ is given by the BMRAC adaptation law (40).
If the PDJ condition is not satisfied on K p, it is possible

to use a stabilizing multiplier L̄ such that L̄ K p is PDJ (for
details see Yanque et al. (2012)).

In this simulation, we chose the same settings considered
in Hsu et al. (2007) to allow a comparison. Thus, the fol-
lowing parameters were used: plant: α = 1 rad, h1 = 1,

h2 = 0.5, y(0) = ẏ(0) = [
0, 0

]T
; model: λc = 10,

ym(0) = [−0.1, −0.14
]T
; I/O filters λ0 = 60; lead filter:

τ = 0.01; RED:C2 = 10, λ0 = 1.1C2, λ1 = 1.5C2,μ0 = 3,
μ1 = 6;GRED: εM = 0.5,Δ = 0.2; L̄ multiplier: α̂ = 1− π

6
rad, ĥ1 = 0.5, ĥ2 = 1, D0 = diag {1, 4}; BMRAC: γ = 60,
Mϑ = 2.5, θ(0) = 02×2; and step size: h = 5 . 10−5. Refer-
ence signal is

r = r1 =
[

0.1 + 0.02 (sin(0.5t) + sin(0.75t))
0.1 + 0.02 (sin(0.7t + 1.6) + sin(t + 1.6))

]
.
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Fig. 3 GRED-BMRAC performance for reference signal r = r1: a
output tracking errors (—) e1, (- -) e2; b control signals (—) u1, ( - -)
u2; c (—) plant output y1, ( - -) model output ym1; d (—) plant output
y2, ( - -) model output ym2

In this particular case, the GRED switches instantly to
non-homogeneous MIMO RED estimate and α = 0 during
the entire simulation time. As shown in Fig. 3, the tracking
errors converge to zero with a smooth control signal. The
GRED-BMRAC obtains faster tracking errors convergence
in comparison with the MRAC Lyapunov-based scheme of
Hsu et al. (2007) for the same plant and model.

To illustrate the advantage of using the hybrid switching
scheme, we now consider a different reference signal with a
larger amplitude. In this case, the reference is chosen as

r = r2 =
[

5 + (sin(0.5t) + sin(0.75t))
5 + (sin(0.7t + 1.6) + sin(t + 1.6))

]
.

As expected, Fig. 4a shows that exact tracking is obtained
with the GRED-BMRAC. The switching function α is pre-
sented in Fig. 4b. As desired, after a short finite transient
of dominant action of the MIMO lead filter only the non-
homogeneousMIMORED estimate is selected by the hybrid
estimation scheme.

In this case, considering the same controller parameters
as before, if only the MIMO lead filter is used to estimate the
derivatives of the plant output (α = 1), the tracking errors
converge only to a residual set as shown in Fig. 4c. On the
other hand, if only the non-homogeneous MIMO RED is
used (α = 0) the system becomes unstable (see Fig. 4d). This
results further justify the importance of the hybrid switching
scheme.

6.1 Comparison with Bilinear MRAC

Further understanding of the technique advantages can be
provided by comparing the GRED-BMRAC with the bilin-
earMRAC (Hsu et al. 2014), which uses normalized gradient
adaptation.Aperformance comparison between theBMRAC
and matrix factorization methods can be found in Hsu et al.
(2015) for plants of relative degree one, where a faster track-
ing and parameter convergence is obtained for the BMRAC.
The results for the bilinearMRACwith reference signal r1 are
shown in Fig. 5, where it is possible to note a slower conver-
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Fig. 4 Output tracking errors (—) e1, (- -) e2, for reference signal
r = r2 and BMRAC control system based on: aGRED estimate, c only
lead filter estimate, d only RED estimate. The graphic of the switching
function α for the GRED-BMRAC case is presented in b
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Fig. 5 Bilinear MRAC performance for reference signal r = r1: a
output tracking errors (—) e1, (- -) e2; b control signals (—) u1, ( - -)
u2; c (—) plant output y1, ( - -) model output ym1; d (—) plant output
y2, ( - -) model output ym2

gence in comparison with GRED-BMRAC. The advantages
are more evident if we consider a square wave input

r3(t)=
[
0.1+0.02 sqw(0.5t), 0.1+0.02 sqw(0.7t+1.6)

]T
,

where sqw(2π t/T ) denotes the unity square wave of period
T . The results for the bilinear MRAC are shown in Fig. 6
and show a slow convergence in constrast to the results of
GRED-BMRAC, as shown in Fig. 7. Note that the GRED-
BMRAC displays control signals with higher amplitude due
to the use of an adaptation lawwith projection that allows the
use of higher gains in comparison with the bilinear MRAC.
In practical applications, the input could be saturated to avoid
an undesirably large control signal without deteriorating per-
formance, as noted in Battistel et al. (2019).

7 Conclusions

This paper presents an extension to the multivariable binary
model reference adaptive control (BMRAC) to deal with
uncertain plants with non-uniform arbitrary relative degree.
We present a new version of the global robust differentiator
(GRED), an estimator that provides global and exact deriva-
tives in finite time by switching a linear filter with a nonlinear
one based on non-homogeneous robust exact differentiators.
This estimator is then used to circumvent the relative degree
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Fig. 6 Bilinear MRAC performance for reference signal r = r3: a
output tracking errors (—) e1, (- -) e2; b control signals (—) u1, ( - -)
u2; c (—) plant output y1, ( - -) model output ym1; d (—) plant output
y2, ( - -) model output ym2
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Fig. 7 GRED-BMRAC performance for reference signal r = r3: a
output tracking errors (—) e1, (- -) e2; b control signals (—) u1, ( - -)
u2; c (—) plant output y1, ( - -) model output ym1; d (—) plant output
y2, ( - -) model output ym2

obstacle, such that global exact output tracking for uncer-
tain linear plants is obtained with robustness and predictable
transient performance. This technique also does not require
stringent symmetry assumptions on the high frequency gain.
Simulation results show that the new technique outperforms
a Lyapunov-based adaptive control scheme and a bilinear
MRAC based on normalized gradient adaptation laws.

Appendix A Proofs of Theorems

A.1 Proof of Lemma 1

Applying the change of variables υi = ζi − f (i)(t), i =
0, 1, . . . , n to the system (30), it follows that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

υ̇0 = −λ0|υ0|n/(n+1) sgn (υ0) − μ0υ0 + υ1
...

υ̇i = −λi |υi − υ̇i−1|(n−i)/(n−i+1) sgn (υi − υ̇i−1)−
+μi (υi − υ̇i−1) + υi+1
...

υ̇n = −λn sgn (υn − υ̇n−1) − μn(υn − υ̇n−1) − f (n+1)

Considering that x = |x | sgn (x) and sgn (υi − υ̇i−1) =
sgn (υi−1 − υ̇i−2) for i = 2, . . . , n, and thus sgn (υi − υ̇i−1) =
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sgn (υ0), for i = 1, 2, . . . , n, the system can be rewritten as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

υ̇0 = − [
λ0|υ0|n/(n+1) + μ0|υ0|

]
sgn (υ0) + υ1

...

υ̇i = −
[
λi |υi − υ̇i−1|

(n−i)
(n−i+1) + μi |υi − υ̇i−1|

]
sgn (υ0) +

+υi+1
...

υ̇n = − [
λn + μn|υn − υ̇n−1|

]
sgn (υ0) − f (n+1)

It follows by mathematical induction that the non-
recursive form of the system is given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

υ̇0 = − [φ0(|υ0|) + ψ0|υ0|] sgn (υ0) + υ1
...

υ̇i = − [φi (|υ0|) + ψi |υ0|] sgn (υ0) + υi+1
...

υ̇n = − [φn(|υ0|) + ψn|υ0|] sgn (υ0) − f (n+1)

(43)

where

⎧⎪⎪⎨
⎪⎪⎩

φ0 = λ0|υ0|n/(n+1),

ψ0 = μ0

φi = λi (φi−1 + ψi−1|υ0|)(n−i)/(n−i+1) + μiφi−1,

ψi = μiψi−1, i = 1, 2, . . . , n

Note that ψi is constant, and φi (|υ0|) obeys the following
conditions

⎧⎨
⎩

φi (|υ0|) ≤ κ
[i]
1 se |υ0| ≤ 1

φi (|υ0|)
|υ0| ≤ κ

[i]
2 se |υ0| > 1

for i = 0, 1, . . . , n and some positive constants κ
[i]
1 and

κ
[i]
2 . The first inequality follows from the fact that φi is
bounded, for |υ0| ≤ 1, if φi−1 is also bounded. Since φ0

is bounded under these conditions, then the first inequality
follows by mathematical induction. The second inequality
can be demonstrated considering that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ0

|υ0| = λ0
1

|υ0| 1
n+1

φi

|υ0| = λi

|υ0| 1
n−i+1

(
φi−1

|υ0| + ψi−1

) n−i
n−i+1 + μi

φi−1

|υ0| ,

i = 1, 2, . . . , n

and the fact that, for |υ0| > 1, φi|υ0| is bounded if φi−1
|υ0| is also

bounded. Since φ0|υ0| is bounded under these conditions, then
the second inequality follows by mathematical induction.

The equations υ̇i = − [φi (|υ0|) + ψi |υ0|] sgn (υ0) +
υi+1, i = 0, 1, . . . , n − 1 can be rewritten as

υ̇i = −ai (υ0)υ0 − bi (υ0) + υi+1

where

ai (υ0) =
⎧⎨
⎩

ψi , |υ0| ≤ 1

ψi + φi (|υ0|)
|υ0| , |υ0| > 1

,

bi (υ0) =
{

φi (|υ0|) sgn (υ0) , |υ0| ≤ 1
0, |υ0| > 1

The equation υ̇n = − [φn(|υ0|) + ψn|υ0|] sgn (υ0) −
f (n+1)(t) can be rewritten as

υ̇n = −an(υ0)υ0 − bn(υ0)

where

an(υ0) =
⎧⎨
⎩

ψn, |υ0| ≤ 1

ψn + φn(|υ0|)
|υ0| , |υ0| > 1

,

bn(υ0) =
{

φn(|υ0|) sgn (υ0) + f (n+1)(t), |υ0| ≤ 1
f (n+1)(t), |υ0| > 1

Note that, once
∣∣ f (n+1)(t)

∣∣ ≤ Kn+1 ∀t , then |ai (υ0)| ≤
Kai and |bi (υ0)| ≤ Kbi , for i = 0, 1, . . . , n and some posi-
tive constants Kai and Kbi . Defining the complete state vector

as Υ = [
υ0 υ1 . . . υn

]T
, the system (43) can be rewritten

as

Υ̇ = A(Υ )Υ + b(Υ )

where

A(Υ ) =

⎡
⎢⎢⎢⎢⎢⎣

−a0(υ0) 1 0 . . . 0
−a1(υ0) 0 1 . . . 0

...
...

...
. . .

...

−an−1(υ0) 0 0 . . . 1
−an(υ0) 0 0 . . . 0

⎤
⎥⎥⎥⎥⎥⎦

b(Υ ) =

⎡
⎢⎢⎢⎢⎢⎣

−b0(υ0)
−b1(υ0)

...

−bn−1(υ0)

−bn(υ0)

⎤
⎥⎥⎥⎥⎥⎦

and it follows that ‖b(Υ )‖ ≤ c1 and ‖A(Υ )‖ ≤ c2 for some
positive constants c1 and c2.

Consider the function

V (Υ (t)) = Υ T (t)Υ (t)

It can be verified that

V̇ (Υ ) ≤ 2c2V (Υ ) + 2c1
√

V (Υ )
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Consider the comparison equation V̇c(Υ ) = 2c2Vc(Υ ) +
2c1

√
Vc(Υ ). If Vc(0) = V (0), then V (t) ≤ Vc(t),∀t ≥ 0.

Introducing the new variable χ2 = Vc, it follows that

χχ̇ = c2χ
2 + c1χ

Considering χ �= 0, then dχ
dt = c2χ + c1. In this case, it

can be shown that

1

c2
ln

(
2c2

√
Vc(t) + 2c1

2c2
√

Vc(0) + 2c1

)
= t

and

V (t) ≤
[(√

V (0) + c1
c2

)
ec2t − c1

c2

]2

Then the function V (t) cannot escape in finite time for
any finite constant Kn+1, and thus υ ∈ L∞e. Furthermore,
since the signals f (i)(t), i = 0, 1, . . . , n, are bounded, then
one can conclude that the state ζ cannot escape in finite time.

��

A.2 Proof of Theorem 2

The estimate given by the MIMO lead filter and the MIMO
RED could be related to ξy in (19) as follows:

ξ̂l = ξy + εl , ξ̂r = ξy + εr , (44)

where εl and εr are estimation errors. From (44), equation
(38) can be rewritten as

ξ̂g = ξy + εg, εg = α(ν̃rl)εl + [
1 − α(ν̃rl)

]
εr . (45)

From (39), the estimation error εg(t) can be rewritten as:

εg = εl + βα(ν̃rl(t)) , (46)

where by design βα(ν̃rl(t)) is uniformly bounded by

||βα(ν̃rl(t))|| < εM , with εM = τ K R .

Substituting (45),(46) into (40)–(42), it can be seen that
GRED adaptive law is equivalent to lead adaptive law (26)–
(28) with an output disturbance ||βα(ν̃rl(t))|| ≤ εM .

Therefore, Theorem 1 holds if all signals of the GRED-
BMRAC system belong to L∞e. In order to demonstrate
that the condition is true, we only have to show that all
signals in the MIMO RED system are L∞e. This property
can be proved by contradiction. Suppose that the maximal
interval of finiteness of the signals in the MIMO RED is
[0, TM ). During this interval, all conditions of Theorem 1
hold, and thus, all signals of the remaining subsystems of the

GRED-BMRAC are bounded by a constant, and in particu-

lar,
∣∣∣y(i)

j (t)
∣∣∣ , i = 0, . . . , ρ j , j = 1, . . . , M , from Corollary

2. This leads to a contradiction with Lemma 1, whereby the
signals in the MIMO RED could not diverge unboundedly
as t → TM . As a consequence of the continuation theorem
for differential equations (in Filippov’s theory), TM must be
∞, which means that all signals are defined ∀t ≥ 0. Thus,
Theorem 1 is valid for the GRED-MRAC system and the
closed-loop error system with state z is GEpS with respect
to a residual set.

Now, we will analyze the ultimate convergence of the
GRED-BMRAC. According to Corollary 1, for sufficiently
small τ and sufficiently largeγ the error state z is steered to an
invariant compact set DR := {z : |z(t)| < R} in some finite
time T1 ≥ 0. Consider the following Lyapunov candidate

V = xT
ε P2xε (47)

whose time derivative is

V̇ = −1

τ
xT
ε Q2xε + 2xT

ε P2Bεξ̇y

following the previous steps

V̇ = −1

τ
xT
ε Q2xε+2xT

ε Q3xe + 2xT
ε Q4Xm+2xT

ε Q5r (48)

V̇ ≤ −k2
τ

||xε||2 + k3 ||xε|| ||xe|| + k4 ||xε|| (49)

Within DR , xe can be upper bounded by ||xe|| ≤ R such that

V̇ ≤ −k2
τ

||xε||2 + τk5 (50)

Thus, it is possible to show that

||xε(t)|| ≤ cεe−a(t−t0) ||xε(t0)|| + τk6 (51)

Since ||εl || ≤ ||xε||, it is straightforward to show that for some
finite T2 ≥ T1, ||εl || ≤ ε̄l , where ε̄l = τ Kl .

Since the MIMO RED is time-invariant, its initial condi-
tions can be considered to be at t = T1. From Lemma 1, the
initial conditions are finite. If the parameters λ

j
i are adjusted

properly, then from Levant (2009) the estimation error εr (t)
converges to zero in some finite time T3 > T1.

Since K R is chosen such that εM > ε̄l +Δ and from (39),
it follows that after some finite time T̄ = max{T2, T3} the
estimation of σ becomes exact and being made exclusively
by the MIMORED (α(ν̃rl) = 0), which implies that εg(t) =
0,∀t ≥ T̄ .

In this case, the overall error system can be described by

ẋe = Acxe + Bc K p[u − u∗] , ēL = L̄ H̄ xe , (52)
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since this system has uniform relative degree one we can
apply the result obtained in Yanque et al. (2012). Thus, it is
possible to conclude that e(t) → 0. ��
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