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Abstract
This paper presents a new modulus combination–combination synchronization (MCCS) scheme using the adaptive control
technique. MCCS scheme is performed between complex hyperchaotic (HC) systems and real hyperchaotic (HC) systems.
The HC complex Lorenz and Lu are taken as master systems, and the HC Chen system and Newton–Leipnik are taken as slave
systems. Based on the Lyapunov stability theory, adaptive control and parameter update law are obtained from making the
MCCS. According to the appropriateness of modulus synchronization as a persuasive explication for secure communication,
we then explored the application of the suggested adaptive MCCS design. Also, the complexity of master systems improves
the protection of stable transmission. Technical investigation and conclusion of simulations verify the performance of the
suggested technique using MATLAB.

Keywords HC complex system ·Modulus synchronization ·Combination–combination (C–C ) ·Adaptive control · Lyapunov
stability theory · Secure communication

1 Introduction

Chaos is a ubiquitous event in nonlinear mathematics and
physics. Chaos is defined as the random and unpredictable
phenomenon, or the behavior of a complex system, where
little changes in the origin positions can lead to signifi-
cant differences over the period. In general practice, chaos
means complete disorder and disorganization, but in science,
it implies that the equations expressing nonlinear systems
are very sensitive to initial inputs. Although such systems
usually exhibit some consistency, it is impossible to proph-
esy their future behavior with a high degree of certainty.
Henri Poincare finds the chaotic deterministic system (Rus-
sell 1967), which placed the establishment of modern chaos
theory in the eighteenth century. Later on, Lorenz (1963)
gives the first chaotic attractor, named the Lorenz attractor.

Many methods have been applied to examine the chaotic
behavior. Firstly by drawing phase portrait, secondly by
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drawing bifurcation, thirdly by drawing the Poincare section,
and the last one is by finding Lyapunov exponents. The Lya-
punov exponent is themost significantmilestone in the theory
of chaotic systems and has proved to be an immensely useful
technique for analysis. AHC system is defined as an attractor
with more than one positive Lyapunov exponents. The min-
imal dimension for HC is four. Rossler (1979) proposed the
first HC system in 1979 to a defined chemical reaction. Later,
various researchers suggested different HC and HC complex
systems for distinct applications. HC complex systems can
take a larger message signal and improve the protection of
information because they have real parts and imaginary parts.
Recently, these systems find use inmany physical cases, such
as detuned lasers (Mahmoud and AL-Harthi 2020), rotating
fluids, and electronic circuits (Vaidyanathan et al. 2019).

Pecora and Carroll (1990) were continuing in this field
and instigate the study chaos synchronization. Synchroniza-
tion of chaos is an event that may happen when two or
more chaotic systems are coupled, and synchronization error
converges to zero, and it plays a significant role in several
different contexts such as biological models (Vaidyanathan
2015), robotics (DRK et al. 2018), information processing
(Das and Pan 2011), secure communication (Mahmoud et al.
2013), neural networks (Wang et al. 2017), image process-
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ing (Volos et al. 2013), and finance models (Xin and Zhang
2015).

The example of synchronization schemes currently avail-
able in the literature includes complete synchronization
(Mahmoud and Mahmoud 2010a), anti-synchronization (Li
and Zhou 2007), hybrid synchronization (Vaidyanathan
2016), projective synchronization (Ding and Shen 2016),
modified projective synchronization (Hamri and Ouahabi
2017), hybrid complex projective synchronization, mod-
ulus synchronization (Li et al. 2019), combination syn-
chronization (Runzi et al. 2011), combination projective
synchronization (Khan and Nigar 2020a), dual combina-
tion synchronization, C–C synchronization (Khan and Nigar
2019a; Khan and Singh 2018a), etc. Synchronization of a
complex two coupled dynamics, dynamical properties of a
new complex system, HC complex Lorenz system, modified
projective synchronization in complex Chen and Lu system
and complex complete synchronization are interesting issue
discussed by Mahmoud et al. (2007, 2008), Mahmoud and
Mahmoud (2010b),Mahamoud andAhmed (2011) andMah-
moud (2014).

With the increasing application of synchronization of
chaotic systems, various control methods have been intro-
duced for the control of chaos, which includes active control
(Bhalekar 2014), adaptive control (Khan and Tyagi 2017a),
sliding mode control (Wang et al. 2012), adaptive sliding
mode control (Khan and Tyagi 2017b; Khan and Nigar
2019b, 2020b), feedback control (Liu andLiu 2018), optimal
control (Khan and Tyagi 2017a), etc. Out of these methods,
adaptive control is one of the most proper methods to achieve
synchronization. Hubler (1989) was the first who investigate
the chaos synchronization using adaptive control in which
Lyapunov stability is applied to derived control adaptation
laws. Accordingly, many researchers have produced an adap-
tive control method for synchronizing of chaotic systems
(Liao and Tsai 2000; Yassen 2003; Li et al. 2011; Wang and
Sun 2011; Aghababa 2012). Adaptive control incorporates a
set of methods that gives an orderly procedure for automatic
adjustment of the controllers in real-time to achieve or to
support the wanted level of appearance of the control sys-
tem when the parameters of the system model are entirely
unknown and change in time. For example, as an aircraft
flies, its mass will steadily reduce due to fuel loss, a con-
trol law that regulates itself to such developing conditions.
Thus, the adaptive controller’s derivation for the synchro-
nization of chaotic systems in the appearance of parameter
uncertainty is a significant challenge. When the parameters
of the chaotic (HC) systems vary unpredictably in time, these
circumstances happen due to the parameters denoting time-
varying. To achieve the right level of the control system, a
general procedure is to build an adaptive controller followed
by parameter update laws for synchronization of two chaotic
(HC) systems. In the chaotic dynamical system, the state

of the slave’s system is evolving over time, guided by the
adaptive controller, and error dynamics obtain this adaptive
controller. The error dynamics are the results of both master
and slave systems.

In the Lyapunov stability theory (LST), we define a Lya-
punov function V (x) is a positive definite for the system
under study obtained with the help of the system’s error
system and parameters. We need to show the time deriva-
tive of a Lyapunov function along with the error dynamics
is negative definite, i.e., V̇ (x) ≤ 0 using the adaptive
control law and parameters update law (Yoshizawa 1966;
Rouche et al. 1977; Sastry 2013). In Zhang et al. (2018)
and Al-Mahbashi et al. (2019), the author investigates finite
synchronization and finite time-lag synchronization for a
complexdynamical network.Complexmodifiedhybrid func-
tion projective synchronization between complex system
variable was examined in Liu et al. (2016). Moreover, the
author Khan and Nigar (2019a) investigates adaptive hybrid
complex projective C–C synchronization between a complex
HC system. Modified projective synchronization and mod-
ified function projective synchronization of a real chaotic
system and the chaotic complex system were discussed in
Sun et al. (2014).

The previously mentioned synchronization has been
obtained for real master systems, and real slave systems or
both master and slave systems are complex systems. It is an
essential and fascinating problem to the design synchroniza-
tion for a complex master system and real slave system. To
the best of my knowledge, this idea is so far to be introduced.
This kind of synchronization is extra winning and challeng-
ing. An exciting and attractive result related to this topic has
been discussed, such as novel synchronization technique to
achieve a hybrid module phase in the complex hyperchaotic
system using adaptive control investigated byWang and Luo
(2013), whereas in Nian et al. (2010), Fuzhong et al. intro-
duced the idea of module phase synchronization in which
modules varied in a particular field after the synchronization
. Moreover, hybrid module synchronization with time delay
among two complex HC systems using adaptive control was
presented in Chao (2016) by Luochao. Hence, we can say,
modulus synchronization of a complex system variable plays
a vital role because of its application in stable transmission
was discussed in Li et al. (2019).

According to thesementioned analyses,wepresentMCCS
scheme using an adaptive control technique. A suitable adap-
tive controller is designed to perform synchronization among
HC complexmaster systems andHC real slave system. Some
of the difficulties arise in solving theMCCSmethod.We used
four non-identical chaotic systems in the MCCS scheme,
which have a different–different parameter. LST is typically
used to derive adaptive control laws and show convergence.
For displaying the derivative of the Lyapunov function is neg-
ative definite, we have to calculate all the adaptive parameters
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and adaptive controllers, which is very difficult to calcu-
late. According to Theorems 1 and 2, the adaptive control
technique is applied to estimate unknown parameters. When
adaptive controllers are structured, special consideration is
necessary for convergence and robustness issues.

The essential highlights of this research are summarized
as follows.

– This paper firstly proposedmodulus combination–comb-
ination synchronization (MCCS) to deal with the HC
complex system and HC real system.

– An adaptive control technique with fast convergence is
designed for the modulus synchronization.

– This paper discusses a secure communication design
based on modulus combination–combination synchro-
nization.

The rest of the manuscript is structured as follows: Sect. 2
presents the synchronization principle of MCCS using the
adaptive control technique, and Sect. 3 contains system
descriptions of chaotic systems. Section 4 contains the
numerical example of testing the adaptive control’s analytical
method to perform theMCCS. Section 5 provides the numer-
ical simulation of the MCCS by using MATLAB. We obtain
a proper arrangement among mathematical treatments and
simulation outcomes for our suggested MCCS, and compar-
ative investigations are also discussed in Sect. 6.We received
an application of MCCS using the chaos masking method
for message information, that we could still recover after
decryption of themessage in Sect. 7. The conclusion is finally
declared in the last Sect. 8.

2 Synchronization Principle of Modulus
Combination–Combination (MCCS) Using
Adaptive Control Technique

This section investigates the principle of MCCS (Li et al.
2019; Sun et al. 2013). Twonon-identical complexHCmaster
systems can be described as follows:

ẋ = h1(x)Ω1 + g1(x) (1)

7ẏ = h2(y)Ω2 + g2(y). (2)

The two non-identical real chaotic(or HC) slave systems are
defined as:

ẇ = h3(w)Ω3 + g3(w) + ρ1 (3)

ż = h4(x)Ω4 + g4(z) + ρ2 (4)

where x = (x1, x2, . . . , xN )T ∈ C , y = (y1, y2, . . . , yN )T

∈ C represents the state vector of master systems (1)

and (2). We mention that x and y can be expressed as
x = xr + j xi , y = yr + j yi , with j = √−1 and
r represent as real parts and i represents imaginary parts.
Assume x1 = x11m + j x12m , x2 = x13m + j x14m ,…,xN =
x1(N−1)m + j x1Nm , then xr = (x11m, x13m, . . . , x1(N−1)m)T ,
xi = (x12m, x14m, . . . , x1Nm)T . y1 = y11m + j y12m ,
y2 = y13m + j y14m ,…,yn = y1(N−1)m + j y1Nn , then
yr = (y11m, y13m, . . . , y1(N−1)m)T , yi = (y12m, y14m, . . . ,

y1Nm)T . h1(x) and h2(x) presents N × N matrix function
and g1(x) , g2(x) are N × 1 continuous vector func-
tion, Ω1, Ω2 are N × 1 real nonlinear parameter. w =
(w11s, w12s, . . . , w1Ms)

T ∈ R, z = (z11s, z12s, . . . , z1Ms)
T

∈ R are the state vectors of slave systems (3) and (4).h3(x)

and h4(x) presents M × M matrix function and g3(x) , g4(x)

are M × 1 continuous vector function, Ω3, Ω4 are M × 1
real nonlinear parameter. ρ1 = (ρ11, ρ12, . . . , ρ1M ) ∈ RM ,
ρ2 = (ρ21, ρ22, . . . , ρ2M ) ∈ RM are the adaptive control
inputs.

Definition 2.1 (Sun et al. 2013; Li et al. 2019) For the com-
plex master systems (1) and (2), and real slave systems (3)
and (4), our aim is to synchronize the trajectory of |x + y|
with that of w + z which can be expressed as.

limt→∞‖e‖ = limt→∞‖w + z − |x + y|‖ = 0 (5)

where |.| represents the modulus of complex variable and ‖.‖
is the matrix norm.

Remark 1 If (xr , xi ) �= (0, 0) and (yr , yi ) �= (0, 0), then
error system in Eq. (5) can be rewritten as follows:

limt→∞‖e‖ = limt→∞‖w + z

− |xr + j xi + yr + j yi |‖ = 0

limt→∞‖e‖ = limt→∞‖w + z

−
√

(xr + yr )2 + (xi + yi )2‖ = 0. (6)

The error dynamics obtain from Eq. (6) such as:

ė(t) = ẇ + ż − (xr + yr )(ẋr + ẏr )√
(xr + yr )2 + (xi + yi )2

− (xi + yi )(ẋ i + ẏi )√
(xr + yr )2 + (xi + yi )2

. (7)

Substitute Eqs. (1), (2), (3), and (4) in Eq. (7), we get the
error dynamics:

ė(t) = h3(w)Ω3 + g3(w) + ρ1 + h4(z)Ω4 + g4(z) + ρ2

− (xr + yr )(h1(xr )Ω1 + g1(xr ) + h2(yr )Ω2 + g2(yr ))√
(xr + yr )2 + (xi + yi )2

− (xi + yi )(h1(xi )Ω1 + g1(xi ) + h2(yi )Ω2 + g2(yi ))√
(xr + yr )2 + (xi + yi )2

. (8)
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Now, MCCS can be performed by design the relevant adap-
tive control ρ1 + ρ2 and parameter update laws Ωi .

Remark 2 If w = 0, x = 0, z �= 0 and y �= 0 or z = 0,
y = 0, w �= 0 and x �= 0, then MCCS turned into modulus
synchronization.

limt→∞‖e‖ = limt→∞‖z − |y|‖ = 0.

Remark 3 If w = 0 and,z �= 0 or z = 0 and w �= 0, then
MCCS turned into modulus combination synchronization.

limt→∞‖e‖ = limt→∞‖z − |x + y|‖ = 0.

Remark 4 If (yr , yi ) = (0, 0), and z �= 0 or z = 0 and
w �= 0, then Eq. 6 turned into modulus combination syn-
chronization.

limt→∞‖e‖ = limt→∞‖w + z −
√

xr 2 + xi 2‖ = 0.

Remark 5 If xr �= 0, xi = 0 and yr �= 0 and yi = 0, then
MCCS turned into an absolute C–C synchronization of real
systems.

limt→∞‖e‖ = limt→∞‖w + z − |xr + yr |‖ = 0.

Theorem 1 If (xr , xi ) �= (0, 0) and (yr , yi ) �= (0, 0),
then error system can be written as e(t) = w + z −√

(xr + yr )2 + (xi + yi )2 . Then, the two real slave systems
(3) and (4) can modulus synchronized with the complex mas-
ter systems (1) and (2) are globally asymptotically stable, if
the suitable adaptive controllers ρ1 + ρ2 is considered as
follows (Li et al. 2011; Khan and Nigar 2019a).

ρ1 + ρ2 = −h3(w)Ω̂3 − g3(w) − h4(z)Ω̂4 − g4(z)

+ (xr + yr )(h1(xr )Ω̂1 + g1(xr ) + h2(yr )Ω̂2 + g2(yr ))√
(xr + yr )2 + (xi + yi )2

+ (xi + yi )(h1(xi )Ω̂1 + g1(xi ) + h2(yi )Ω̂2 + g2(yi ))√
(xr + yr )2 + (xi + yi )2

− ke (9)

where k denotes a positive real constant, Ω̂1(t), Ω̂2(t),
Ω̂3(t), Ω̂4(t) are the estimated values of Ω1, Ω2(t), Ω3(t),
Ω4(t), respectively, and the adaptive laws of parameters are
considered as follows.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂
Ω1 = −[ (xr + yr )h1(xr )Ω̂1e√

(xr + yr )2 + (xi + yi )2
+ (xi + yi )h1(xi )Ω̂1e√

(xr + yr )2 + (xi + yi )2
]T e + kΩ1Ω̃1

˙̂
Ω2 = −[ (xr + yr )h2(yr )Ω̂2e√

(xr + yr )2 + (xi + yi )2
+ (xi + yi )h2(yi )Ω̂2e√

(xr + yr )2 + (xi + yi )2
]T e + kΩ2Ω̃2

˙̂
Ω3 = [h3(w)]T e + kΩ3Ω̃3˙̂
Ω4 = [h4(z)]T e + kΩ4Ω̃4

(10)

.

Proof Substitute Eq. (9) in (8), we obtain error dynamics as
follows:

ė(t) = h3(w)Ω̃3 + h4(z)Ω̃4

− (xr + yr )(h1(xr )Ω̃1 + h2(yr )Ω̃2)√
(xr + yr )2 + (xi + yi )2

− (xi + yi )(h1(xi )Ω̃1 + h2(yi )Ω̃2)√
(xr + yr )2 + (xi + yi )2

− ke. (11)

Theorem 1 is defined for complex master systems and real
slave systems for MCCS, which demonstrates that MCCS is
globally and exponentially synchronized. That is, we have to
show modulus error e(t) → 0 exponentially as t → ∞ for
all initial values. And hence, the theorem one always follows
when the time derivative of a Lyapunov function is negative
definite, as defined by the LST using the adaptive control law
(9) and parameters update law (10).

Now we design Lyapunov function V (t) for convergence
such as (Li et al. 2011):

V (t) = 1

2
(eT e + Ω̃T

1 Ω̃1 + Ω̃T
2 Ω̃2 + Ω̃T

3 Ω̃3 + Ω̃T
4 Ω̃4).

(12)

Finding the derivative of V, we get:

V̇ (t) = ėT e + Ω̃T
1

˙̃
Ω1 + Ω̃T

2
˙̃

Ω2 + Ω̃T
3

˙̃
Ω3 + Ω̃T

4
˙̃

Ω4

where Ω̃1 = Ω1 − Ω̂1, Ω̃2 = Ω2 − Ω̂2, Ω̃3 = Ω3 − Ω̂3,
Ω̃4 = Ω4 − Ω̂4,

which implies ˙̃
Ω1 = − ˙̂

Ω1,
˙̃

Ω2 = − ˙̂
Ω2,

˙̃
Ω3 = − ˙̂

Ω3,
˙̃

Ω4 =
− ˙̂

Ω4

V̇ (t) =ėT e + Ω̃T
1 (− ˙̂

Ω1) + Ω̃T
2 (− ˙̂

Ω2) + Ω̃T
3 (− ˙̂

Ω3)

+ Ω̃T
4 (− ˙̂

Ω4). (13)

123



Journal of Control, Automation and Electrical Systems (2021) 32:291–308 295

Using Eqs. (10) and (11) in Eq. (13), we get :

V̇ (t) = e[h3(w)Ω̃3 + h4(z)Ω̃4

− (xr + yr )(h1(xr )Ω̃1 + h2(yr )Ω̃2)√
(xr + yr )2 + (xi + yi )2

− (xi + yi )(h1(xi )Ω̃1 + h2(yi )Ω̃2)√
(xr + yr )2 + (xi + yi )2

− ke]T

− Ω̃T
1 [−[ (xr + yr )h1(xr )e√

(xr + yr )2 + (xi + yi )2

+ (xi + yi )h1(xi )e√
(xr + yr )2 + (xi + yi )2

]T e + kΩ1Ω̃1]

− Ω̃T
2 [−[ (xr + yr )h1(yr )e√

(xr + yr )2 + (xi + yi )2

+ (xi + yi )h2(yi )e√
(xr + yr )2 + (xi + yi )2

]T e + kΩ2Ω̃2]

− Ω̃T
3 [h3(w)]T e − Ω̃T

4 [h4(z)]T e

= h3(w)eΩ̃3 + h4(z)eΩ̃4

− e
(xr + yr )h1(xr )Ω̃1√

(xr + yr )2 + (xi + yi )2

− e
(xr + yr )h1(xi )Ω̃1√

(xr + yr )2 + (xi + yi )2

− e
(xr + yr )h2(yr )Ω̃2√

(xr + yr )2 + (xi + yi )2

− e
(xr + yr )h2(yi )Ω̃2√

(xr + yr )2 + (xi + yi )2
− keT e

+ Ω̃T
1 [ (xr + yr )h1(xr )√

(xr + yr )2 + (xi + yi )2

+ (xi + yi )h1(xi )√
(xr + yr )2 + (xi + yi )2

]T e − kΩ1Ω̃
T Ω̃1
1

+ Ω̃T
2 [ (xr + yr )h1(yr )√

(xr + yr )2 + (xi + yi )2

+ (xi + yi )h2(yi )√
(xr + yr )2 + (xi + yi )2

]T e − kΩ2Ω̃
T
2 Ω̃2

− Ω̃T
3 [h3(w)]T e − kΩ3Ω̃

T
3 Ω̃3

− Ω̃T
4 [h4(z)]T e − kΩ4Ω̃

T
4 Ω̃4

= − keT e − kΩ1Ω̃
T
1 Ω̃1 − kΩ2Ω̃

T
2 Ω̃2

− kΩ3Ω̃
T
3 Ω̃3 − kΩ4Ω̃

T
4 Ω̃4

≤ 0

Hence, we observe that V (t) is positive definite, and V̇ (t)
is negative definite. According to the LST, we see it
limt→∞‖e‖ = 0, which indicates that the master systems
(1) and (2) will perform MCCS with the slave systems (3)
and (4). 	


3 SystemDescriptions of HC Complex
System and HC Real System

Consider a HC complex Lorenz system proposed by Mah-
moud et al. (2008):

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = Ω11(x2 − x1) + (1 + i)x4
ẋ2 = Ω13x1 − x2 − x1x3
ẋ3 = 1

2 (x̄1x2 + x1 x̄2) − Ω12x3
ẋ4 = 1

2 (x̄1x2 + x1 x̄2) − Ω14x4

(14)

whereΩ11,Ω12,Ω13,Ω14 denote the real parameters, while
x1 = x11m + i x12m and x2 = x13m + i x14m denote complex
variable and x3 = x15m and x4 = x16m are real variable.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ11m + i ẋ12m = Ω11(x13m + i x14m − (x11m + i x12m)) + (1 + i)x16
ẋ13m + i ẋ14m = Ω13(x11m + i x12m) − (x13m + i x14m)

−(x11m + i x12m)x15m

ẋ15m = 1
2 ((x11m − i x12m)(x13m + i x14m)

+(x11m + i x12m)(x13m − i x14m)) − Ω12x15m

ẋ16m = 1
2 ((x11m − i x12m)(x13m + i x14m)

+(x11m + i x12m)(x13m − i x14m)) − Ω14x16m

(15)

.

The real form of system (14) is written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ11m = Ω11(x13m − x11m) + x16m

ẋ12m = Ω11(x14m − x12m) + x16m

ẋ13m = Ω13x11m − x11m x15m − x13m

ẋ14m = Ω13x12m − x12m x15m − x14m

ẋ15m = x11m x13m + x12m x14m − Ω12x15m

ẋ16m = x11m x13m + x12m x14m − Ω14x16m

(16)

. Consider HC complex Lu system proposed by Wang et al.
(2016)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

ẏ1 = Ω21(y12m − y11m)

ẏ2 = −y11m y13m + Ω22y12m − Ω23(4 + 0.03y14m)y11m

ẏ3 = 1
2 (ȳ11m y12m + y11m ȳ12m) − Ω24y13m

ẏ4 = 1
2 (y11m + ȳ11m)

(17)
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whereΩ21,Ω22,Ω23,Ω24 denote the real parameters, while
y1 = y11m + iy12m and y2 = y13m + iy14m denote complex
variable and y3 = y15m and y4 = y16m are real variable.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ11m + i ẏ12m = Ω21(y13m + iy14m − (y11m + iy12m))

ẏ13m + i ẏ14m = −(y11m + iy12m)y15m + Ω22(y13m + iy14m)

−Ω23(4 + 0.03y16m)(y11m + iy12m)

ẏ15m = 1
2 ((y11m − iy12m)(y13m + iy14m)

+(y11m + iy12m)(y13m − iy14m)) − Ω24y15m

ẏ16m = 1
2 (y11m + iy12m + y11m − iy12m)

(18)

The real form of system (17) is written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẏ11m = Ω21(y13m − y11m)

ẏ12m = Ω21(y14m − y12m)

ẏ13m = −y11m y15m + Ω22y13m − Ω23(4 + 0.03y216m)y11m

ẏ14m = −y12m y15m + Ω22y14m − Ω23(4 + 0.03y216m)y12m

ẏ15m = y11m y13m + y12m y14m − Ω24y15m

ẏ16m = y11m

(19)

Two HC systems are taken as:
HC Chen system (Li et al. 2005)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẇ11s = Ω31(w12s − w11s) + w13s

ẇ12s = Ω32w11s + Ω33w12s − w11sw13s

ẇ13s = −Ω34w13s + w11sw12s

ẇ14s = Ω35w14s + w12sw13s

(20)

where Ω31,Ω32,Ω33,Ω34,Ω35 denote the real parameters,
while w11s, w12s, w13s, w14s denote real variable.

HC Newton–Leipnik chaotic system (Ghosh and Bhat-
tacharya 2010)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ż11s = −Ω41z11s + z12s + 10z12s z13s + z14s

ż12s = −z11s − 0.4z12s + 5z11s z13s

ż13s = Ω42z13s − 5z11s z12s

ż14s = −Ω43z11s z13s + Ω44z14s

(21)

whereΩ41,Ω42,Ω43,Ω44 denote the real parameters, while
z11s, z12s z13s, z14s denote real variable.

4 Example of Modulus
Combination–Combination
Synchronization

In the following, Eqs. (16) and (19) act as the master system
and Eqs. (22) and (23) are selected as a slave system with
controller written as.

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẇ11s = Ω31(w12s − w11s) + w13s + ρ11

ẇ12s = Ω32w11s + Ω33w12s − w11sw13s + ρ12

ẇ13s = −Ω34w13s + w11sw12s + ρ13

ẇ14s = Ω35w14s + w12sw13s + ρ14

(22)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ż11s = −Ω41z11s + z12s + 10z12s z13s + z14s + ρ21

ż12s = −z11s − 0.4z12s + 5z11s z13s + ρ22

ż13s = Ω42z13s − 5z11s z12s + ρ23

ż14s = −Ω43z11s z13s + Ω44z14s + ρ24

(23)

whereρ11,ρ12,ρ13 ,ρ14,ρ21,ρ22,ρ23 ,ρ24 are the appropriate
design adaptive controllers.

Definition 1 shows that the error system can be obtain as:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

e11 = (w11s + z11s) − √
(x11m + y11m)2 + (x12m + y12m)2

e12 = (w12s + z22s) − √
(x13m + y13m)2 + (x14m + y14m)2

e13 = (w13s + z23s) − √
(x15m + y15m)2

e14 = (w14s + z24s) − √
(x16m + y16m)2

.

(24)

We find the derivative of error system of Eq. (24), we get

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙e11 = ẇ11 + ˙z11 − (x11m + y11m)( ˙x11m + ˙y11m)√
(x11m + y11m)2 + (x12m + y12m)2

− (x12m + y12m)( ˙x12m + ˙y12m)√
(x11m + y11m)2 + (x12m + y12m)2

˙e12 = ẇ12 + ˙z12 − (x13m + y13m)( ˙x13m + ˙y13m)√
(x13m + y13m)2 + (x14m + y14m)2

− (x14m + y14m)( ˙x14m + ˙y14m)√
(x11m + y11m)2 + (x12m + y12m)2

˙e13 = ẇ13 + ˙z13 − (x15m + y15m)( ˙x15m + ˙y15m)√
(x15m + y15m)2

˙e14 = ẇ14 + ˙z14 − (x16m + y16m)( ˙x16m + ˙y16m)√
(x16m + y16m)2

(25)
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Using Eqs. (16), (19), (22), and (23) in the error dynamics
(25) such that:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙e11 = Ω31(w12s − w11s) + w13s − Ω41z11s + z12s + 10z12s z13s + z14s + ρ11 + ρ21

− (x11m + y11m)(Ω11(x13m − x11m) + x16m + Ω21(y13m − y11m))√
(x11m + y11m)2 + (x12m + y12m)2

− (x12m + y12m)(Ω11(x14m − x12m) + x16m + Ω21(y14m − y12m))√
(x11m + y11m)2 + (x12m + y12m)2

˙e12 = Ω32w11s + Ω33w12s − w11sw13s + ρ12 + ρ22

− (x13m + y13m)(Ω13x11m − x11m x15m − x13m)√
(x13m + y13m)2 + (x14m + y14m)2

− (x13m + y13m)(−y11m y15m + Ω22y13m − Ω23(4 + 0.03y216m)y11m)√
(x13m + y13m)2 + (x14m + y14m)2

− (x14m + y14m)(cx12m − x12m x15m − x14m)√
(x13m + y13m)2 + (x14m + y14m)2

− (x14m + y14m)(−y12m y15m + Ω22y14m − Ω23(4 + 0.03y216m)y12m)√
(x13m + y13m)2 + (x14m + y14m)2

˙e13 = −Ω34w13s + w11sw12s + Ω42z13s − 5z11s z12s + ρ13 + ρ23

− (x15m + y15m)(x11m x13m + x12m x14m − Ω12x15m)√
(x15m + y15m)2

− (x15m + y15m)(y11m y13m + y12m y14m − Ω24y15m)√
(x15m + y15m)2

˙e14 = Ω35w14s + w12sw13s − Ω43z11s z13s + Ω44z14s + ρ14 + ρ24

− (x16m + y16m)(x11m x13m + x12m x14m − Ω14x16m + y11m)√
(x16m + y16m)2

(26)

.

To achieve the control goal, we introduce the following the-
orem.
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Theorem 2 In, error system e(t) = w+z−√
(xr + yr )2 + (xi + yi )2

and (xr , xi ) �= (0, 0) and (yr , yi ) �= (0, 0). The master
systems (16) and (19) will achieve modulus combination–
combination synchronization with slave systems (22) and
(23). If the adaptive control function ρ11 + ρ21, ρ12 + ρ22,
ρ13+ρ23 and ρ14+ρ24 are selected such thatLi et al. (2011).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ11 + ρ21 = −k1e11 − Ω̂31(w12s − w11s) − w13s + Ω̂41z11s − z12s − 10z12s z13s − z14s

+ (x11m + y11m)(Ω̂11(x13m − x11m) + x16m + Ω̂21(y13m − y11m))√
(x11m + y11m)2 + (x12m + y12m)2

+ (x12m + y12m)(Ω̂11(x14m − x12m) + x16m + Ω̂21(y14m − y12m))√
(x11m + y11m)2 + (x12m + y12m)2

ρ12 + ρ22 = −k2e12 − Ω̂32w11s − Ω̂33w12s + w11sw13s

+ (x13m + y13m)(Ω̂13x11m − x11m x15m − x13m)√
(x13m + y13m)2 + (x14m + y14m)2

+ (x13m + y13m)(−y11m y15m + Ω̂22y13m − Ω̂23(4 + 0.03y216m)y11m)√
(x13m + y13m)2 + (x14m + y14m)2

+ (x14m + y14m)(Ω̂13x12m − x12m x15m − x14m)√
(x13m + y13m)2 + (x14m + y14m)2

+ (x14m + y14m)(−y12m y15m + Ω̂22y14m − Ω̂23(4 + 0.03y216m)y12m)√
(x13m + y13m)2 + (x14m + y14m)2

ρ13 + ρ23 = −k3e13 + Ω̂34w13s − w11sw12s − Ω̂42z13s − 5z11s z12s

− (x15m + y15m)(−Ω̂12x15m − Ω̂24y15m)√
(x15m + y15m)2

ρ14 + ρ24 = −k4e14 + Ω̂35w14s − w12sw13s + Ω̂43z11s z13s − Ω̂44z14s

+ (x16m + y16m)(x11m x13m + x12m x14m − Ω̂14x16m + y11m)√
(x16m + y16m)2

(27)

and the adaptive parameters are considered as:
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂
Ω11 = − (x11m + y11m)(x13m − x11m)e11√

(x11m + y11m)2 + (x12m + y12m)2
− (x12m + y12m)(x14m − x12m)e11√

(x11m + y11m)2 + (x12m + y12m)2

+k5(Ω11 − Ω̂11)

˙̂
Ω12 = − (x15m + y15m)x15me13√

(x15m + y15m)2
+ k6(Ω12 − Ω̂12)

˙̂
Ω13 = − (x13m + y13m)x11me12√

(x13m + y13m)2 + (x14m + y14m)2
+ k7(Ω13 − Ω̂13)

˙̂
Ω14 = − (x16m + y16m)x16me14√

(x16m + y16m)2
+ k8(Ω14 − Ω̂14)

˙̂
Ω21 = − (x11m + y11m)(y13m − y11m)e11√

(x11m + y11m)2 + (x12m + y12m)2
− (x12m + y12m)(y14m − y12m)e11√

(x11m + y11m)2 + (x12m + y12m)2

+k9(Ω21 − Ω̂21)

˙̂
Ω22 = − (x13m + y13m)y13me12√

(x13m + y13m)2 + (x14m + y14m)2
− (x14m + y14m)y14e12√

(x13m + y13m)2 + (x14m + y14m)2

+k10(Ω22 − Ω̂22)⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂
Ω23 = (x13m + y13m)(4 + 0.03y216m)y11me12√

(x13m + y13m)2 + (x14m + y14m)2
+ (x14m + y14m)(4 + 0.03y216m)y14e12√

(x13m + y13m)2 + (x14m + y14m)2

+k11(Ω23 − Ω̂23)

˙̂
Ω24 = − (x15m + y15m)y11me13√

(x15m + y15m)2
+ k12((Ω24 − Ω̂24)

˙̂
Ω31 = (w12s − w11s)e11 + k13(Ω31 − Ω̂31)

˙̂
Ω32 = w11se12 + k14(Ω32 − Ω̂32)

˙̂
Ω33 = w12se11 + k15(Ω33 − Ω̂33)

˙̂
Ω34 = −w13se13 + k16(Ω34 − Ω̂34)

˙̂
Ω35 = −w14se14 + k17(Ω35 − Ω̂35)

˙̂
Ω41 = −z11se11 + k18(Ω41 − Ω̂41)

˙̂
Ω42 = z13se13 + k19(Ω42 − Ω̂42)

˙̂
Ω43 = −z13s z13se13 + k20(Ω43 − Ω̂43)

˙̂
Ω44 = z14se14 + k21(Ω44 − Ω̂44)

(28)

where ki > 0 for i = 1, 2, . . . , 21 are positive real constant.
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Proof Using Eq. (27) in Eq. (26), finally error dynamics is
written as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙e11 = Ω̃31(w12s − w11s) − Ω̃41z11s

− (x11m + y11m)(Ω̃11(x13m − x11m) + Ω̃21(y13m − y11m))√
(x11m + y11m)2 + (x12m + y12m)2

− (x12m + y12m)(Ω̃11(x14m − x12m) + Ω̃21(y14m − y12m))√
(x11m + y11m)2 + (x12m + y12m)2

− k1e11

˙e12 = Ω̃32w11s + Ω̃33w12s − (x13m + y13m)(Ω̃13x11m + Ω̃22y13m − Ω̃23(4 + 0.03y216m)y11m)√
(x13m + y13m)2 + (x14m + y14m)2

− (x14m + y14m)(Ω̃13x12m + Ω̃22y14m − Ω̃23(4 + 0.03y216m)y12m)√
(x13m + y13m)2 + (x14m + y14m)2

− k2e12

˙e13 = −Ω̃34w13s + Ω̃42z13s − (x15m + y15m)(−Ω̃12x15m − Ω̃24y15m)√
(x15m + y15m)2

− k3e13

˙e14 = Ω̃35w14s − Ω̃43z11s z13s + Ω̃44z14s − (x16m + y16m)(Ω̃14x16m)√
(x16m + y16m)2

− k4e14

(29)

The Lyapunov function V in the form of:

V = 1

2
[e211 + e212 + e213 + e214 + Ω̃2

11 + Ω̃2
12 + Ω̃2

13 + Ω̃2
14

+ Ω̃2
21 + Ω̃2

22 + Ω̃2
23 + Ω̃2

24 + Ω̃2
31 + Ω̃2

32 + Ω̃2
33

+ Ω̃2
34 + Ω̃2

35 + Ω̃2
41 + Ω̃2

42 + Ω̃2
43 + Ω̃2

44] (30)

which is a positive definite.
Derivative of V is obtained as:

V̇ = e11 ˙e11 + e12 ˙e12 + e13 ˙e13 + e14 ˙e14 + Ω̃11
˙̃

Ω11 + Ω̃12
˙̃

Ω12

+ Ω̃13
˙̃

Ω13 + Ω̃14
˙̃

Ω14 + Ω̃21
˙̃

Ω21 + Ω̃22
˙̃

Ω22 + Ω̃23
˙̃

Ω23

+ Ω̃24
˙̃

Ω24 + Ω̃31
˙̃

Ω31 + Ω̃32
˙̃

Ω32 + Ω̃33
˙̃

Ω33 + Ω̃34
˙̃

Ω34

+ Ω̃35
˙̃

Ω35 + Ω̃41
˙̃

Ω41 + Ω̃42
˙̃

Ω42 + Ω̃43
˙̃

Ω43 + Ω̃44
˙̃

Ω44

(31)

since Ω̃i j = Ωi j − Ω̂i j which implies , ˙̃
Ω i j = − ˙̂

Ω i j

V̇ = e11 ˙e11 + e12 ˙e12 + e13 ˙e13 + e14 ˙e14 − Ω̃11
˙̂

Ω11 − Ω̃12
˙̂

Ω12

− Ω̃13
˙̂

Ω13 − Ω̃14
˙̂

Ω14 − Ω̃21
˙̂

Ω21 − Ω̃22
˙̂

Ω22 − Ω̃23
˙̂

Ω23

− Ω̃24
˙̂

Ω24 − Ω̃31
˙̂

Ω31 − Ω̃32
˙̂

Ω32 − Ω̃33
˙̂

Ω33 − Ω̃34
˙̂

Ω34

− Ω̃35
˙̂

Ω35 − Ω̃41
˙̂

Ω41 − Ω̃42
˙̂

Ω42 − Ω̃43
˙̂

Ω43 − Ω̃44
˙̂

Ω44

(32)

Using Eqs. (28) and (29) in Eq. (32). We get the derivative
of V in the form of:

V̇ = e11(Ω̃31(w12s − w11s) − Ω̃41z11s

− (x11m + y11m)(Ω̃11(x13m − x11m) + Ω̃21(y13m − y11m))√
(x11m + y11m)2 + (x12m + y12m)2

− (x12m + y12m)(Ω̃11(x14m − x12m) + Ω̃21(y14m − y12m))√
(x11m + y11m)2 + (x12m + y12m)2

− k1e11) + e12(Ω̃32w11s + Ω̃33w12s

− (x13m + y13m)(Ω̃13x11m + Ω̃22y13m − Ω̃23(4 + 0.03y216m)y11m)√
(x13m + y13m)2 + (x14m + y14m)2

− (x14m + y14m)(Ω̃13x12m + Ω̃22y14m − Ω̃23(4 + 0.03y216m)y12m)√
(x13m + y13m)2 + (x14m + y14m)2

− k2e12) + e13(−Ω̃34w13s

+ Ω̃42z13s

− (x15m + y15m)(−Ω̃12x15m − Ω̃24y15m)√
(x15m + y15m)2

− k3e13) + e14(Ω̃35w14s − Ω̃43z11s z13s

+ Ω̃44z14s

− (x16m + y16m)(Ω̃14x16m)√
(x16m + y16m)2

− k4e14)

− Ω̃11(
(x11m + y11m)(x13m − x11m)e11√
(x11m + y11m)2 + (x12m + y12m)2

− (x12m + y12m)(x14m − x12m)√
(x11m + y11m)2 + (x12m + y12m)2

+ k5Ω̃11) − Ω̃12

(− (x15m + y15m)x15me13√
(x15m + y15m)2

+ k6Ω̃12)

− Ω̃13(− (x13m + y13m)x11me12√
(x13m + y13m)2 + (x14m + y14m)2

+ k7Ω̃13) − Ω̃14
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Fig. 1 Phase portraits of HC complex system and HC real system in
2D and 3D a complex Lorenz in x11m − x12m plane, b complex Lu
systems in y11m − y13m plane, c Chen systems in w11s − w12s plane, d
Newton–Leipnik HC system in z11s − z12s plane, e complex Lorenz in

x11m − x12m − x13m space , f Lu systems in y12m − y13m − y14m space,
g Chen in w11s − w13s − w14s space , h Newton–Leipnik systems in
z11s − z12s − z13s space
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Fig. 1 continued

(− (x16m + y16m)x16me14√
(x16m + y16m)2

+ k8Ω̃14)

− Ω̃21(− (x11m + y11m)(y13m − y11m)e11√
(x11m + y11m)2 + (x12m + y12m)2

− (x12m + y12m)(y14m − y12m)√
(x11m + y11m)2 + (x12m + y12m)2

+ k9Ω̃21)

− Ω̃22(− (x13m + y13m)y13me12√
(x13m + y13m)2 + (x14m + y14m)2

− (x14m + y14m)y14e12√
(x13m + y13m)2 + (x14m + y14m)2

+ k10Ω̃22)

− Ω̃23(
(x13m + y13m)(4 + 0.03y216m)y11me12√

(x13m + y13m)2 + (x14m + y14m)2

+ (x14m + y14m)(4 + 0.03y216m)y14e12√
(x13m + y13m)2 + (x14m + y14m)2

+ k11Ω̃23)

− Ω̃24(− (x15m + y15m)y11me13√
(x15m + y15m)2

+ k12Ω̃24)

− Ω̃31((w12s − w11s)e11 + k13Ω̃31) − Ω̃32(w11se12

+ k14Ω̃32) − Ω̃33(w12se11 + k15Ω̃33) − Ω̃34(−w13se13

+ k16Ω̃34) − Ω̃35(−w14se14 + k17Ω̃35)

− Ω̃41(−z11se11 + k18Ω̃41) − Ω̃42(z13se13 + k19Ω̃42)

− Ω̃43(−z13s z13se13 + k20Ω̃43)

− Ω̃44(z14se14 + k21Ω̃44). (33)

In Eq. (33), canceling out the terms, finally we get:

V̇ = − k1e211 − k2e212 − k3e213 − k4e214 − k5Ω̃
2
11

− k6Ω̃
2
12 − k7Ω̃

2
13 − k8Ω̃

2
14

− k9Ω̃
2
21 − k10Ω̃

2
22 − k11Ω̃

2
23 − k12Ω̃

2
24

− k13Ω̃
2
31 − k14Ω̃

2
32 − k15Ω̃

2
33

− k16Ω̃
2
34 − k17Ω̃

2
35 − k18Ω̃

2
41

− k19Ω̃
2
42 − k20Ω̃

2
43 − k21Ω̃

2
44

≤0

where ki > 0 for i = 1, 2, . . . , 21.
Based on the LST, the error dynamics (29) is globally

asymptotically stable. It implies that complexHCmaster sys-
tems (16), (19) and the real HC slave systems (22), (23) are
synchronized under the controller (27) and parameter update
law (28); the error variables goes zeros as time t tends to
infinity. 	


5 Numerical Simulations

In this section, we use the fourth order Runge–Kutta method
to carry a mathematical simulation to illustrate the effec-
tiveness of the defined controller. For simulation results, we
assume the parameter values of master and slave systems
are selected to assure that the systems perform chaotically,
these are (Ω11 = 14, Ω12 = 5, Ω13 = 45, Ω14 = 5.5),
(Ω21 = 36, Ω22 = 20, Ω23 = 3.2, Ω24 = 5), (Ω31 = 35,
Ω32 = 7, Ω33 = 12, Ω34 = 3, Ω35 = 0.6), (Ω41 = 0.4,
Ω42 = 0.175, Ω43 = 0.8, Ω44 = 0.01), respectively. The
initial states of the master systems and the slave systems
for modulus combination–combination synchronization are
considered to be as (x11m, x12m, x13m, x14m, x15m, x16m) =
(1, 2, 3, 4, 5, 6), (y11m, y12m, y13m, y14m, y15m, y16m) =
(−1, 2, 1, 1, 2,−1), (w11s, w12s, w13s, w14s) = (4, 8, 9, 3),
(z11s, z12s, z13s, z14s) = (1, 2, 3, 4), respectively. Also, the
control gains are assumed to be as ki = 4 for i =
1, 2, . . . , 21. Initial states of synchronization errors are
obtained as (e11, e12, e13, e14) = (1, 3.596, 5, 2). Figure 1a–
h depicts the 2D and 3D phase portraits of themaster systems
and slave systems, respectively. Figure 2a–d displays the time
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Fig. 2 Modulus combination–combination synchronization trajecto-
ries a w11s + z11s and

√
(x11m + y11m)2 + (x12m + y12m)2 versus ‘t’,

b w12s + z12s and
√

(x13m + y13m)2 + (x14m + y14m)2 versus ‘t’, c
w13s + z13s and

√
(x15m + y15m)2 versus ‘t’, d w14s + z14s and

√
(x16m + y16m)2 versus ‘t’, emodulus combination–combination syn-

chronization errors, f the estimated values of the unknown parameters
Ω̂11, Ω̂12, Ω̂13, Ω̂14, Ω̂21, Ω̂22, Ω̂23, Ω̂24, Ω̂31, Ω̂32, Ω̂33, Ω̂34, Ω̂35,
Ω̂41, Ω̂42, Ω̂43, Ω̂44
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Fig. 3 aModulus
synchronization error using
active control; b modulus
combination–combination
synchronization error using
adaptive control
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Fig. 4 MCCS-based secure
communication system by
chaotic masking method

response of the state variables of master systems and slave
systems by using the appropriate adaptive controller. Fig-
ure 2e illustrates the time of error synchronization states and
Fig. 2f indicates the estimated values of unknown parameters
(Ω̂11, Ω̂12, Ω̂13, Ω̂14, Ω̂21, Ω̂22, Ω̂23, Ω̂24,Ω25, Ω̂31, Ω̂32,

Ω̂33, Ω̂34, Ω̂35, Ω̂41, Ω̂42, Ω̂43,Ω44) converge to their ini-
tial states asymptotically with time. Hence, the considered
MCCS technique among complex HC systems and HC real
systems is tested numerically.

6 Comparison Observation of the Studied
MCCSMethodWith the Earlier IssuedWork

In Zhou et al. (2014), author investigates combination–
combination (C–C) synchronization between four complex
chaotic systems, observing that the synchronization error is
attained at t = 5 (approx). Also, in Khan and Singh (2018a),
the author used active control to the achieved C–C synchro-
nization of a novel HC system where it is seen that the
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Fig. 5 a Information signal Θ(t), b the encrypted signal η(t), c decrypted signal Θ̂(t), d error between Θ(t) − Θ̂(t)

synchronization error is converging to zero at t = 5 (approx).
Further in Khan and Singh (2018b), the author studied
a generalization of C–C synchronization of n-dimensional
time-delay chaotic via robust adaptive sliding mode control,
where it noted that the synchronization state is attained at
t = 5.1 (approx.). Moreover, in Yadav et al. (2019), the
author proposed phase synchronization among non-identical
complex chaotic systems of fractional order. There, the syn-
chronization error converges to zero at t = 4.5 (approx.).
Further, in Khan et al. (2019), author used the adaptive con-
trol technique and achievedC–C anti-synchronization of four
fractional-order HC systems. They completed the synchro-
nization error at t = 1.8(approx). Lastly, in Li et al. (2019),
the author investigates modulus synchronization between an
HC complex system and an HC real system using an active

control technique, in which modulus synchronization occurs
between one master system and one slave system. They suc-
ceeded in error synchronization at t = 4.5 (approx), as shown
in Fig. 3a, whereas in the current scheme is extended work of
modulus synchronization and C–C synchronization. We had
studiedMCCS in non-identical HC complex systems andHC
real systems (two masters, two slaves) using adaptive con-
trol. In our investigations, the error has been synchronized at
t = 1.5 (approx), as demonstrated in Fig. 3b. Hence, the syn-
chronization time via our investigated methodology is least
among all the above-discussed methods. Enough time and
energy are conserved for our later practical application. We
give the application of MCCS in secure communication pro-
vided in followed section. Accordingly, it illustrates that our
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examined MCCS scheme is more advantageous over earlier
issued work.

7 Application of Modulus
Combination–Combination
Synchronization for Secure
Communication

This section discusses a new secure communication design
based on MCCS of four non-identical HC complex systems
and HC slave systems (two master systems, two slave sys-
tems) (Khan and Nigar 2019a; Xiang-Jun et al. 2011; He
and Cai 2014). Here, a chaotic system signal is applied
for the masking and recovery of an information signal in
an application of communication. The secure communica-
tion scheme of MCCS is sketched as Fig. 4. Recently, the
chaos-based method has gained a broad deal of applica-
tion for secure communication. In this method, Θ(t) =
Θ11(t) + Θ12(t) + Θ21(t) + Θ22(t) is the information mes-
sage signal to be transmitted where Θ11(t), Θ12(t), Θ21(t),
and Θ22(t) are added to the master systems (16) and (19).
Θ̂(t) is the decrypted message signal . The signal transmit-
ted in the chaos masking method is η(t) , so masking process
is η(t) = Θ(t) + x11m + y11m + x12m + y12m ., and Θ̂(t)
is the signal at the recovered end , which can be obtained
as Θ̂(t) = η(t) − (w11s + z11s). Signal error can be found
as: e = |Θ(t) − Θ̂(t)| . We choose the information signals
such as Θ11(t) = sign(sin2t) and Θ12(t) = sign(sin4t),
Θ21(t) = 2sign(sin2t) and Θ22(t) = 2sign(sin4t). Fig-
ure 5 demonstrates that the original information message
signal Θ(t) can be recovered successfully.

8 Conclusion

This paperfirstly introducedmodulus combination–combination
synchronization (MCCS) using an adaptive control technique
and application in chaotic secure communication. MCCS is
achieved between complexHC systems and real HC systems.
The adaptive controller is proposed based on the LST and
completedMCCS. Comparedwith the earlier works, the syn-
chronization error takes less time and gives the application
of secure transmission. The MCCS technique is more gener-
alized. MCCS certifies the effectiveness of our approach and
thus prompts us to expandMCCS, such as projectiveMCCS,
anti-MCCS, generalizedMCCS, and hybridMCCS. Further,
in the future direction, we can study systems interrupted
by model uncertainties and disturbance in HC complex sys-
tems and HC real system using modulus synchronization. To
the author’s knowledge, the study of modulus combination–
combination synchronization using adaptive control has not
yet been explored.
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