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Abstract
This work presents a robust control system for a twin hull-based unmanned surface vehicle, named EDSON-J, which is being
built at the Universidad Nacional de San Agustín de Arequipa and whose main mission is the autonomous monitoring of
ocean water quality and lagoons vulnerable to heavy metal contamination. The vehicle has been designed to carry additional
payload consisting of electronic instrumentation destined to measure the water conditions in real time. This paper focuses
on the control design of controllers for an unmanned surface vehicle with mass as parameter varying. The approach used is
the linear parameter-varying control (LPV control); its goal is to synthesize a controller that guarantees robust stability and
performance of the system despite the presence of parameter varying, disturbances and sensor noise. The simulation results,
in frequency domain and time domain, show an improvement in the LPV robust control approach in comparison with LTI/H∞
controllers.

Keywords Linear parameter varying (LPV) · Robust control · Unmanned surface vehicle (USV) · Maneuvering model

1 Introduction

The development of maritime vehicles is essential in mis-
sions of supervision of biological resources, environment,
maritime cartography and national security. The periodic use
of manned vessels is unfeasible due to its high cost of opera-
tion and the maintenance of the crew. The unmanned surface
vehicle (USV) is a better alternative for maritime operations
due to its low operating cost, in addition to its greater auton-
omy and payload capacitywith respect to air and submersible
vehicles, being able to even serve as a mobile control station
for them.

In the last decades, several projects of autonomous mar-
itime vehicles have been developed for research, industry
and military applications. In 1993, the MIT began a devel-
opment project of autonomous vehicle named ARTEMIS
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(Manley 2008), a vehicle which consists of two modified
kayaks commanded with conventional proportional deriva-
tive control system. In 2000, after a series of improvements
in navigation, guidance and control systems, the vehicle was
renamedAutoCat (Manley et al. 2000). In 2006, theDELFIM
USV (Alves et al. 2006) was developed by the University of
Lisbon to acquire marine data and to serve as a relay between
submerged craft and vessels. The USV has an integration of
guidance and control systems based on path following and
trajectory tracking approaches. Charlie (Caccia et al. 2007) is
another USV that has a real-time operative system (RTOS)
based on GNU/Linux, a line of sight (LOS) guidance sys-
tem and a control system based on proportional derivative
heading control. The ROAZ II USV (Martins et al. 2007)
was developed for search and rescue missions and has a
system for identifying objectives and orientation based on
robotic vision. In 2013, the HTWG Konstanz developed the
CaRoLimeUSV (Wirtensohn et al. 2013) formissions of lim-
nology in rivers and inland waters. Its dynamic model was
identified via least square optimization approach and using
a swarm optimization algorithm achieving good matching
results between the simulation and the experimental tests.

Linear and nonlinear robust control approaches aim
mainly to ensure the stability and performance of the mar-
itime vehicles subject to perturbations. The advanced control
approaches have been explored and implemented in many
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maritime vehicles to overcome the problemof robustness and
good performance despite unmodeled dynamics, uncertain-
ties, external disturbances and noise in inertial navigation
sensors. For example, a centralized H∞ robust control
approachwith two-degree-of-freedom (TDOF) structurewas
developed for controlling an autonomous underwater vehi-
cle (AUV) (Luque and Donha 2008). Robustness in stability
and good performance are achieved for the multivariable
dynamics of the AUV, validated both numerically and exper-
imentally (Cutipa-Luque et al. 2012). Backstepping control
is used for station-keeping control of the USV WAM-V 14
(Sarda et al. 2015) in conditions of fixed positioning. Later, a
backstepping adaptive control system is presented byKlinger
et al. (2016) for maneuvering the same USV with successful
tests in conditions of variable mass and drag. Robust control
systems have proven useful in high-speedUSVs course track-
ing. An adaptive sliding mode control of a water-jet (Chen
et al. 2017) guaranteed the stability and good course tracking
performance through simulations.

For systems with significant nonlinear behavior and large
parametric uncertainties, the robust control H∞ may not be
sufficient to control their dynamics; it is in this field that
the linear parameter varying (LPV) control is shown as an
appropriate alternative to offer the desired robustness andper-
formance to closed-loop systems. The first approach to the
implementation of this type of controller inmaritime vehicles
is given by the control of an autonomous underwater vehicle
named Aster x (Roche et al. 2009), whereby the mass is the
parameter varying. The sub-optimal control problem can be
straightforwardly solved using the linear matrix inequalities
(LMI). In recent years, some works related to vessel control
using LPV controllers were published. In 2015, the adaptive
control of the horizontal dynamics of a surface vehicle (Liu
et al. 2015) was presented; its results are studied by simula-
tion. More recently, an experimental study of the modeling
and identification of a water-jet propulsionUSV (Xiong et al.
2014) was proposed with an UKF (unscented Kalman filter)
based on active modeling technique to estimate the model
error.

2 EDSON-J USV

The EDSON-J vehicle is a Peruvian unmanned surface vehi-
cle under construction by the University of San Agustín de
Arequipa, whose main mission is to supervise the oceans in
the estuary regions. This is a twin-hull vessel class, and its
main dimensions are summarized in Table 1.

Figure 1 shows the design of the vehicle, a catamaran
structure consisting of two slender bodies connected through
a deck. The EDSON-J operates in a cruise speed of 2 m/s
and can achieve a maximum speed of 2.7 m/s. The propul-
sion system of this USV consists of two fixed trollingmotors,

Table 1 EDSON-J USV parameters

Parameter Value

Length 3.00 m

Breadth 1.60 m

Mass 250 kg

Payload 100 kg

Hull breadth 0.30 m

Draft 0.20 m

Inertia moment 201.1 kg/m2

Location of mass center 0.11 m

Electric motor power (each) 600 W

Fig. 1 EDSON-J USV

located at the bow of each hull and working in differential
and common modes. The vehicle power supply is given for
two 100-Ah AGM batteries that ensure a 5-h autonomy at
cruise speed. The navigation of the vehicle is given by a
dual GNSS/INS system to ensure the accuracy in the posi-
tion, velocity and accelerationmeasures. The communication
system is based on RF transceivers, with a range of 60 miles
(96.56 km) in the 900 MHz spectrum. The control archi-
tecture is distributed between Texas Instrument launchpad
microcontrollers and an NVIDIA Jetson TX-2 central com-
puter running on GNU/Linux operative system and powered
by a robot operating system (ROS).

2.1 Nonlinear Model

Themathematical model of a vessel can be expressed by con-
sidering its horizontal motions and following the SNAME
(1950) notation. Figure 2 presents the inertial-frame coor-
dinates of the vehicle composed of surge position x , sway
position y and yaw position ψ . The body-frame coordinates
of the vehicle are composedof surge velocityu, swayvelocity
v and yaw velocity r . According to the matrix representation
in three degrees of freedom (3-DOF), the position vector rel-

ative to inertial-frame is represented by η = [
x y ψ

]T
, the

velocity vector relative to the body-frame is represented by
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ν = [
u v r

]T
, and the vector of the generalized input forces

is represented by τ . The kinematic equations of motion can
be expressed in matrix representation as in Fossen (2011):

η̇ = J(η)ν, (1)

where η̇ is the derivative position vector and J(η) is the
coordinate transformationmatrix between inertial-frame and
body-frame, which is defined as:

J(η) =
⎡

⎣
cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

⎤

⎦ (2)

The dynamic equations of motion can be expressed as:

M ν̇ + C(ν)ν + D(ν)ν = τ , (3)

where M is the inertia matrix, the C matrix contains Coriolis
and rigid body terms, and D is the damping matrix. All these
matrices have parameter coefficients that can be obtained
through empirical, numerical or computational methods con-
sidering the fluid structure interaction. These matrices are as
follows:

M =
⎡

⎣
m − Xu̇ 0 0

0 m − Yv̇ mxg − Yṙ

0 mxg − Nv̇ Iz − Nṙ

⎤

⎦ , (4)

C =
⎡

⎣
0 −mr −mxgr + Yv̇v + Yṙ r

mr 0 −Xu̇u
mxgr − Yv̇v − Yṙ r Xu̇u 0

⎤

⎦ , (5)

D = −
⎡

⎣
Xu + X |u|u |u| 0 0

0 Yv + Y|v|v|v| 0
0 0 Nr + N|r |r |r |

⎤

⎦ , (6)

where m is the vehicle mass, xg is the location of center mass
and Iz is the inertia moment around the z axis, Xu̇ , Yv̇ , Yṙ ,
Nv̇ and Nṙ are the added mass hydrodynamics terms. Xu , Yv

and Nr are the linear drag coefficients. X |u|u , Y|v|v and N|r |r
are the quadratic drag coefficients.

2.1.1 Hydrodynamic Coefficients

There are many ways to compute the hydrodynamic coeffi-
cients of a vessel mainly grouped into analytical, numerical
and experimental. For this work, previously successful ana-
lytical methods in marine vehicle modeling have been used
(Prado 1997; Cutipa-Luque 2012; Prestero 1994; Rentschler
2001). The axial drag terms Xu and Xuu are computed
by using a graphical method (Harvald 1992); this method
relates the geometry of the hull with the resistance expres-
sion (Leonessa et al. 2003)

R = 1

2
ρ f Su2CT , (7)

Fig. 2 Coordinates system for the state variables

where ρ f is the fluid density, S the submerged surface and
CT a nondimensional resistance coefficient. The added mass
terms Xu̇ ,Yv̇ ,Yṙ , Nv̇ , Nṙ and the crossflowdrag termsYv , Nr ,
Y|v|v , N|r |r are calculated by using the strip theory (Newman
1979; Prestero 1994) over the added mass coefficient for an
ellipse

ma = π

2
ρ f T 2

f , (8)

where T f is the vessel draft. The hydrodynamic coefficients
shown in Table 2 are computed according to the dimensions
and behavior considered for the EDSON-J USV.

2.1.2 Propulsion

The propulsion of the vehicle is given for two MinnKota
trollingmotors withmaximum 18 kg of propulsion each. The
propellers can be described by the two following expressions:

KT = Tp

ρ f n2D4
p
, K Q = Q p

ρ f n2D5
p
, (9)

where KT is the nondimensional thrust Tp coefficient, K Q is
the nondimensional torque Q p coefficient,ρ is thewater den-
sity, Dp the propeller diameter, and n the rotational velocity.
Following the Carlton (2018) approach, the model propeller
is obtained using the B series of Wageningen that rearranged
the KT and K Q coefficients with respect to advance coeffi-
cient J and the propeller geometry. These expressions can
be approximated through the polynomials:

KT = a2 J 2 + a1 J + a0,

K Q = b2 J 2 + b1 J + b0,
(10)

where a0, b0, a1, . . . , b2 coefficients are constants as shown
in Table 3. Rotational speed n is constrained by the electri-
cal motors features. According to the experimental data in
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Table 2 EDSON-J USV parameters

Parameter Value Units

Xu̇ − 2.471 kg

Xu − 0.291 kg/s

Xuu − 27.626 kg/m

Xunc − 3.682 kg

Xrnd 1.841 kg m

Xncnc 1.052 kg m2

Xnd nd 1.052 kg m2

Yv̇ − 247.065 kg

Yṙ − 370.597 kg m/rad

Yv − 123.532 kg/s

Yvv − 38.928 kg/m

Yvnc − 0.359 kg

Yrnc − 0.538 kg m

Nṙ − 748.310 kg m2/rad

Nv̇ − 370.597 kg m

Nr − 741.195 kg m2/rad s2

Nrr − 262.791 kg m2/rad2

Nund 2.762 kg m

Nrnc − 2.855 kg m2

Nncnd − 1.578 kg m2

Nvnc − 0.538 kg m

Table 3 Propeller coefficients

KT K Q

a0 = 0.1884 b0 = 0.0113

a1 = − 0.1507 b1 = − 0.0325

a2 = − 0.1132 b2 = − 0.0102

Prado (1997), a maximum rotational speed nmax = 22 rps is
considered for a maximum vehicle speed umax = 2.7 m/s.
Both propeller rotational velocities n1 and n2 are replaced
by their values in common mode (nc) and differential mode
(nd ), such as:

nc = n1 + n2

2
, nd = n1 − n2

2
. (11)

2.2 LPVModel

This section presents the EDSON-J LPV model considering
a twin-hull based vessel, designed to carry out missions of
maritime supervision, transporting instruments and special-
ized multiparameter sondes to automatically measure water
quality. Therefore, the vehicle is able to carry out variable
mass payload. From the nonlinear model described in (1) and

(3), the LPV system is represented in state space equations
with ρ as a depending parameter:

G(ρ) :
{
ẋ = A(ρ)x + B(ρ)u
y = C(ρ)x + D(ρ)u

, (12)

where x = [u v r ]T is the state vector, u = [nc nd ]T is
the control input vector, y = [u r ]T is the measured output
vector and ρ is the set of parameters varying, being ρ the
minimum value and ρ the maximum. In this work, due to
possible payloads changes, vehicle mass m is the chosen
varying parameter to be studied. Then, it considers ρ with
(ρ, ρ) = [250 : 350] kg. More parameters, such as the drag
forces or the water density, can be chosen, but they could
compromise the controller complexity. The values for the
A(ρ), B(ρ),C(ρ) and D(ρ)matrix are obtained by Jacobian
linearization over the cruise speed operation point u0 = 2.0
m/s, n0 = 14 rps and ρ. For more details about the state
space matrix representation, see Pérez and Blanke (2002).

3 LPV/H∞ Control

3.1 H∞ Control for LPV Systems

The generalized plant for LTI/H∞ robust control synthesis
approach is well established in the literature (Skogestad and
Postlethwaite 2007). Then, the LPV generalized plant matrix
form Σ(ρ) can be expressed as:

Σ(ρ) :
⎡

⎣
ẋ
z
y

⎤

⎦ =
⎡

⎣
A(ρ) B1(ρ) B2(ρ)

C1(ρ) D11(ρ) D12(ρ)

C2(ρ) D21(ρ) D22(ρ)

⎤

⎦ =
⎡

⎣
x
w
u

⎤

⎦ , (13)

where w ∈ R
q is the exogenous input vector, y ∈ R

p is the
measured output vector, u ∈ R

m is the control input control
vector, and z ∈ R

r is the exogenous output vector, or also
named performance output vector.

The LPV controller K (ρ) can be described as:

K (ρ) :
[
ẋc

u

]
=

[
Ac(ρ) Bc(ρ)

Cc(ρ) Dc(ρ)

]
=

[
xc

y

]
, (14)

where xc ∈ R
n is the state vector of the controller. Ac(ρ),

Bc(ρ), Cc(ρ), Dc(ρ), are continuous bounded matrix func-
tions. The closed-loop system is found using linear frac-
tional transformation (L FT ) through relation ΣCL(ρ) =
L FT (Σ(ρ), K (ρ)) and expressed in state space form as:

ΣCL(ρ) :
[

ξ̇

z

]
=

[A(ρ) B(ρ)

C(ρ) D(ρ)

] [
ξ

w

]
, (15)
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where
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

A =
(

A(ρ) + B2(ρ)Dc(ρ)C2(ρ) B2(ρ)Cc(ρ)

Bc(ρ)C2(ρ) Ac(ρ)

)

B =
(

B1(ρ) + B2(ρ)Dc(ρ)D21(ρ)

Bc(ρ)D21(ρ)

)

C = (
C1(ρ) + D12(ρ)Dc(ρ)C2(ρ) D12(ρ)Cc(ρ)

)

D = (
D11(ρ) + D12(ρ)Dc(ρ)D21(ρ)

)

, (16)

with ξ = [xT xTc ]T ∈ R
2n , The control objective is to find

controller K (ρ) that minimizes the induced L2 norm of the
closed-loop LPV system (15):

||ΣCL(ρ)||2→2 = sup
ρ∈P
ν̄≤ρ̇≤ν

sup
w∈L2||w||2 �=0

||z||2
||w||2 (17)

3.2 Solution to the LPV Problem Based on LMIs

This section gives the theory for solving the LPV problem.
This theorem describes the LPV problem in terms of the
induced L2 norm (Wu 1995; Wu et al. 1996):

Theorem 1 Given a compact set P ∈ R
s , Snxn a set

of symmetric matrices in R
nxn, the rate bounds (ν̄, ν),

the performance level γ and the LPV system Σ(ρ), the
parameter-dependent performance problem has a solution
if there are continuously differentiable matrix functions X :
R

s → Snxn, and Y : Rs → Snxn, such that for all ρ ∈ P ,
X(ρ) > 0, Y (ρ) > 0 and

⎡

⎣
M(ρ) C11(ρ)X(ρ) γ −1B1(ρ)

C11(ρ)X(ρ) −Ir 0
γ −1BT

1 (ρ) 0 −Iq

⎤

⎦ < 0, (18)

where

M(ρ) = Â(ρ)X(ρ) + X(ρ) ÂT(ρ) −
s∑

i=1

±
(

νi
δX(ρ)

δρi

)

− B2(ρ)BT
2 (ρ)

⎡

⎣
N (ρ) Y (ρ)B11(ρ) γ −1CT

1 (ρ)

BT
11(ρ)Y (ρ) −Iq 0
γ −1C1(ρ) 0 −Ir

⎤

⎦ < 0, (19)

where

N (ρ) = ÃT(ρ)Y (ρ) + Y (ρ) ÃT(ρ) +
s∑

i=1

±
(

νi
δY (ρ)

δρi

)

− CT
2 (ρ)C2(ρ)

[
X(ρ) γ −1 In

γ −1 In Y (ρ)

]
≥ 0, (20)

Â(ρ) = A(ρ)−B2(ρ)C12(ρ), Ã(ρ) = A(ρ)−B12(ρ)C2(ρ).
If the conditions are satisfied, there is a controller K (ρ) that
solves the problem.

The infinite-dimensional space function problem can be
parametrized through a finite set of continuously differen-

tiable functions { fi : Rs → R}Nx
i=1,{gi : Rs → R}Ny

j=1 for
the matrices X , Y : Rs → Snxn , such that:

X(ρ) =
Nx∑

i=1

fi (ρ)Xi , Y (ρ) =
Ny∑

j=1

gi (ρ)Y j (21)

The solution of this convex optimization problem requires
gridding set ρ at L points {ρk}L

k=1. The density of these grid
points is defined by the following lemma:

Lemma 1 Assume a continuously differentiable state-space
data and twice continuously differentiable functions fi , gi .
Let

hmin := δmin

{[

2T
N∑

i=1

max
ρ∈P

∣∣∣∣∣

∣∣∣∣∣
d(gi ÂT)

dρ

∣∣∣∣∣

∣∣∣∣∣
F

+ νT
N∑

i=1

max
ρ∈P

∣∣
∣∣
d2gi

dρ2

∣∣
∣∣ + γmax

ρ∈P

∣∣∣
∣∣

∣∣∣
∣∣
d(B2BT

2 )

dρ

∣∣∣
∣∣

∣∣∣
∣∣
F

+2T
N∑

i=1

max
ρ∈P

∣∣∣∣∣

∣∣∣∣∣
d(gi CT

11)

dρ

∣∣∣∣∣

∣∣∣∣∣
F

+ 2max
ρ∈P

∣∣∣∣
d2B1

dρ

∣∣∣∣
F

]−1

,

[

2T
N∑

i=1

max
ρ∈P

∣∣∣
∣∣

∣∣∣
∣∣
d( fi ÂT)

dρ

∣∣∣
∣∣

∣∣∣
∣∣
F

+ νT
N∑

i=1

max
ρ∈P

∣
∣∣∣
d2 fi

dρ2

∣
∣∣∣ + γmax

ρ∈P

∣
∣∣∣∣

∣
∣∣∣∣
d(C2CT

2 )

dρ

∣
∣∣∣∣

∣
∣∣∣∣
F

+2T
N∑

i=1

max
ρ∈P

∣∣∣∣
∣

∣∣∣∣
∣
d( fi BT

11)

dρ

∣∣∣∣
∣

∣∣∣∣
∣
F

+ 2max
ρ∈P

∣∣∣∣
d2C1

dρ

∣∣∣∣
F

]−1

,

[

T
N∑

i=1

max
ρ∈P

∣
∣∣∣
d( fi )

dρ

∣
∣∣∣ + T

N∑

i=1

max
ρ∈P

∣
∣∣∣
d(gi )

dρ

∣
∣∣∣

]−1
⎫
⎬

⎭

(22)

where T > 0 is a larger number, δ > 0 is a smaller number
and F is the state-feedback gain. A |ρk − ρk+1| ≤ hmin for
all k = 1, . . . , L − 1 guarantee that the grid density solves
the LMIs problem.

Since ρ ∈ R
s a total of Ls(2s+1 + 1) LMIs in terms of Xi

and Yi must be solved.

4 Methodology

The robustness and performance of the control system is
formulated in the H∞ framework. In this section, the per-
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formance specifications and control structure of the LPV
controller proposed for the EDSON-J are presented.

4.1 Weighting Functions

In order to set some specifications of robustness and perfor-
mance in closed loop, we must choose suitable weighting
functions (Zhou and Doyle 1998).

The sensitivity function S = (I + GK )−1, related to
good tracking and good disturbance rejection, is weighted
by WS = diag[WSu , WSr ] in surge velocity u and in yaw rate
r directions, respectively:

WSu = s/Mu + ωu

s + ωuεu
, WSr = s/Mr + ωr

s + ωrεr
, (23)

where Mu = Mr = 2 are the D.C. gains of the functions
which control the disturbance rejection, ωu = 2 and ωr =
0.5 are the bandwidth of the closed-loop response and εu =
εr = 0.01 are small and finite values to avoid numerical
singularities in the computation.

The function WC = diag[WCnc
, WCnd

] weights the con-
troller sensitivity function KS that restricts the control input
according to the actuators limits

WCnc
= s + ωnc/Mnc

εnc s + ωnc

, WCnd
= s + ωnd /Mnd

εnd s + ωnd

, (24)

where Mnc = 500 and Mnd = 200 are the magnitude of C ,
ωnc = 20,000 and ωnd = 2000 are the bandwidth of the
controller and εu = εr = 0.001 are small values that allow
implementation. Both input and output disturbance in the
generalizedplant are notweighted and thenWdi = Wdo = I2.

4.2 TDOF Controller

Acentralized controllerwith two-degree-of-freedom(TDOF)
structure is chosenwith the form K = [K r K y]T. This struc-
ture was proposed initially in Lundstrom et al. (1999) with
the ability to increase performance without compromising
the robustness in stability. Figure 3 presents the respective
two-port diagramwith generalized plantΣ(ρ) and controller
K (ρ). The generalized plant includes the four weighting

functions represented by W∗. Thew = [
di do r

]T
represents

the exogenous inputs, where r = [
ur rr

]T
is the reference

signal for the surge velocity u m/s and the yaw rate r rad/s,
respectively. The output performance is given byz = [e u]T,
where e = [ue re]T is the error value between the measured
output y = [uy ry]T and the reference signal in surge u and
yaw r . The control input is given by u = [nc nd ]T.
The closed-loop transfer function from exogenous input to
performance output of the EDSON-J USV can be expressed

Fig. 3 Closed-loop generalized plant and TDOF controller structure

Table 4 Basis functions and
sub-optimal gamma value

fi (ρ) = gi (ρ) γ

1 1.0650

1, ρ 1.0637

1, ρ, ρ2 1.0637

1, ρ, ρ2, ρ3 1.0635

1, ρ, ρ2, ρ3, ρ4 1.0636

1, ρ, ρ2, ρ3, ρ4, ρ5 0.9180

with respect to the TDOF controller structure as:

[
e
u

]
=

[
SG S I − SGK r

I − S K yS SK r

] ⎡

⎣
di

do

r

⎤

⎦ (25)

4.3 LPV Grid Model

For representing the varying parameter dependence, a grid-
basedmodel is used; theLPVsystem is built froma collection
of linearizations on the parameters varying gridded domain
ρ ∈ P , the set of LTI systems in the grid is defined for each
ρk value, where k is the kth grid-point. For this approach, six
uniformly spaced points of the mass payload m p are chosen
to grid the interval P = [250 kg, 350 kg]. To find the basis
functions fi (ρ) and gi (ρ), different functions with the form
ρn with n = 0, 1, 2, . . . , n have been evaluated. The results
as a function of performance level are shown in Table 4.

Since an optimal controller must have a performance
level γ < 1, the basis functions are chosen as follows
{ fi (ρ)}6k=1 = {gi (ρ)}6k=1 = {1, ρ, ρ2, ρ3, ρ4, ρ5}, other
basis functions can be implemented but compromise the opti-
mization time. A good criterion for choosing basis functions
is the simplicity. Hence, the parameter-dependent X(ρ) and
Y (ρ) are in the form of X(ρ) = ∑6

i=1 fi (ρ)Xi , Y (ρ) =
∑6

i=1 fi (ρ)Yi .
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5 Analysis and Results

This section presents different scenarios to analyze the
results and to validate the proposed control strategy, in both
frequency domain and time domain. These numerical simu-
lations guarantee the achievement of control goals and allow
evaluating the performance of the EDSON-J control system
in typical missions, such as supervising estuary regions at
sea with different payload instrumentation.

5.1 Frequency-Domain Analysis

The frequency-domain analysis over the augmented plant of
the EDSON-J LPV model is shown in Fig. 3. It serves to
evaluate the performance and robustness in all set of grid
points ρ ∈ P = [250; 270; 290; 310; 330; 350] of the con-
trolled system through sensitivity S and controller sensitivity
KS functions, and in comparison with a standard LTI/H∞
controller, as shown below.

5.1.1 Sensitivity

Figure 4a presents the surge u sensitivity function Su for the
LPV/H∞ approach. The Su LPV/H∞ achieves a crossover
frequency of 4.3 rad/s and is considered good tracking and
rejection to environmental disturbances, such as waves, cur-
rents and wind. The main improvement of the LPV/H∞
sensitivity function is that the signal never overshoots the
design condition 1/WSu unlike the LTI/H∞ controller, which
crosses the weighting function close to the crossover region
between frequencies 0.7 and 2 rad/s.

Figure 4b presents yaw r sensitivity function Sr , signal
Sr LTI/H∞ overshoots the design condition in 5 dB in the
low frequencies until 0.1 rad/s, compromising the tracking
response and disturbance rejection; signal Sr LPV/H∞ with
crossover frequency 1.4 rad/s shows a performance improve-
ment because it does not cross weighting function 1/WSr .

5.1.2 Controller Sensitivity

Figure 5a presents the controller sensitivity function KSnc

with a similar behavior in the LPV/H∞ and the LTI/H∞
approach achieving the control objectives defined by 1/WCnd
with a crossover frequency of 400 rad/s.

Figure 5b shows the control sensitivity in differential
mode KSnd . Here, the LPV/H∞ solution shows a compact-
ness set of signals as a function of parameter varying ρ with
a crossover frequency of 58 rad/s in comparison with K Snd

LTI/H∞ signal, which overshoots the design condition in the
frequency of 40 rad/s, causing saturation in the actuators and
amplifying measurement noises.
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(b) Yaw r sensitivity.

Fig. 4 Sensitivity S performance

5.2 Time-Domain Analysis

The time-domain responses with the full 3-DOF EDSON-J
nonlinear model are simulated using the Simulink according
to the scheme presented in Fig. 6. Velocity vector ν = [u v r ]
represents the linear and angular velocities of the USV,
η = [x y ψ] represents the inertial frame positions, and
τ is the vector of generalized input forces. A simple guid-
ance LOS system (Caccia et al. 2005) was implemented to
evaluate usual maritime missions. Three scenarios have been
contemplated to evaluate the performance of the controlled
nonlinear EDSON-J model. The proofs have been designed
to verify different aspects of the vehicle behavior.
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Fig. 5 Sensitivity control C performance

Fig. 6 Diagram of EDSON-J nonlinear simulator

Scenario 1: Stability and Time Response

This test validates the controller in function of stability and
compares the time responses of the controlled outputs u, r
between the proposed LPV/H∞ and a LTI/H∞ controller.
The test measures velocity surge u m/s and yaw rate r rad/s
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(a) Surge u time response.
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(b) Yaw r time response.

Fig. 7 Time-domain response of the controlled outputs

responses in three operations points ρ = [270; 310; 350] kg
representing variations in mass m due to different payloads.
Constant reference signals u = 2.0 m/s and r = 0.25 rad/s
are considered. Figure 7 presents the time-domain responses
with constant input reference signals. Surge velocity u in
three operation points ρ is shown in 7(a). It is possible to
note a 0.5 s fast rise time of the LPV/H∞ controlled output
with respect to standard LTI/H∞ with 0.9 s. This is directly
related to the frequency behavior in Fig. 4. The responses
are not influenced by the increased vehicle payload with a
settling time of 4.6 s without overshoots in either controller.

Figure 7b presents an improvement in the worst payload
case m = 350 kg of 12.46 s in yaw rate r settling time
in comparison with the LTI/H∞ controller of 23.66 s, the
LPV/H∞ response is less influenced by the payload changes
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Fig. 8 Control effort for the tracking reference test

and compactness. A better rise time 3.14 s and settling time
is obtained with a little overshoot of 5.2 %.

Scenario 2: Tracking and Control Effort

For the second test, it has been considered a time-varying
reference signal for input yaw rate r , represented by a sine
function with a peak amplitude of 0.25 rad/s. The good track-
ing of yaw r is essential for the horizontal maneuvering
performed. For this simulation, the worst case m = 350 kg is
presented and velocity surge u is kept to be a constant value of
u = 2 m/s. Figure 8a shows a good tracking performance of
varying reference signal yaw r rad/s. The LPV/H∞ approach
has a lower tracking error that the LTI/H∞ controller.

Figure 8b presents the control effort and the actuator lim-
its. With the surge velocity set at 2 m/s, the yaw rate tracks
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(b) Nonlinear parameters in zigzag maneuver.

Fig. 9 Zigzag maneuver

the sinusoidal reference between− 0.3 and 0.3 rad/s, achiev-
ing a maximum control effort of nc = 18 rps and nd = 11
rps, lower than the limits and constraint imposed by the class
propeller used (nc = 22 and nd = 11 rps, see section 2 for
details).

Scenario 3: Usual Maneuvers

With guaranteed stability, tracking performance and control
effort allowed, the next step is performingmaneuvering tests,
bridging the gap between purely theoretical analysis and
real-world applications. For the third test, a simple guidance
system has been implemented that allows performing classic
maneuvers. Two maneuvers are studied: zigzag in Fig. 9 and
circular in Fig. 10; both simulations consider amassm = 300
kg.

Figure 9a presents a path-following type zigzag, repre-
sented by a sinusoidal trajectorywavewith 40mof amplitude
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Fig. 10 Circular maneuver

and a period of 250 m; the trajectory of the USV has a max-
imum tracking error of less than 1 m. Figure 9b presents
velocities ν = [u v r ] during this path-following trajectory;
surge velocity u quickly achieves the condition proposed of
2 m/s without steady-state errors, v and r present oscillatory
transitions during the first 50 s until achieving the steady
state.

Figure 10a presents the vehicle following a circular path;
the reference trajectory is a circle with a radio of 150 m.
The trajectory of the EDSON-J presents no considerable
errors with respect to the circular desired trajectory. Fig-
ure 10b presents the nonlinear velocities during the circular
test; velocity surge u has a steady-state response of 2 m/s,
sway velocity v and yaw rate r present oscillatory in transient
responses, but these are lower compared with the last zigzag
path-following trajectory.

6 Conclusions

The synthesis of a robust LPV controller using a grid-based
approach for the LPV/H∞ control of EDSON-J USV with
mass variation due to different payload instrumentation is
successfully validated. A centralized two-degree-of-freedom
(TDOF) controller structure achieves the frequency-domain
responses goals ensuring the robustness, stability and track-
ing performance for all the set of varying parameters ρ of the
USV. Using the nonlinear EDSON-J simulator, time-domain
responses and guidance tests during circular and zigzag
path-following trajectories determine the feasibility of the
proposed robust control approach, significantly improving its
performances compared with the LTI/H∞, despite the con-
ditions of mass variation and actuator saturation limits. The
choice of basis functions and weighting functions has proven
to be essential to achieve the design objectives. Depending on
these goals, other approaches for getting these expressions
can be considered. In further works, other varying parame-
ters can be considered, such as drag forces or fluid conditions.
These numerical results allow continuing the implementation
phase and subsequent experimental tests with the EDSON-J
vehicle. A complete EDSON-J USV model with 6-DOF and
environmental models is under consideration.
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