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Abstract
In this paper, we propose a robust PID controller based on Kharitonov theorem to overcome stability issues in DC power
systems. These issues are caused by increasing number of constant power loads (CPLs), uncertainty in the input voltage and
disturbances which affect the system performance.We designed this controller for achieving the desired tracking performance
and closed-loop stability of DC buck converter that feeds constant impedance load and CPL. The drawback of small signal
stabilitymethodswas handled as the system is linearized around all the possible operating pointswhich is themain contribution
of this paper. To assure stability over the operating range, Hermit Biehler theorem is used to find the stabilization sets of the
PID controller. Stability analysis reveals that the proposed method is robust for uncertainties. The simulation results show
promising performance of the proposed algorithm of the PID controller.
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vo Output voltage
vs Supply voltage
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P Power of the CPL
Vref Desired reference voltage
Vs,U , Vo and IL Average values of vs, u, vo. and iL ,
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ṽs, ũ, ṽo and ĩL Small signal disturbances of vs, u, vo.
and iL , respectively

δ(s), δ( jω) Characteristic polynomial in fre-
quency domain

s Normalized characteristic polynomial
σi (δ) Imaginary signature of the character-

istic polynomial
δe

(
s2

)
, δo

(
s2

)
Even and odd components of δ(s)

N (s), D(s) Nominator and denominator of plant
transfer function

p(ω), q(ω) Real and imaginary components of δ

( jω)

p f (ω), q f (ω) Real and imaginary components of δ f

( jω)

θ (ω) Phase angle of δ f ( jω)

�∞
0 θ Net change in the phase angle θ(ω)

l(δ), r (δ) Number of roots of δ f ( jω) in left and
right half plane, respectively

I String contains all possible signs of p f

(ω)

γ (I ) Imaginary signature related to string I
Kp, Ki, Kd Proportional, integral and derivative

gains of PID controller
nc(s), dc(s) Nominator and denominator of PID

Transfer function
b0, b0, a1, a1, a0, a0 Lower and upper bounds of b and a,

respectively
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K(s) Kharitonov polynomial
NS(s) Kharitonov segments of N(s)

1 Introduction

With everyday advancement in semiconductor technology,
power electronic converters (PECs) are becoming more effi-
cient, reliable, cheaper, and smaller in size. With the help
of PECs, distributed DC power systems are now becoming
more beneficial than AC distribution systems in terms of effi-
ciency, reliability, cost, size, etc.

Renewable energy resources (RERs), such as wind and
solar energy, attract more attention nowadays to reduce Co2
emissions and decrease depending on fossil fuel. The impor-
tance of RER arises in isolated areas such as desert which is
difficult to be connected to the power grid. However, depend-
ing on RER is more challenging due to different types of
loads and the intermittent nature of RER. A combination of
different sources and loads is called microgrid (MG) which
differs fromDC toACor a combination of them.ADCMG is
preferred over AC MG due to higher reliability, uninterrupt-
ible power supply, no reactive power-reduction in losses, no
harmonics, no need for synchronization, no frequency chal-
lenges, higher efficiency, and direct connection with DC bus
forDC loads such as LED, TV, laptop, andwashingmachines
(Lu et al. 2016).

Stability is a serious issue that appeared in DC microgrid
which may cause the whole system to collapse. The main
cause of stability issue in DCmicrogrid is the constant power
loads (CPLs) which is reviewed in the next sections.

1.1 Literature Review

The stability problem which caused by CPLs is a main issue
in the DC MG, where it is difficult to find the actual equilib-
rium point (Zhang et al. 2018; Lonkar and Ponnaluri 2015).
The typical reason of the instability in DC power system is
due to cascaded converters as shown in Fig. 1, where these
converters are often referred as the CPLs. In CPL, if the input
current increases the input voltage decreases and vice versa to
keep power constant. Therefore, CPL introduces a negative
impedance characteristic in low frequency range at the input
terminal that tends to oscillate with the output impedance
of power supply filter (Nahid-Mobarakeh et al. 2016; Dong
et al. 2017). Consequently, an impedance mismatch between
lightly damped filters, at the source side, and the tightly reg-
ulated power converters, at the load side, is occurred.

Constant impedance loads (CILs) generally increase
damping, whereas CPLs tend to decrease damping because
of the negative incremental impedance is seen by the source.
The negative impedance causes moving the system poles to
the right-half plane which causes instability for the system.

Main DC 
bus 

DC/DC
Converter DC/DC

Converter

DC/AC
Inverter

Ba�ery bank

Pump

PV

Resis�ve Load

Fig. 1 Distributed DC power system

In practice, speed regulated motor drives and electronic
loads may introduce such a destabilizing effect. If the motor
speed is controlled to be constant, the torque will be constant
with one to one torque-speed characteristic causing the
power to be constant. Therefore, these loads act as CPLs
(Emadi et al. 2006).

1.1.1 Passive Damping Techniques

The common way to compensate the impedance criteria is
to smooth the resonant peak of the input filter by adding
physical resistors in series and/or parallel with respective
inductors and capacitors or increasing the capacitor value.
This approach is commonly considered as a passive stabi-
lization (Dragičević et al. 2016). However, adding physical
damping elements introduces dissipative losses to the system
and increases cost and size. Therefore, researchers have come
up with active damping solutions, where stabilization can be
achieved only by modifying the point of load converter or
the closed-loop converter.

1.1.2 Active Damping Techniques

Active dampingmethods canbedivided into small- and large-
signal strategies (Dragičević et al. 2016). The basic principle
in small-signal stabilizationmethods is using linear feedback
laws (Emadi and Ehsani 2000; Rahimi and Emadi 2009).The
drawback of the linear feedback stabilization techniques is
the fact that they are valid only for analyzing the operating
point and operate around that point, but it may not operate
perfectly outside its neighborhood.Therefore, it is sometimes
preferable to develop advanced control strategy for the drives
when the power of the CPL considerably varies (Dragičević
et al. 2016). The nonlinear analysis tools are used to obtain
valid conditions for global stability realized by linear con-
trollers. In that sense, large signal analysis with phase plane
was introduced for buck and boost converters feed CPL (Riv-
etta and Williamson 2003; Williamson and Rivetta 2004),

123



Journal of Control, Automation and Electrical Systems (2021) 32:153–164 155

where a state feedback control law is divided into three
regions which are analyzed based on some constraints to
check the stability using phase plane analysis. In Kwasinski
and Krein (2007), another method using nonlinear passivity
theory, a PD controller can assure the global stability of a DC
MG. There is another approach to achieve the large-signal
stability, by using the nonlinear controllers. A geometric
based on nonlinear method, referred to as the boundary con-
trol which is employed to drive the source converter to feed
the CPL toward the desired operating point (Onwuchekwa
and Kwasinski 2010). This technique tracks the state vari-
ables of the source converter in order to select a boundary at
which the switching occurs. It provides easy method to make
system stable but the selected boundary was linear which
reduce its ability to maintain system stable at large CPL vari-
ations. A large signal method using T-S Fuzzy approximates
the nonlinear DC MG system with linear systems and study
the region of attraction around some given equilibrium points
(Herrera et al. 2017).A sliding-mode duty-ratio controller for
DC/DC buck converters of shipboard power systemwas pro-
posed in Zhao et al. (2014); however it didn’t prove global
stability. A linear stability analysis using the Jacobian matrix
in order to test the proposed nonlinear slidingmode controller
was proposed in Tahim (2011); however stability analysis
was calculated based on restricted conditions related to the
connected constant impedance load. In Zhang et al. (2018)
the system of a polytopic uncertainty set is linearized and the
convex optimization problem is solved to find the equilibrium
point. However, there is conservativeness in their solution.
The Lyapunov function with discontinuous controller is pro-
posed in Perez and Hossain (2017), but there is chattering
issues because of the discontinuous sliding mode controller.
It doesn’t also test the proposed method for different CPLs.
Discrete timemodeling formultiple CPLs and stabilizer with
virtual impedance was proposed in Gavagsaz-Ghoachani
et al. (2015). When the parameters such as inductance and
capacitance of the converters are equal or close in a certain
range, the systemwill lose stability because of the resonance,
a proposed design criteria to control the parallel sources feed-
ing CPL by solving a Jacobian matrix to determine stability
range (Dong et al. 2017); however it was operated around lin-
earized equilibrium point. Hysteresis current controller with
a proportional-integral (PI) algorithm to regulate the output
voltage of the converter was proposed in Rivetta et al. (2006).
A proposed nonlinear feedback loop which is called a loop-
cancellation technique has been developed in Williamson
et al. (2010), where the loop is placed in parallel with the
classical voltage feedback path to achieve zero steady-state
error and damping at the same time. A nonlinear controller
was proposed in Nahid-Mobarakeh et al. (2009) to control a
permanent magnet synchronous motor (PMSM)-based volt-
age source inverter. The large signal analysis proved that it
is very helpful to understand the behavior of CPLs. It helps

to control the system that has large changes around oper-
ating point caused by connection or disconnection of large
loads or generators. A unified impedance-based stability cri-
terion method was proposed for grid connected inverters in
Ye (2017), where it check stability of global minor loop gain
of the parallel inverters. If global minor loop gain meets
Nyquist stability criterion, then system is stable. It is very
simple method and doesn’t need over calculation when the
system complexity increases, but it suffers from instability
when grid impedance or number of connected inverters have
been increased about certain limits. In a cascaded converter
system (Ahmadi 2013), any change in downstream converter
caused disturbance to the upstream converter but there is a
time delay in its feedback loop that degrade system stability
so an extra feedback loop was introduced from the down-
stream to the upstream converter to stabilize it. A distributed
adaptive controller was proposed to stabilize DC MG. How-
ever, the proposed model reference adaptive control suffers
oscillation with high frequency signals (Vu 2016). Hierar-
chical control was proposed in Srinivasan (2017) which is
consisted of primary controller-based passivity approach to
insure stability with CPL and integral secondary controller to
correct voltage deviations. However, only local asymptotic
stability was obtained and it didn’t assure global asymptotic
stability. Quadratic D-stable fuzzy controller was proposed
for DC MG with CPL; it stabilizes the system but suf-
fers from rule expansion with increasing CPLs (Vafamand
et al. 2019). Energy buffer power converter for a constant
power LED lighting load that presents a controllable input
impedance to the electrical source has been proposed in Lin-
dahl et al. (2019). Exact feedback linearization method was
also proposed inHu et al. (2019). All of the previousmethods
don’t assure global asymptotic stability and it didn’t con-
sider parameter uncertainties which are the motivation for
this work.

1.2 Main Contributions

Based on the above-mentioned results and shortcomings,
in this work we propose a simple and robust PID con-
troller based on Kharitonov theorem. This controller is not
only able to mitigate the instability issue caused by the
CPL nonlinearity but also the uncertainty in system parame-
ters. Moreover, small signal modeling drawbacks have been
avoided by designing a robust PID controller formulti-model
plant which means that it will be able to operate around
different operating points. This can be achieved based on
Hermite–Biehler theorem tofind thePID stabilization set (Ho
et al. 2000). Although Nyquist plot and root locus were used
to stabilize the system but these methods are graphical and
fail to provide analytical characterization with all stabilizing
controller gains. We used the four Kharitonov segments to
design a polytope of polynomials to stabilize themulti-model
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Fig. 2 DC–DC buck converter
feed CPL

Fig. 3 a CPL and CIL
characteristic curve, b negative
resistance of CPL

(a) (b)

V

I

plant. Our proposed method is compared to the relay method
in Grino and Rafiezadeh (2019) to prove its robustness.

2 Problem Formulation

Consider a buck converter delivers a constant power to a CPL
as shown in Fig. 2. The dynamic average state-space model
of that system is given by (1) (Rivetta and Williamson 2003;
Zhao et al. 2014; Grino and Rafiezadeh 2019):

L
diL
dt

� uvs − vo − rL · iL

C
dvo
dt

� iL − vo

R
− P

vo
(1)

Consider a small disturbance in the state space variables is
occurred at vs and u producing a small disturbance at vo and
iL as given by (2).

vs � Vs + ṽs and u � U + u

vo � Vo + ṽo and iL � IL + ĩL (2)

Substituting in (1) gives the system transfer function G(s),
which is the ratio of the output voltage to the control signal,
as given by (3).

G(s) � ṽo

ũ
�

Vs
LC

s2 +
(
rL
L + 1

RC − P
CV 2

o

)
s +

(
rL
RLC + 1

LC − rL P
LCV 2

o

)

(3)

TheCPLhas nonlinear characteristics as shown in Fig. 3. The
constant impedance load (CIL) is represented by the linear
part, when the load becomes purely CPL it turns to the highly
nonlinear curve which resulted in the negative impedance as
shown in Fig. 3b.

The characteristic equation obtained from (3) shows that
increasing the inductance L or increasing the power P will
push poles to the right-half plane (RHP) andmake the system
unstable. The stability of the system is achieved according to
Routh-Hurwitz criterion at the condition explained by (4).

(
rL
L

+
1

RC
>

P

CV 2
o

)

(
rL

RLC
+

1

LC
>

rL P

LCV 2
o

)
(4)
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Fig. 4 Block diagram of the closed-loop system

Therefore, the maximum power that the system can deliver
before it become unstable is specified by (5):

P <
rLC + (L/R)

L
V 2
o (5)

Consequently, increasing capacitance or resistive loads may
increase stability but there are limits because of the increased
cost and size.

3 Proposed Algorithm

To analyze the closed-loop system stability and detect the
location of its RHP roots, we propose the following steps:

1. Generate the fourKharitonov rectangles for the uncertain
plant.

2. Solve GHB and find the PID stabilizing region.
3. Apply zero exclusion condition to test stability of the

selected gains.

Consider the closed-loop system that consists of a con-
troller cascaded with the plant is shown in Fig. 4.

The plant transfer function is assumed to be a rational
form given by (6).

G(s) � N (s)

D(s)
(6)

Assume the plant is controlled with a PID controller whose
transfer function is given by (7).

C(s) � nc(s)

dc(s)
� kds2 + kps + ki

s
(7)

The closed-loop transfer function is designated by (8):

Y (s)

R(s)
� (kds2 + kps + ki )N (s)

(kds2 + kps + ki )N (s) + sD(s)
(8)

Therefore, the denominator of the closed-loop transfer func-
tion is considered as the closed-loop characteristic polyno-
mial δ(s, kp, kd, ki) of degree n (with real coefficients) and
assumed to be given by (9):

δ(s) � δ0 + δ1s + δ2s
2 + δ3s

3 + δ4s
4 + · · · + δns

n (9)

Fig. 5 The interlacing property for Hurwitz polynomials δ(s)

We can divide δ(s) into two polynomials which are δe(s2)
that include all even powers and δo(s2) that includes all odd
powers of s as given by (10) and (11), respectively

δ(s) � δ0 + δ2s
2 + · · ·︸ ︷︷ ︸

δe(s2)

+s (δ1 + δ3s
2 · · ·)︸ ︷︷ ︸

δo(s2)

(10)

δ(s) � δe

(
s2

)
+ sδo

(
s2

)
(11)

3.1 Hermite–Biehler Theorem

For every frequency ω ∈ �, by replacing each s in the above
two equations by jω, thismakes δe(−ω2) is a real polynomial
and δo(− ω2) is an imaginary polynomial. Therefore, the
characteristic polynomial δ(jω) will be written as shown by
(12):

δ( jω) � p(ω) + jq(ω) (12)

where p(ω) � Re(δ( jω)) � δe
(−ω2

)
, and q(ω) � Im

(δ( jω)) � ωδo
(−ω2

)
.

Assuming that ωe1, ωe2, ωe3, … denote the nonnegative
real zeros of δe

(−ω2
)
. and ωo1, ωo2, ωo3, … denote the non-

negative real zeros of δo
(−ω2

)
. arranged in ascending order

of magnitude. Then, δ(s) is Hurwitz stable if and only if all
the zeros of δe

(
s2

)
, δo

(
s2

)
are real and distinct, and their non-

negative real zeros satisfy the following interlacing property
is shown in Fig. 5

0 < ωe1 < ωo1 < ωe2 < ωo2 < ωe3 < ωo3 . . . . . . (13)

3.2 Generalized Hermite Biehler Theorem

Assuming δ(s) be a real polynomial of degree n with k mul-
tiple roots at the origin and no imaginary axis roots. This
polynomial can be normalized by dividing it by f (ω), where
f (ω) is given by (14):

f (ω) �
(
1 + ω2

) n
2

(14)
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The normalized polynomial δ f ( jω) can be divided into real
and imaginary parts as given by (15):

(15)

δ f ( jω) � p f (ω) + jq f (ω) where p f (ω)

� p (ω)

(1 + ω2)
n
2
and q f (ω) � q(ω)

(1 + ω2)
n
2

At any given frequency, ω, the phase angle, θ , of the normal-
ized polynomial, δ f ( jω), is given by (16):

θ(ω) � � δ f ( jω) � tan−1
(
q(ω)

p(ω)

)
(16)

Therefore, to select the frequency range to analyze the dis-
tribution of the normalized polynomial roots, the change in
the phase angle, �∞

0 θ , as ω increases from 0 to ∞ can be
given by (17):

�∞
0 θ � π

2

(
l
(
δ f

) − r
(
δ f

))
(17)

Assuming 0 � ω0 < ω1 < ω2 . . . < ωl−1 be the real,
nonnegative distinct finite zeros of q f (ω) with odd multi-
plicities. Assuming ωl � ∞, then the imaginary signature
σi (δ) is given by (18).

σi (δ) �

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{
sgn[pkf (ω0)] − 2sgn[p f (ω1)] + 2sgn[p f (ω2)] + · · · +

(
−1)l−1 · 2sgn[p f (ωl−1)

]

+(−1)lsgn[p f (ωl)
}
.
(
−1)l−1sgn[q(∞)

] if n is even

{
sgn[pkf (ω0)

]−2sgn[p f (ω1)
]
+ 2sgn[p f (ω2)] + · · · + (−1)l−1

}

·
(
−1)l−1sgn[q(∞)

] if n is odd

(18)

where

pkf (ω0) :� dk

dωk

[
p f (ω)

]∣∣
ω�ω0

and sgn[x]

�
⎧
⎨

⎩

−1 if x < 0
0 if x � 0
1 if x > 0

The standard signum function, sgn[x], has numbers (− 1, 0
and 1) that called strings and used to capture all possibilities
of the sign of p f (ω, k) at the real zeros of q f (ω).

Each value of ω0, ω1, ω2, . . . , ωl , given above, must have
a corresponding value of i0, i1, i2, . . . , il where i0 ∈ {−1, 1}
and so do i1, i2, . . . , il . These values of i0, i1, i2, . . . , il con-
sist the set A of strings where

A �
{ {i0, i1 . . . il} if m + n is even

{i0, i1 . . . il−1} if m + n is odd

where n and m are the degree of δ
(
s, kp, ki, kd

)
and N (s),,

respectively.
For each string I � {i0, i1, i2, . . . , il} in A, the imaginary

signature γ (I ) related to string I is calculated as given in
(19):

γ (I ) �
{ {i0 − 2i1 + 2i2 + · · · (−1)l−12il−1 +

(−1)l−1il} · (−1)l−1sgn[q(∞)]
if n + mis even

{i0 − 2i1 + 2i2 + · · · (−1)l−12il−1} · (−1)l−1sgn[q(∞)]
if n + mis odd

(19)

The appropriate value for i0, i1, i2, . . . , il is selected as 1
or − 1 so that γ (I ) � σi (δ)

3.3 Numerical Application

Applying the GHB theorem to the proposed system, and sub-
stituting C � 470 μF, L � 100 μH, P � 1100 W,Vo � 24v,
V s � 48v, rL � 0.05 	 and R � 100 	 in the plant transfer
function given by (3), it will be as given in (20).

G(s) � N (s)

D(s)
� 10.2 × 108

s2 − 3764s + 1.9 × 107
(20)

Then, the closed-loop characteristic polynomial, which is the
denominator of (20), is given by (21):

δ
(
s, kp, ki , kd

) � sD(s) +
(
ki + kds

2
)
N (s) + kpsN (s)

(21)

Substituting from (20) into (21);

(22)

δ
(
s, kp, ki , kd

) � s3 +
(
10.2 × 108kd − 3764

)
s2

+
(
10.2 × 108kp + 1.9 × 107

)
s

+ 10.2 × 108ki
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To find kp, ki , kd , we replace sby jω in (22) then find p(ω)
and q(ω) as illustrated in (23), (24) and (25).

δ
(
jω, kp, ki , kd

) � 10.2 × 108ki

+ jω
(
10.2 × 108kp + 1.9 × 107

)

− ω2
(
10.2 × 108kd − 3764

)
− jω3

(23)

(24)

δ
(
jω, kp, ki , kd

)

�
{
10.2 × 108ki − ω2

(
10.2 × 108kd − 3764

)}

+ jω
{
10.2 × 108kp + 1.9 × 107 − ω2

}

δ
(
jω, kp, ki , kd

)

�
[
p1 (ω) +

(
ki − kdω

2
)
p2 (ω) ]+ j[ q1 (ω) + kpq2 (ω)

]

(25)

If the above characteristic equation equal zero then the real
part and imaginary part equal must be zero too. Therefore,
by equating q(ω) with zero, we get kp as given by (26):

kp � −q1(ω)

q2(ω)
� ω2 − 1.9 × 107

10.2 × 108
(26)

This resulted in kp ∈ (−0.018,∞).

Performance of PID is beyond the scope of this paper so
arbitrarily value for kp is taken inside the stability range.
Therefore, assuming a fixed value for kp � 0.1, inside the
stability range, and substituting in q(ω), then we have the
expression given by (27):

q(ω, 0.1) � q1(ω) + 0.1q2(ω) � −ω3 + 12.1 × 107ω (27)

So, q(ω) have two positive real nonnegative finite zeros
which are ω0 � 0 andω1 � 1.1 × 104.

According to GHB theorem δ
(
jω, kp, ki , kd

)
is Hurwitz

if and only if the imaginary signature (σi (δ)) given in (18)
equals the imaginary signature γ (I ) given in (19). Therefore,
imaginary signature σi (δ) is calculated by (28).

(28)σi
(
δ
(
s, kp, ki , kd

) � n − (l(N (s)) − r (N (s)
)
) � 3

− (0 − 0) � 3

Since (1)l−1sgn[q(∞)] � (1)2−1(−1) � 1, and γ (I ) must
equal 3, then:

γ (I ) � (i0 − 2i1) × 1 � 3 (29)

The only set of string is I � {1,−1} to satisfy γ (I ) is i0 �
1 and i1 � − 1.

Therefore, the stabilizing (ki , kd) values corresponding to
kp � 0.1 must satisfy the string of the inequalities given by
(30).

ki > 0

ki > 1.2 × 108kd − 446 (30)

The admissible set of values of (ki , kd) for which (30) is
satisfied can be solved by linear programming.We can sweep
over the entire range of kp and find the (ki , kd) values.

4 Robust Stabilization of Interval Plant

The system parameters may have uncertainty which could
lead to instability too. So, we proposed robust control to sta-
bilize the interval plant. Kharitonov theorem is an extension
of the Routh stability criterion to interval polynomials. An
interval polynomial is a polynomial where each coefficient
can vary in a prescribed interval. Consider the plant in (3)
with uncertainty in its coefficients as given in (31).

G(s) � N (s, q)

D(s, q)
�

∑m
i�0 [bi , bi ]s

i

∑n
i�0 [ai , ai ]s

i
� b0

a2s2 + a1s + a 0

(31)

where b0 ∈ [
b0, b0], a1 ∈ [a1, a1], a0 ∈ [a0, a0

]
, represent

lower and upper bounds for parameters of both the numerator
and denominator.

4.1 Kharitonov Theorem

A sufficient and necessary condition for stability of an inter-
val plant is that the four polynomials given by (32) are
stabilized hence they are Hurwitz:

K 1(s) � a0 + a1s + a2s
2 � 0

K 2(s) � a0 + a1s + a2s
2 � 0

K 3(s) � a0 + a1s + a2s
2 � 0

K 4(s) � a0 + a1s + a2s
2 � 0 (32)

The proposed PID controller is used to stabilize the inter-
val plant and its transfer function as mentioned in (7), so that
the closed-loop characteristic polynomial δ

(
s, kp, ki , kd

)
is

Hurwitz. Let Ni (s) and D j (s), i and j � 1, 2, 3, 4 are the
Kharitonov polynomial of N (s) and D(s), respectively. Let
NSi (s), i � 1, 2, 3, 4 be the four Kharitonov segments of
N(s) which make a convex combination where λ ∈ [0, 1],
are given in (33).

NS1(s, λ) � λN 1(s) + (1 − λ)N 2(s)
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NS2(s, λ) � λN 1(s) + (1 − λ)N 3(s)

NS3(s, λ) � λN 2(s) + (1 − λ)N 4(s)

NS4(s, λ) � λN 3(s) + (1 − λ)N 4(s) (33)

By taking all combinations of the NSi (s, λ) and D j (s) for
i and j � 1, 2, 3, 4, the family of 16 Kharitonov-segment
plants, GS(s), are given by (34):

GS (s)� Gi j (s, λ)� NSi (s, λ)

D j (s)
, i � 1, 2, 3, 4 j � 1, 2, 3, 4

(34)

Then, the family of closed-loop characteristic polynomial for
each segment plant Gi j (s, λ) is denoted by (35):

δ
(
s, kp, ki , kd , λ

) � sD j (s) + (ki + kps + kds
2)NSi (s, λ)

(35)

The whole GS(s) family is stabilized by the proposed PID
controller. We find kp for every Gi j (s, λ) with λ ∈ [0, 1],
then find intersection and take a fixed value for kp we can
determine (ki , kd) set.

For our system G(s) given in (31), the lower and upper
bounds of parameters have been chosen based on the max-
imum capability of PID controller that could stabilize the
system, for instance, larger power or inductance and lower
capacitance than our specified bounds could lead to instabil-
ity of the system and the PID will not be able to stabilize the
system. The uncertain system parameters are:

40 < Vs < 60V, 23 < Vo < 27V, 50 < L < 200μH,

350 < C < 600μF, 0.03 < rL < 0.07	, 135 < P < 1100w

Substitute in (31) to get the lower and upper bounds of coef-
ficients as follows:

b0 ∈
[
3 × 108, 3.4 × 109

]
, a1

∈
[
7.34 × 103, 1.12 × 103

]
, a0

∈
[
2.2 × 106, 5.7 × 107

]

So, the Kharitonov polynomials related to N(s) andD(s) are:

N 1(s) � 3.0 × 108 D1(s � [
17.34 × 103 2.18 × 106

]

N 2(s) � 3.4 × 109 D2(s) � [
11.12 × 103 5.7 × 107

]

N 3(s) � 3.4 × 109 D3(s) � [
17.34 × 103 5.7 × 107

]

N 4(s) � 3.0 × 108 D4(s � [
11.12 × 103 2.18 × 106

]

Fig. 6 Stability test of interval plants for 0<ω <103 rad/s

Solving for the first Kharitonov segment G13(s, λ) as an
example given by (36)

(36)

G13(s, λ) � NS1 (s, λ)

D3 (s)
� λN 1 (s) + (1 − λ) N 2(s)

D3(s)

� λN 1 (s) + (1 − λ) N 2(s)

s27.34 × 103s + 5.7 × 107

We find kp for every segment and for λ ∈ [0, 1] to be as given
by (37)

kp � ∩i�1.2.3.4, j�1.2.3.4Gi j (s, λ) (37)

Resulted in kp ∈ (0.008,∞), Take a fixed value for kp and
solve the eight plants of Gi j (s, λ) to find (ki , kd ) stabilizing
set using HB theorem.

5 Robust Stability

To inspect the robust stability of closed-loop characteristic
polynomial given by (21), we applied zero exclusion condi-
tion (ZEC).

Assuming that P � {p(., q) : q ∈ Q} is an interval
polynomial with invariant degree and has at least one stable
member, then based on ZEC, P is robustly stable if origin of
complex plane, i.e., Z � (0, 0), is excluded from the vertex
plants for all ω ≥ 0, 0 /∈ p( jω, Q) as shown in Fig. 6
between real (Re) and imaginary (Img).

We could also check stability of the uncertain systemwith
the designed controller using root locus.We found that all the
system poles are in the left half plane which means the same
controller can stabilize the multi-model plant with parameter
uncertainties as shown in Fig. 7
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Fig. 7 Root locus of multi-model plant due to parameters uncertainties

6 Simulation Results

Based on Matlab–Simulink (R2015 a) software package and
applying the proposed PID controller whose parameters are
kp � 0.1,ki � 20, and kd � 10 × 10−5 to the switched
nonlinear model for two cases, normal case and uncertain
case;

6.1 Normal Case

Assuming that the power of the CPL is changing as shown in
Fig. 8a, and the system input (V ref) is set at 24v, the system
output, Vo, is shown in Fig. 8b. It is clear that the system
is stable with variable CPL power. Moreover, although the
load power increased abruptly from 500 to 800 W at time
of 0.05 s, and increased again from 800 to 1100 W at 0.12 s
and suddenly decreased from 1100 to 750 W at 0.16 s, the
output tracked the reference voltage successfully with spikes
at the points of power changes. Also there are some accepted
ripples around the reference voltage as zoomed in the interval
from 0.078 to 0.088 s shown in Fig. 8b.

The tracking error, which is the difference between the
reference voltage (Vref) and the output voltage (Vo), is shown
in Fig. 9. From that figure, we observe that the PID controller
succeeded to track Vref with certain tolerance within±0.2%
with overshoot that doesn’t exceed 1 V in transient state.

6.2 Uncertain Case

In order to validate theproposed algorithmwithuncertainties,
we compared the obtained simulation results using proposed
PID controller (VoutputPID) with those obtained by relay con-
trol (Voutput relay) given by Rafiezadeh (Grino and Rafiezadeh
2019). At the same power consumption of the CPL shown
in Fig. 10a and the system inductance is increased from its

(a) 

(b) 

Fig. 8 a The power drawn by CPL. b The output voltage on capacitor

Fig. 9 Tracking error between the desired reference voltage and output
voltage

nominal value (100 μH) to 150 μH and the capacitance is
decreased from its nominal value (470 μF) to 350 μF, the
comparison revealed that, our algorithm of the PID controller
succeeded to stabilize the system and track the reference
value (V ref) as shown in Fig. 10b, but the relay method of
(Grino and Rafiezadeh 2019) couldn’t.

To examine the robustness of the proposed PID controller,
the converter supply voltage Vs is decreased from 48 to 40 V
at time 0.05 s then increased from 40 to 60 V at time 0.1 s
as a disturbance in input voltage as shown by the red line
in Fig. 11. It is clear that the output voltage with the pro-
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(a) 

(b) 

Fig. 10 a CPL power variation. b Output voltage with CPL variation

posed PID controller (blue line) is succeeded to track the
reference voltage (V ref). Moreover, when the supply voltage
decreased, the output voltage is dropped by 1 V and returned
to its reference value within time period of 10 ms. Further-
more, when the supply voltage is increased, the controller
succeeded to track the reference voltage with overshoot of
2 V. This overshoot is disappeared within a time period of
10 ms too. The period when the supply voltage increased is
zoomed into identify the overshoot occurred at that period of
disturbance.

For the uncertain system parameters (L, C), a control
signal disturbance could also added due to sensor noise at
0.05 s to both the proposed PID controller and the Relay
controller given in Grino and Rafiezadeh (2019). The pro-
posed PIDwas able to track the reference signal; however the
relay controller output voltage had oscillation and it couldn’t
track the reference voltage, when the supply voltage is sud-
denly increased, as shown in Fig. 12. Comparison between

Fig. 11 Output voltage with source voltage variation

Fig. 12 Output voltage of PID and relay controller due to control signal
disturbance

Table 1 Comparison between the results of the proposed method with
the results of Grino and Rafiezadeh (2019)

Comparison Method in Grino and
Rafiezadeh (2019)

Proposed method

Parameter uncertainty Unstable Stable

Control signal
disturbance

Unstable Stable

Maximum overshoot 1.8v 2v

Settling time 1 ms 10 ms

the proposed method and Rafiezadeh’s method in Grino and
Rafiezadeh (2019)is given in Table 1.
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7 Conclusion

This paper presents a simple and robust method to control
buck converter feeing constant power load (CPL). We used
Hermite Biehler theorem and its generalization to find all the
possible stabilizing sets. The multi-model plant enabled the
PID controller to stabilize the system at different CPL oper-
ating points with parameter uncertainties. So the drawback
of small signal stability methods were handled as the system
is linearized around all the possible operating points using
our proposed method. To assure robust stability, we applied
zero exclusion condition to test it. The simulation results PID
controller succeeded to track the reference voltagewith small
accepted tolerance. We validated the proposed algorithm by
comparing it with previous research work and showed supe-
rior advantage. The proposed method has limitation in large
gain values that lead to controller saturation or instability;
so small gain values are selected. As a future work, we will
focus on increasing stability region of the proposed controller
and introduce a method for parameters tuning for a desired
performance.
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