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Abstract
This paper presents an observer-based periodic event-triggered strategy for linear systems subject to input cone-bounded
nonlinearities. Considering a discrete-time framework, conditions in the form of linear matrix inequalities are derived to
ensure global or regional stability of the origin of the closed-loop system under the event-triggered control strategy. These
conditions are cast into convex optimization problems to determine the event-triggering function parameters, aiming at
reducing the number of control updates with respect to periodic implementations. Both the emulation and the co-design
problems are addressed. Numerical examples with logarithmic quantization and saturation nonlinearities are presented to
illustrate the method.

Keywords Event-triggered control · Cone-bounded nonlinearities · Observers · LMIs · Co-design.

1 Introduction

Event-triggered control strategies have been attracting the
attention of the control community in the last few years.
The basic idea underlying these strategies regards updat-
ing the control signal only when a certain event, based on
the measurement of states or outputs of the system, occurs
(Heemels et al. 2012). The main motivation for the applica-
tion of such a kind of updating control policy comes from the
recently growth of the so-called networked control systems
(NCS) (Hespanha et al. 2007), which brings some practi-

This study was financed in part by CNPQ, Brazil (Grants
PQ-305979/2019-9 and Univ-42299/2016-0) and IFSUL, Brazil
(Project PD00190519/011).

B J. M. Gomes da Silva Jr.
jmgomes@ufrgs.br

G. B. Merlin
giovani.merlin@ufrgs.br

L. G. Moreira
lucianomoreira@charqueadas.ifsul.edu.br

1 Departamento de Automação e Energia (DELAE),
Universidade Federal do Rio Grande do Sul (UFRGS), Porto
Alegre, Rio Grande do Sul, Brazil

2 Instituto Federal de Educação, Ciência e Tecnologia
Sul-rio-grandense (IFSul), Charqueadas, Rio Grande do Sul,
Brazil

cal constraints in terms of the amount and the frequency of
data transmissions. In this case, less control updates implies
less amount and frequency of data transmissions. This has a
clear impact, for instance, on network congestion and energy
consumption (critical in systems fed by batteries). Another
interestingmotivation is to avoid actuators fatigue, which can
be critical, for instance in mechanical devices.

Two basic problems can be formulated in the context of
event-triggered control: the emulation and the co-design. In
the emulation problem, the controller is supposed to be given
and only the triggering function (or criterion) is designed. In
the co-design, the controller and the triggering function are
simultaneously synthesized.

Despite the fact that themajority of control systems nowa-
days are implemented digitally and, therefore, bettermodeled
as discrete-time or sampled-data systems, most of the litera-
ture on event-triggered control considers a continuous-time
setup, where the triggering function should be continuously
evaluated (and then a continuous measurement of the state or
outputs is assumed). Examples of this approach can be seen in
Heemels et al. (2012), Selivanov and Fridman (2016), Abdel-
rahimet al. (2016), amongmanyother references.Besides the
unrealistic assumption of continuous measurements, from
a theoretical point of view, the possibility of Zeno phe-
nomenon is an extra concern. To overcome these issues,
the idea is therefore to consider a periodic monitoring of
the triggering function and a consequent periodic decision
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on updating or not the control signal. This is basically the
idea proposed in Heemels et al. (2013), which was named
periodic event-triggered control (PETC). Considering the
same idea, but using exact discretization approaches (i.e., a
discrete-time model) we can cite Eqtami et al. (2010), Braga
et al. (2015), Hu et al. (2016) and Groff et al. (2016), which
addresses observer-based feedback PETC for linear systems.
More recently, Aranda-Escolástico et al. (2017) considered
PETC with asynchronous transmissions of the output mea-
surements and of the control inputs. In Wang et al. (2018),
output-feedback PETC for nonlinear systems is addressed in
an emulation context considering nonlinear controllers that
stabilize the closed-loop systemwhen implemented in a peri-
odic (time-triggered) fashion. Cuenca et al. (2019) address
PETC controllers for linear systems taking network delays
and packet losses into account. PETC is also addressed, in
the context of linear systems in Yue et al. (2013), Peng et al.
(2013), Jia et al. (2014), Chen and Hao (2015), Zhang et al.
(2015), Borgers et al. (2017), Oliveira et al. (2017), Lin-
senmayer et al. (2019), Liu and Yang (2019), Qi et al.
(2020). Furthermore, considering generic nonlinear systems
we can cite for instance Postoyan et al. (2013), Borgers et al.
(2018), Yang et al. (2018), Wang et al. (2020). In particular,
results obtained from the use of Takagi-Sugeno models can
be found in Yan et al. (2019), Liu et al. (2020).

On the other hand, nonlinearities like saturation of actu-
ators are ubiquitous in control systems. Moreover, in digital
systems, quantization of controller output is also a sub-
ject of great interest. Many times, systems subject to these
nonlinearities can be conveniently modeled as linear sys-
tems subject to sector-bounded input nonlinearities (see for
instance Gomes da Silva and Tarbouriech 2005; Campos
et al. 2018 and Moreira et al. 2016, which address event-
triggered controllers for the specific case of these actuators
nonlinearities). In Moreira et al. (2019), a method to design
observer-based event-triggered controllers for this class of
systems considering continuous monitoring of the system
variables, i.e., a continuous-time ETC approach, is proposed.

The present work extends the results in Moreira et al.
(2019) to consider the design of periodic observer-based
PETCs for the class of nonlinear systems composed by a
linear plant subject to cone-bounded (or sector-bounded)
input nonlinearities. Here we also consider time-response
performance requirements for the closed-loop system. This
constraint is expressed as a minimum exponential decay
rate requirement for the norm of the system states at sam-
pling instants. Similarly to Groff et al. (2016), the problem
is formulated in a discrete-time framework. Supposing that
only the output of the plant is measurable, a discrete-time
observer-based output feedback control law is considered.
LMI-based conditions to ensure the closed-loop stability of
the origin considering the event-triggered implementation,
either in regional (i.e., local) as well as global contexts,

are proposed. Both emulation and co-design problems are
addressed. The stability conditions are then cast into con-
vex optimization problems to compute the event-triggering
function parameters aiming at a reduced number of con-
trol updates. In the case of co-design, the same objective
is aimed, but considering the simultaneous synthesis of the
event-triggering function parameters and the feedback gain
matrix. Numerical examples are included to illustrate the
application and potentialities of the method.

1.1 Notation

For a given matrix A, A′ denotes its transpose. A > 0
means that A is positive definite. λmax(A) and λmin(A),
the largest and the smallest eigenvalue of matrix A, respec-
tively. x[·] denotes a discrete-time function. I and 0 are
an identity matrix and a null matrix of appropriate dimen-
sions. In partitionedmatrices, ∗ stands for a symmetric block.
diag(A1, ..., An) denotes a block diagonal matrix whose
diagonal elements are the blocks A1 through An .

2 Problem Statement

2.1 Problem Setup

Consider the following system, corresponding to the linear
model of a plant whose control inputs are provided by a
nonlinear actuator:

{
ẋ p(t) = Apxp(t) + Bpu(t) + Bpf f (u(t))
yp(t) = Cpxp(t)

(1)

where xp ∈ R
n , yp ∈ R

m and u ∈ R
p are the state, the

output and the control signal, respectively. The matrices Ap,
Bp, Bpf and Cp are supposed to be constant and of appro-
priate dimensions. Moreover, the function f (u) : Rp → R

p

represents a known, decentralized cone-bounded nonlinear-
ity affecting the input u. Therefore, it satisfies the following
property:

f (u)′S( f (u) + Ju) ≤ 0, ∀u ∈ Su (2)

where S ∈ R
p×p is any diagonal positive definite matrix and

J ∈ R
p×p is supposed to be a diagonal positive matrix that

depends on the nonlinearity characteristics. Depending on
the nonlinearity, condition (2) can be verified globally, i.e.,
∀u ∈ R

p, or only locally (regionally), i.e., ∀u ∈ Su ⊂ R
p.

In the regional case, we assume that Su can be represented
by a polytopic region as follows:

Su = {u ∈ R
p : |h′

i u| ≤ 1; hi ∈ R
p, i = 1, ..., n f }. (3)
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Considering a digital control implementation, we suppose
that the output of the system is sampled with a period Ts .
Moreover, the control signal is supposed to be kept constant
between two successive sampling instants bymeans of a zero-
order hold, i.e., u(kTs+τ) = u(kTs), ∀τ ∈ [0, Ts), ∀k ∈ N.
From this setup, as the nonlinearity affects only the input, an
exact discretization procedure leads to the following discrete-
time model:
{
xp[k + 1] = Asxp[k] + Bsu[k] + Bsf f (u[k])
yp[k] = Csxp[k]

(4)

with xp[k] = xp(kTs), u[k] = u(kTs), As = eApTs , Bs =∫ Ts
0 eApτ Bpdτ and Bsf = ∫ Ts

0 eApτ Bpfdτ .
We suppose that only the output of the plant yp can

be measured. Hence, to control the system we consider a
discrete-time state observer, which is given by the following
equations:

⎧⎪⎨
⎪⎩
xo[k + 1] = Asxo[k] + Bsu[k] + Bsf f (u[k]) − Ley[k]

ey[k] = yp[k] − yo[k]
yo[k] = Csxo[k]

(5)

where xo ∈ R
n , yo ∈ R

m , ey ∈ R
m are the observer state, the

observer output and the output error, respectively. L ∈ R
n×m

is the observer gain matrix.
Considering now a classical digital observed state feed-

back control law, the control signal would be given by

u[k] = Kxo[k] (6)

with K ∈ R
p×n being the state feedback gain matrix. In

this case, the control signal is supposed to be updated at
each instant k from the estimated state at this instant. In what
followswe refer to this strategy as aperiodic updating control
(PUC) strategy.

2.2 Event-Triggering Strategy

Differently from the periodic updating policy given by (6),
the idea is to avoid unnecessary control updates by apply-
ing a periodic event-triggered control strategy (PETC), in
the sense that at each sampling instant k, based on a trigger
rule, a decision is made about updating the control signal or
keeping it unchanged. Note that the periodic term in this case
refers to the evaluation of the trigger rule periodically, at each
instant k. More specifically, using a PETC strategy, the con-
trol signal is updated only at instants k = ni ∈ N, where ni ,
i = 1, 2, 3, . . . , denote the discrete-time instants in which a
trigger is generated. In this case, the resulting control signal
applied to the plant is described as follows:

u[k] = u[ni ] = Kxo[ni ], ∀k ∈ [ni , ni+1). (7)

Therefore, to provide a formulation for this implementa-
tion, we introduce the error vector between the value of the
observed state at the last event instant and the current one,
which is given by:

δ[k] = xo[ni ] − xo[k], (8)

From (8) and defining the observation error e[k] =
xp[k] − xo[k], the closed-loop system (4)–(5) can be re-
written as follows:

⎧⎪⎨
⎪⎩
xo[k + 1] = (As + BsK )xo[k] + BsK δ[k]

+Bsf f (u[k]) − LCse[k]
e[k + 1] = (As + LCs)e[k]

(9)

which is equivalent to the compact form

x[k + 1] = Ax[k] + Bδ[k] + B f f (u[k]) (10)

with

A =
[
As + BsK −LCs

0 As + LCs

]
, B =

[
BsK
0

]
,

B f =
[
Bsf

0

]
, x[k] =

[
xo[k]
e[k]

]
.

The determination of the events instants, i.e., the event
generation mechanism, is the key point of the ETC strategy.
This is done through the evaluation of an appropriate trig-
gering function g(δ[k], x[k]). When g is positive, an event is
triggered. In summary, the strategy consists in applying the
following algorithm:

If g(δ[k], x[k]) > 0 then,
i = i + 1
ni = k
u[ni ] = Kxo[k] (i.e., update the control signal)
else,
u[k] = u[ni ] (i.e., keep the control signal)
end
In the present work, we will consider the triggering func-

tion given as follows Moreira et al. (2019):

g(δ[k], x[k]) = δ
′ [k]Qδδ[k] −

[
xo[k]
ey[k]

]′

Q−1
ε

[
xo[k]
ey[k]

]
(11)

with Qδ = Q
′
δ > 0 ∈ R

n×n and Qε = Q′
ε > 0 ∈

R
(n+m)×(n+m). This choice is made to have the maximum

possible degrees of freedom using only the available measur-
able signals (i.e., xo[k] and ey[k]). The term δ

′ [k]Qδδ[k] −[
xo[k]
ey[k]

]′

Q−1
ε

[
xo[k]
ey[k]

]
is a relative measure of the deviation

between the value of the state/observer error at the last event
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instant and the current one, including the output error. The
matrices Qδ and Qε act as weights on this measure. The trig-
gering function (11) can therefore be seen as a generalization
of the one proposed in Tabuada (2007).

2.3 Emulation and Co-design Problems

In this work, our aim is to reduce the number of control
updates (i.e., the generation of events). Furthermore, we con-
sider an exponential decay rate 0 < α < 1 for the norm of
the system states at the sampling instants, that is, we aim at
ensuring that

‖x[k]‖ ≤ βαk‖x[0]‖, ∀k ∈ N. (12)

for some scalar β > 0.
Then, considering these specifications, we can formulate

the emulation and co-design ETC design problems as fol-
lows:

– EmulationDesign: considering apre-computedobserver-
based control law that exponentially stabilizes the origin
of the discrete-time closed-loop system (10) under peri-
odic control updating, compute the triggering function
parameters Qδ and Qε to ensure the exponential stabil-
ity of the origin of the discrete-time closed-loop system
(10) under the event-triggering policy, while aiming at
the reduction of the control updates with respect to the
periodic control updating policy.

– Co-design: considering that only the observer gain is
given, compute simultaneously the triggering function
parameters and the state feedback gain to ensure the
exponential stability of the origin of the discrete-time
closed-loop system (10) under the event-triggering pol-
icy, aiming to reduce the number of control updates.

Depending on the validity of the sector condition (2), both
problems can be addressed in a global or regional (local)
context of stability. In the regional context, not all initial
conditions lead to trajectories that converge to the origin.
Therefore, in this case, it is fundamental to identify a region
where convergence is ensured. Moreover, in many practical
applications, it is important to ensure the convergence for all
initial conditions in a given set X0 (i.e., a pre-specified set of
admissible initial conditions) containing the origin.

3 Emulation Design

3.1 Stability Conditions

Given the controller gain K and the observer gain L , the
following theorem provides LMI-based conditions for deter-

mining the matrices Qε and Qδ of the triggering function
(11) to ensure the exponential stability of the origin of sys-
tem (10) in the regional case, i.e., if (2) is verified for u ∈ Su

with Su as defined in (3).
Furthermore, it is also shown that the conditions ensure

that the trajectories of the continuous plant (1) converge
asymptotically to the origin. In particular, for a formal proof
about that, the following assumption should be considered
henceforth:

Assumption 1 If As has a pair of imaginary eigenvalues at
± jωl , the sampling period Ts is not an integer multiple of
2π
wl
.

Note that this assumption is needed only to avoid a possible
technical issue (as it will be seen in the proof of Theorem 1)
and is not restrictive, as we can always chose an appropriate
Ts that satisfies it.

Theorem 1 If there exist symmetric positive definite matri-
ces W, Qδ , Qε , a diagonal positive definite matrix U, with
appropriate dimensions, and a scalar η such that the follow-
ing LMIs are verified:

⎡
⎢⎢⎢⎢⎣

−α2W 0 −(J
[
K 0

]
W )′ (AW )

′
(CW )′

∗ −Qδ −(J K )
′

B ′ 0
∗ ∗ −2U (B f U )′ 0
∗ ∗ ∗ −W 0
∗ ∗ ∗ ∗ −Qε

⎤
⎥⎥⎥⎥⎦ < 0 (13)

⎡
⎣W W

[
K ′
0

]
hi

∗ η

⎤
⎦ > 0 (14)

then provided that the initial condition x[0] ∈ X = {x ∈
R
2n : x ′W−1x ≤ η−1} it follows that:

(a) the state of the discrete-time closed-loop system (10),
i.e., x[k], converges to the origin as k → ∞, with an
exponential rate of at least α.

(b) the state of the continuous-time plant (1), i.e., x p(t),
converges asymptotically to the origin as t → ∞.

Proof Consider the Lyapunov function candidate V (x[k]) =
x[k]′

Px[k] > 0, P = P
′

> 0. Defining ΔV (x[k]) =
V (x[k + 1]) − V (x[k]) and omitting the dependency on k,
we have:

ΔV (x) = Ψ
′
NΨ (15)
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with Ψ = [
x ′ δ′ f ′]′, M = [

A B B f
]
and

N =
(⎡⎣−P 0 0

0 0 0
0 0 0

⎤
⎦+ M ′PM

)
. (16)

Recalling that x = [x ′
o e′]′ and ey = Cse, from the proposed

ETC algorithm it follows that for k ∈ (ni , ni+1) one has:

g(δ[k], x[k]) = δ
′
Qδδ − x ′C ′

Q−1
ε Cx ≤ 0 (17)

where,

C =
[
I 0
0 Cs

]
.

From the sector condition (2), we also have that the following
relation is satisfied for all u ∈ Su :

2 f ′S( f + J K (xo + δ)) ≤ 0. (18)

On the other hand, considering an exponential decay rate
0 < α < 1, we have that ‖x[k]‖ ≤ βαk‖x[0]‖ is satisfied
if V (x[k + 1]) ≤ α2V (x[k]). This requirement can thus be
satisfied if:

ΔV (x) < (α2 − 1)V (x) = (α2 − 1)x ′Px . (19)

Then, considering the S-Procedure with (17), (18) and (19)
if

Ψ
′
NΨ − δ

′
Qδδ + x ′C ′

Q−1
ε Cx − 2 f ′S f

−2 f ′SJ K xo − 2 f ′SJ K δ − x ′Px(α2 − 1) < 0 (20)

we have that (19) follows ∀k ∈ (ni , ni+1), provided that u ∈
Su . Rearranging the terms, we have that (20) is equivalent to

Ψ
′
ÑΨ < 0 (21)

with

Ñ =
⎛
⎜⎝
⎡
⎢⎣

−α2P + C ′Q−1
ε C 0 − (

SJ
[
K 0

])′
0 −Qδ −(SJ K )

′

− (
SJ

[
K 0

]) −(SJ K ) −(S
′ + S)

⎤
⎥⎦+ M ′PM

⎞
⎟⎠ .

(22)

Hence, if Ñ < 0 holds, then (19) is verified if x ∈
Su . Applying Schur’s Complement to (22), pre- and post-
multiplying the resulting matrix by diag(W , I ,U , I ), with
W = P−1, U = S−1 and finally applying Schur’s Com-
plement to the quadratic term −Wα2 + W ′C ′

Q−1
ε CW , it

follows that Ñ < 0 is equivalent to (13), which ensures that
(19) holds. Consider now the triggering instant k = ni . In

this case δ[k] is set to zero and therefore Ñ < 0 also ensures
that (19) holds. Hence, if (13) is verified we conclude that
ΔV (x) < (α2 − 1)V (x) < 0, provided u ∈ Su .

We prove now that (14) guarantees u[ni ] ∈ Su ∀ni ≥ 0,
whenever x[0] ∈ X . Applying Schur’s complement to (14)
and then pre- and post-multiplying the result by x[ni ]′W−1

and W−1x[ni ], respectively, one gets:

x[ni ]′ηW−1x[ni ] − u[ni ]hi h′
i u[ni ] > 0, (23)

Hence, if x[ni ] ∈ X , it follows that u[ni ] ∈ Su . Consider
now that x[0] ∈ X . By definition n0 = 0, and thus, we have
that u[n0] = u[0] ∈ Su , and from the satisfaction of (13),
we conclude that x[1] ∈ X . Note now that u[1] = u[0] (if no
trigger occurs at k = 1) or u[1] = [K 0]x[1] = u[n1] and in
this case u[1] ∈ Su . Reapeating this reasoning for k > 1, we
can therefore conclude that u[k] ∈ Su , ∀k. Hence, provided
x[0] ∈ X , we can conclude that (13) and (14) ensures that
ΔV (x[k]) < 0, ∀k, which concludes the proof of item a).

To prove item b), first notice that, from (1) and the trig-
gering strategy, the dynamics of the continuous-time plant
state xp(t) between two consecutive sampling instants, i.e.,
∀t ∈ [kTs, (k + 1)Ts) is given by:

ẋ p(t) = Apxp(t) + Bpu(tni ) + Bpf f (u(tni )) (24)

where tni = ni Ts is the instant of the last control update
event occurred before the current time t . Now let us define
tk = kTs and the elapsed time from the last sampling instant
τ = t − tk . Considering these definitions, we can integrate
(24) to compute:

xp(t) = xp(tk + τ) = eApτ xp(tk)

+
∫ τ

0
eAp(τ−s)ds

[
Bpu p(tni ) + Bpf f (u p(tni ))

]
(25)

which is valid for all t ∈ [tk, tk+1), or, equivalently, for all
τ ∈ [0, Ts).

From (25), it follows that

‖xp(t)‖ ≤ ‖eApτ‖‖xp(tk)‖
+
∥∥∥∥
∫ τ

0
eAp(τ−s)ds

∥∥∥∥ ∥∥Bpu(tni ) + Bpf f (u p(tni ))
∥∥

(26)

Since (2) ensures that ‖ f (u)‖ ≤ γ1‖u‖, ∀u ∈ Su for some
positive scalar γ1 depending on J , we have:

‖xp(t)‖ ≤ ‖eApτ‖‖xp(tk)‖
+
∥∥∥∥
∫ τ

0
eAp(τ−s)ds

∥∥∥∥ (‖Bp‖ + γ1‖Bpf ‖
)‖u(tni )‖

(27)
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On the other hand, from (7) we have:

‖u(tni )‖ = ‖Kxo[ni ]‖ = ∥∥[K 0
]
x[ni ]

∥∥
= ∥∥[K 0

]∥∥ ‖x[ni ]‖
(28)

Thus, combining (27) and (28) and taking into account that
xp(tk) = [

I I
]
x(tk), we have that

‖xp(t)‖ ≤ ‖eApτ‖ ∥∥[I I
]∥∥ ‖x[k]‖

+
∥∥∥∥
∫ τ

0
eAp(τ−s)ds

∥∥∥∥ γ2‖x[ni ]‖
(29)

with γ2 = (‖Bp‖ + γ1‖Bpf ‖)
∥∥[K 0

]∥∥.
Observe now that the terms eApτ and

∫ τ

0 eAp(τ−s)ds
depend only on τ and, since τ is bounded, they are bounded.
Hence, there exist positive scalars γ3 and γ4 such that the
following relation is valid for any k ∈ N:

‖xp(t)‖ ≤ γ3 ‖x[k]‖ + γ4‖x[ni ]‖, ∀t ∈ [tk, tk+1) (30)

Hence, since from the proof of item a) x[k] → 0 as k →
∞, we can conclude that xp(t) → 0 as t → ∞, provided
that ni → ∞.

Suppose now that this is not the case, i.e., there exists n̄i
such that u[k] = u[n̄i ] = Kxo[n̄i ], ∀k ≥ n̄i . In this case, for
t ≥ tn̄i = n̄i Ts the plant evolution is given by the following
equation:

ẋ p(t) = Apxp(t) + ξ (31)

with ξ = Bpu(tn̄i ) + Bpf f (u(tn̄i )). Two situations arise:

(i) ξ �= 0. In this case, system (31) will present an equilib-
rium point different from zero (in case Ap is singular
we actually have a set of equilibria). Hence, if the ini-
tial state belongs to an invariant subspace defined by the
eigenvectors (or generalized eigenvectors) associated to
the eigenvalues of Ap with strictly negative real part,
it follows that xp(t) will converge to this equilibrium
point (which is different from the origin) as t → ∞.
Otherwise, xp(t) will either diverge or converge to a
periodic orbit centered at the equilibrium point (which
is different from the origin). In both cases, this repre-
sents a contradiction with the fact that x[k] → 0 as
k → ∞, which implies that xp[k] → 0 as k → ∞.
Note that, in the case Ap has imaginary eigenvalues,
the possibility of having the sampling instants coincid-
ing with the possible crossing of the periodic orbit by
zero is eliminated by Assumption 1.

(i i) ξ = 0. In this case, (30) reduces to

‖xp(t)‖ ≤ γ3
∥∥xp(tk)∥∥ , ∀t ∈ [tk, tk+1) (32)

which, as x[k] → 0 as k → ∞, implies that xp(t) → 0
as t → ∞.

Thus, from the two cases above one concludes that, in either
case, xp(t) converges to the origin as t → ∞, which ends
the proof. 
�

Theorem 1 ensures that the origin of the discrete-time
system (10) under the event-triggering strategy, with trigger-
ing function given by (11), is regionally exponentially stable
with the set X = {x ∈ R

2n : x ′W−1x ≤ η−1} included in
its region of attraction. Moreover, it is ensured that the plant
continuous-time trajectories converge asymptotically to the
origin.

In the global case, i.e., when Su = R
p, the following

corollary can be formulated.

Corollary 1 If there exist symmetric positive definite matrices
W, Qδ , Qε and a diagonal positive definite matrix U with
appropriate dimensions such that LMI (13) is verified, then
for all initial condition x[0] ∈ R

n:

(a) the state of the discrete-time closed-loop system (10),
i.e., x[k], converges to the origin as k → ∞, with an
exponential rate of at least α.

(b) the state of the continuous-time plant (1), i.e., x p(t),
converges asymptotically to the origin as t → ∞.

Proof The proof follows the steps of Theorem 1 without the
use of constraint (14) since property (2) is supposed to be
globally satisfied in this case. 
�

In this case, Corollary 1 ensures the global exponential
stability of the origin of the discrete-time closed-loop system
(10) and the global asymptotic stability of the continuous-
time system (1), under the event-trigger strategy.

Remark 1 It should be noticed that if the conditions are ver-
ified with α = 1, the exponential convergence of x[k] is still
ensured. In this case as the LMI (13) is strict, from the proof
of Theorem 1 it follows that:

ΔV (x) = Ψ
′
NΨ < Ψ

′
ÑΨ ≤ −ε||Ψ ||2 ≤ −ε||x ||2

with ε = |λmax(Ñ )|. As there are positive scalars μ2 =
λmax(P) and μ1 = λmin(P) such that μ1||x ||2 ≤ V (x) ≤
μ2||x ||2, we can conclude that

ΔV (x) < − ε

μ2
V (x)

and so it follows that ΔV (x) < (α̃ − 1)V (x) with α̃ =
(1 − ε

μ2
). Note that, as V (x[k + 1]) > 0, it follows that

0 < α̃ < 1.
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3.2 Optimization Problem

Conditions proposed in previous subsection ensure the
asymptotic stability of the origin of the closed-loop system.
In the present section, we cast these conditions into optimiza-
tion problems as means to compute the triggering function
parameters Qδ and Qe. For the regional case, we want to
ensure that a given set X0 of admissible initial conditions is
included in the region of attraction of the origin. This set can
be defined as follows:

X0 = {x ∈ R
2n : x ′P0x ≤ 1}, (33)

where P0 is a given symmetric positive definite matrix.
It is worth noticing that without this condition, the design

can result in an arbitrarily small region of attraction, which is
not useful in practice.Then, in order to compute the triggering
function matrices, we propose the following optimization
problem:

min trace (Qδ) + trace(Qε)

subject to : (13), (14),W > ηP−1
0 .

(34)

The idea behind this optimization problem is to get the
sum of the traces of Qδ and Qε as small as possible,
implying a maximization of the inter-event times with the
trigger criterion (11). This occurs because the generation
of an event happens only when the function g is positive.
Hence, the negative term of the trigger criterion is maxi-
mized due to the minimization of trace(Qε) and the positive
contribution, associated to Qδ , is minimized. The constraint
W > ηP−1

0 ensures that X0 ⊂ X , guaranteeing that all tra-
jectories initiating inX0 converge exponentially to the origin
in discrete-time. For the global case, (34) without the con-
straints W > ηP−1

0 and (14) can be considered.

4 Co-design

4.1 Stability Conditions

Consider that the observer gain L is given, and define:

Ã =
[
As −LCs

0 As + LCs

]
, B̃ =

[
Bs

0

]
.

The following theorem provides LMI-based conditions to
simultaneously determine the matrices Qε and Qδ of the
triggering function (11) and the feedback gain K , to further
reduce the triggering activity while ensuring the stability of
the origin of the closed-loop system in the regional case.

Theorem 1 th:Codesign If there exist symmetric positive def-
inite matrices W = [

W1 0
0 W2

]
, QδW , Qε , a diagonal positive

definitematrixU, amatrix KW ,with appropriate dimensions,
and a scalar η such that the following LMIs are verified:

⎡
⎢⎢⎢⎢⎢⎣

−α2W 0 −(J
[
KW 0

]
)′ ( ÃW + B̃

[
KW 0

]
)
′

(CW )′
∗ −QδW −(J KW )

′
(B̃KW )′ 0

∗ ∗ −2U (B f U )′ 0
∗ ∗ ∗ −W 0
∗ ∗ ∗ ∗ −Qε

⎤
⎥⎥⎥⎥⎥⎦

< 0

(35)

⎡
⎣W

[
K ′
W
0

]
hi

∗ η

⎤
⎦ > 0 (36)

then for K = KWW−1
1 , Qδ = W−1

1 QδWW−1
1 and provided

that the initial condition x[0] ∈ X = {x ∈ R
2n : x ′W−1x ≤

η−1} it follows that:

(a) the state of the discrete-time closed-loop system (10),
i.e., x[k], converges to the origin as k → ∞, with an
exponential rate of at least α.

(b) the state of the continuous-time plant (1), i.e., x p(t), con-
verges asymptotically to the origin as t → ∞.

Proof Noticing that A = Ã + B̃
[
K 0

]
, and imposing the

matrix structure W = [
W1 0
0 W2

]
, the proof basically follows

analogous steps to the ones performed in the proof of The-
orem 1. In particular, in this case, after applying Schur’s
Complement to Ñ < 0, with Ñ defined in (22), we pre- and
post-multiply the result by diag(W ,W1,U , I ) and consider
the following variable changes to obtain (35):

KW1 = KW , W1QδW1 = QδW

Moreover, from these variable changes, it is straightforward
to verify that (36) is equivalent to (14). 
�

In the case where Su = R
n , the following corollary can

be formulated:

Corollary 2 If there exist symmetric positive definite matrices
W = [

W1 0
0 W2

]
, QδW , Qε , a diagonal positive definite matrix

U and a matrix KW , with appropriate dimensions, such that
LMI (35) is verified, then with K = KWW−1

1 and Qδ =
W−1

1 QδWW−1
1 it follows that for all initial condition x[0] ∈

R
n:

(a) the state of the discrete-time closed-loop system (10),
i.e., x[k], converges to the origin as k → ∞, with an
exponential rate of at least α.

(b) the state of the continuous-time plant (1), i.e., x p(t),
converges asymptotically to the origin as t → ∞.
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Proof The proof follows the steps of Theorem 2 without the
use of constraint (36) since property (2) is globally satisfied.


�

4.2 Optimization Problem

In order to compute the triggering function matrices, Qδ and
Qε , and the controller gain K , aiming at reducing the number
of control updates, we propose the following optimization
problem:

min trace(QδW ) + trace(Qε)

subject to : (35), (36),W > ηP−1
0 .

(37)

The motivation behind the optimization criterion in (37)
is the same to (34). For the global case, (37) without the
constraint W > ηP−1

0 and (36) can be considered.

Remark 2 The constraint imposed by the decay rate becomes
more important for the co-design case. Since the objective
is the number of control updates reduction, if one considers
α = 1, the resulting K can lead to a very slow closed-loop
dynamics.

4.3 Re-design

It is worth noticing that the co-design approach employs con-
ditions that are more conservative than the emulation design,
by virtue of the structural constraint in the matrix W in The-
orem 2. In this case, in order to get a further reduction on
the generation of events it can be interesting to consider a re-
design of the triggering function, for the computed gain K
(Moreira et al. 2019). Thus the following two step procedure
can be applied:

• Step 1: Compute the gain K from the optimization prob-
lem (37).

• Step 2: Solve the optimization problem (34)with the gain
K obtained in step 1.

5 Numerical Examples

5.1 Example 1: Unstable Plant

Consider the unstable plant studied in Moreira et al. (2019):

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xp(t) =
[
0 1

4 0

]
xp(t) +

[
0

1

]
q(u(t))

y(t) =
[
1 0

]
x(t)

(38)

Fig. 1 Quantization function

Note that the plant in Example 1 could model the behavior
of an inverted pendulum near the unstable equilibrium.

The function q(u) corresponds to a logarithmic quantiza-
tion of the control signal, being defined as follows:

q(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μq i f u ≥ μq

1 + δq

ρ
j
qμq i f

ρ
j
qμq

1 + δq
≤ u <

ρ
j
qμq

1 − δq
, j ∈ {1, 2, ...}

0 i f u = 0

−ρ
j
qμq i f − ρ

j
qμq

1 + δq
≥ u > − ρ

j
qμq

1 − δq
, j ∈ {1, 2, ...}

−μq i f u ≤ − μq

1 + δq

(39)

with the quantization parameters

0 < ρq < 1, δq = 1 − ρq

1 + ρq
, μq > 0,

where ρq is the density of quantization and μq the maxi-
mum level of quantization (Campos et al. 2018). The positive
branch of q(u) is depicted in Fig. 1.

Considering the quantization error q̂ = q(u) − u, it
follows that q̂ is sector-bounded by ±δqu. Hence, mak-
ing the change of variables f (u) = q̂ − δqu, results that
f (u)( f (u) + 2δqu) ≤ 0, i.e., condition (2) is satisfied with

J = 2δq if |u| ≤ μq
1−δq

or, equivalently, if | 1−δq
μq

u| ≤ 1.
For a sampling period of Ts = 0.02, the discrete-time

system (4) is obtained with:

As =
[

1.001 0.02001
0.08002 1.001

]
, Bs =

[
0.0002106
0.02106

]
,

Bs f =
[
0.0002
0.02001

]
, Cs = [

1 0
]
.

123



50 Journal of Control, Automation and Electrical Systems (2021) 32:42–56

In this example, the considered quantization parameters are
ρq = 0.9 and μq = 35, which results in δq ≈ 0.05263.

Emulation case
For the emulation case, we consider the observer gain L =[−0.07 −0.14

]′
, the controller gain K = [−36.89 −11.96

]
andX0 as defined in (33),with P0 = diag(106,106, 0.5, 0.1).
In this case, we do not specify a decay rate α restriction, i.e.,
we consider α = 1 in the conditions (which ensures only
that ΔV (x) < 0). Considering that the sector condition is
valid only if | 1−δq

μq
u| ≤ 1, it follows that Su = {u ∈ R :

|0.0271u| ≤ 1}. Then, solving the optimization problem (34)
yields the following triggering function parameters:

Qδ =
[
14.91 4.831
4.831 1.57

]
, Qε =

⎡
⎣2.329 −3.65 2.026

−3.65 10.82 −1.209
2.026 −1.209 3.379

⎤
⎦ .

Simulating the closed-loop system with the designed
PETC, considering xo[0] = [0 0]′ and xp[0] = [−1 1.5]′,
and comparing to a standard periodic updating control strat-
egy (PUC) (i.e., the control signal is updated in all sampling
instants), the responses obtained for the plant states (xp) and
the control signal are shown in Fig. 2. The bottom plot shows
the event times. The size of the bars depicts the inter-event
times, i.e., the number of instants k between that event and the
previous one. It can be noticed that the event-trigger policy
has efficiently reduced the number of control updates with
respect to the periodic strategy while assuring approximately
the same response. On the interval 0 < k ≤ 350, the control
has been updated 42 times in the PETC strategy, versus 350
times in the standard PUC strategy.

Co-design case
For the co-design case, we consider the same parameters

L = [−0.07 −0.14]′ and P0 = diag(106, 106, 0.5, 0.1),
α = 1, leading to the following solution to optimization
problem (37):

Qδ =
[
7.74 · 1013 2.429 · 1013
2.429 · 1013 8.477 · 1012

]
,

Qε =
⎡
⎣ 1.74 · 10−11 −1.33 · 10−11 5.208 · 10−12

−1.33 · 10−11 3.175 · 10−11 −1.202 · 10−12

5.208 · 10−12 −1.202 · 10−12 1.026 · 10−11

⎤
⎦ ,

K = [−15.52 −6.681
]
.

With the same initial conditions of the emulation case,
the simulation of the closed-loop system obtained for the co-
design is shown in Fig. 3. The same observations done for the
emulation case can bemade. The control, however, is updated
119 times versus 42 times in the emulation case, i.e., the
simultaneous design of the gain and the triggering strategy
provided no improvement with respect to the emulation case.
As commented in Sect. 4.3, this basically comes from the fact
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Fig. 2 Example 1: response with the PETC obtained from emulation
and with the standard PUC strategy
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Fig. 3 Example 1: responsewith the PETCobtained from the co-design
and with the standard PUC strategy

that the co-design approach employs conditions that aremore
conservative, in the sense that a block diagonal structure in
the matrix W is imposed.

We still can apply a redesign procedure as discussed in
Sect. 4.3, i.e., considering the computed gain matrix K , we
solve problem (34) to refine matrices Qε and Qδ in order to
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Fig. 4 Example 1: response with the PETC obtained from re-design
and with the standard PUC strategy

reduce the number of control updates. This procedure leads
to:

Qδ =
[
5.41 2.329
2.329 1.003

]
,

Qε =
⎡
⎣ 2.212 −1.224 0.8566

−1.224 3.602 −0.03111
0.8566 −0.03111 0.6068

⎤
⎦ .

Simulatingwith the same initial conditions of the previous
cases, the response of the closed-loop system generated from
the re-design parameters is shown inFig. 4. It can be observed
that the re-design procedure leads to a significant reduction
in the number of control updates, resulting in only 24.

5.2 Example 2: Global Stabilization

Now we consider the following stable plant:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ p(t) =
[
−1 2

−2 0

]
xp(t) +

[
0

1

]
sat(u(t))

y(t) =
[
1 0

]
x(t)

(40)

where sat(u(t)) is a saturation function of the actuator with
saturation levels ±5. The corresponding discrete-time ver-
sion of (40) with a sampling period Ts = 0.1 is given by:
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Fig. 5 Example 2: response with the PETC obtained from emulation
and with the standard PUC strategy

⎧⎪⎨
⎪⎩
xp[k + 1] =

[
0.8862 0.1891

−0.1891 0.9807

]
xp[k] +

[
0.009643
0.09935

]
sat(u[k])

y[k] = [
1 0

]
x[k]

(41)

Considering the dead-zone function f (u) = sat(u) − u,
system (41) can be re-written in the form (10), while satis-
fying the condition (2) with J = 1 globally, i.e., ∀u ∈ R.
Furthermore, this change implies Bs f = Bs .

Emulation Case
Consider the emulation problem with the control gain

K = [
0.33 −2

]
and the observer gain L = [−1.16 −1.91

]′
.

Applying the optimization problem (34) for the global case,
with a decay rate α = 0.98 and an additional constraint
λmax(Qε) < 104λmin(Qε) (to avoid ill conditioned solu-
tions), leads to the following matrices for the triggering
function (11):

Qδ =
[
0.06156 −0.3703
−0.3703 2.245

]
,

Qε =
⎡
⎣ 1.004 0.1805 6.004 · 10−5

0.1805 1.303 −9.036 · 10−6

6.004 · 10−5 −9.036 · 10−6 0.002018

⎤
⎦ .

Performing a simulation of the closed-loop system with
the designed PETC and with the PUC strategy, considering
xo[0] = [

0 0
]′
and xp[0] = [−12 5

]′
, the responses for the

plant states (xp), the control signal and the inter-event times
for the PETC are shown in Fig. 5.
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Fig. 6 Example 2: response with the PETC obtained from co-design
and with the standard PUC strategy

Again, the PETC strategy has efficiently reduced the num-
ber of control updates with respect to the periodic strategy.
With the PETC the control is updated 10 times versus 50with
the standard periodic updating strategy, for 0 < k ≤ 50. Note
that, despite the fact that the control effectively saturates on
the transient, the trajectories converge to zero, as expected.

Co-design case
For the co-design case, the same observer gain L =

[−1.16 − 1.91]′ and α = 0.98 are considered. To
avoid ill conditioned solutions, a constraint λmax(Qε) <

104λmin(Qε) is also considered. The optimal solution of
problem (37) in this case gives:

Qδ =
[

1.48 · 1013 −8.439 · 1012
−8.439 · 1012 1.815 · 1013

]
,

Qε =
⎡
⎣1.607 · 10−11 1.822 · 10−12 2.841 · 10−14

1.822 · 10−12 1.564 · 10−11 7.503 · 10−14

2.841 · 10−14 7.503 · 10−14 9.573 · 10−12

⎤
⎦ ,

K = [
4.176 −11.9

]
.

For the co-design case, with same initial conditions of the
emulation case, the obtained results are shown in Fig. 6.

It can be seen that no improvement in terms of number of
control updateswith respect to the emulation case is obtained:
39 times in the co-design versus 10 in the emulation case.
Applying therefore the re-design procedure, i.e., considering
the gain K obtained in the co-design and solving (34), we
have the following results:
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Fig. 7 Example 2: response with the PETC obtained from re-design
and with the standard PUC strategy

Qδ =
[
0.8585 −2.445
−2.445 6.968

]
,

Qε =
⎡
⎣ 4.115 0.9069 −2.096 · 10−5

0.9069 3.713 2.76 · 10−5

−2.096 · 10−5 2.76 · 10−5 0.001443

⎤
⎦ .

For this case, with same initial conditions as before, the
response of the closed-loop system (9) is shown in Fig. 7.
Now only 18 updates of the control signal are generated for
0 < k ≤ 50, which is a great improvement with respect to
the initial co-design result.

5.3 Example 3: Servo System

In this example, we design a controller for a servo system
consisting of a constant-field DC motor, controlled by arma-
ture voltage ea . The controlled output is the angle of rotor
θ , which is assumed to be the only measurable variable, and
the control input is the voltage applied to the armature ea ,
which is limited to ±40V . As usual in this type of system,
the armature inductance is negligible since the electrical time
constants are much smaller than the mechanical ones and the
system can be represented by the following set of equations
(Ogata 2009):

{
Raia + kbθ̇ = ea

Jcθ̈ + fcθ̇ = kaia
(42)
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where ia is the armature current and Ra , ka , kb, fc and Jc are
scalar system parameters.

Considering a set of system parameter values suggested in
[Ogata (2009),Chapter 4] and a samplingperiodTs = 10−3 s,
a discrete-time version of the system can be cast in the form
(4) with f (u) being a dead-zone nonlinearity, as in Sect. 5.2,
and

As =
[
1 0.0009962
0 0.9923

]
, Bs = Bs f =

[
2.771 · 10−6

0.005534

]
,

Cs = [
1 0

]
.

As in this case the global stabilization could not be
achieved, we consider that f (u) verifies condition (2)
with J = 0.5, provided |u| ≤ 40

1−J , i.e., u ∈ Su =
{u ∈ R : |0.0125u| ≤ 1}, and a set X0 with P0 =
diag(1010, 1010, 3, 3).

Emulation Case
We start by illustrating the emulation approach. For this,

we consider the gain matrices K = [
53.14 −5.723

]
and

L = [−0.09081 −1.734
]′
, which stabilize the discrete-time

closed-loop systemwithout the event-triggering mechanism.
Solving therefore the optimization problem (34)with a decay
rate α = 1, the following matrices for the triggering function
are obtained:

Qd =
[
481.5 51.85
51.85 5.64

]
, Qe =

⎡
⎣39.62 14.66 8.804
14.66 445.2 18.31
8.804 18.31 2.546

⎤
⎦ .

The simulation of the resulting closed-loop system with
initial conditions xo[0] = [

0 0
]′

and xp[0] = [
π
6 0

]′
is

shown in Fig. 8. In this simulation, considering 0 < k ≤ 500,
158 events were generated. This represents a reduction of
68% in the control updating, with respect to the PUC stan-
dard strategy (which would lead to 500 control updates in the
interval).

Co-design Case
Now we explore the co-design case, taking the same

observer gain matrix L = [−0.09081 −1.734
]′
used in the

emulation design. Solving optimization problem (37) yields

Qd =
[
5.248 · 1016 4.536 · 1015
4.536 · 1015 4.622 · 1014

]
,

Qe =
⎡
⎣7.706 · 10−12 −2.6 · 10−12 8.286 · 10−15

−2.6 · 10−12 1.614 · 10−11 1.869 · 10−14

8.286 · 10−15 1.869 · 10−14 5.103 · 10−12

⎤
⎦ ,

K = [−12.01 −2.938
]
.

Simulation resultswith the same initial conditions as in the
emulation case are shown in Fig. 9. Due to the conservatism
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Fig. 8 Example 3– emulation response
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Fig. 9 Example 3—co-design response

imposedby the structuredmatrices used in the co-designopti-
mization problem, the resulting event-trigger performance is
poorer than in the emulation case and 274 events are gener-
ated. In the sequel, we will illustrate the re-design approach
(described in Sect. 4.3) to overcome this drawback.

Re-design

Now we take the gain K = [−12.01 −2.938
]
obtained

in the co-design procedure and solve the emulation case
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Fig. 10 Examplo 3—Re-design response

optimization problem (34), which leads to the following trig-
gering function matrices:

Qd =
[
3.279 0.802
0.802 0.1968

]
,

Qe =
⎡
⎣ 0.4908 0.0004328 −4.016 · 10−5

0.0004328 2.986 −5.4 · 10−5

−4.016 · 10−5 −5.4 · 10−5 0.001976

⎤
⎦ .

Simulation results with the same initial conditions as in
previous cases are shown in Fig. 10. In this case, only 9 events
were generated. This illustrates how the re-design approach
can be very effective.

5.4 Exemple 4: Active Suspension

For this example, we will consider the control of a quart-cart
active suspension, depicted schematically in Fig. 11.

Equating the forces from the equilibrium position of x1
and x2, we get:

M2
d2x2
dt

+ K2(x2 − x1) + C2

(
dx2
dt

− dx1
dt

)
= Fc (43)

M1
d2x1
dt2

− K2(x2 − x1) − C2

(
dx2
dt

− dx1
dt

)

−K1(zr − x1) − C1

(
dzr
dt

− dx1
dt

)
= −Fc (44)

whereM2 is the uppermass, which represents the car chassis,
M1 as the lower mass, which represents the car tire, K1 and
K2 are elastic constants andC1 andC2 are friction constants.

Fig. 11 Plant model

The control signal is given by the applied force Fc. x1 and
x2 are the displacements of the tire and chassis of the car.

For control purposes, we consider the state vector and the
output of the system given, respectively, by

xp(t) =

⎡
⎢⎢⎣
x2 − x1
dx2t

x2 − zr
dx1t

⎤
⎥⎥⎦ , y(t) = x2 − x1. (45)

Considering the parameters of a laboratory setup, we have
that the plant can therefore be represented by the following
state equation:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ p(t) =

⎡
⎢⎢⎣

0 1 0 −1
−367.3 −3.061 0 3.061

0 0 0 1
900 7.5 −2500 −12.5

⎤
⎥⎥⎦ xp(t)

+

⎡
⎢⎢⎣

0
0.408
0

−1

⎤
⎥⎥⎦ sat(u(t))

y(t) =
[
1 0 0 0
0 0 1 0

]
x(t)

(46)

where we considered that Fc(t) is provided by a saturat-
ing actuator with saturation level of ±20 V. Considering the
dead-zone function f (u) = sat(u)−u, system (46) canbe re-
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written in the form (4), while satisfying the condition (2)with
J = 0.9 regionally for u ∈ Su = {u ∈ R : |0.005u| ≤ 1}.
Furthermore, this change implies Bs f = Bs . Therefore, con-
sidering a sampling period Ts = 10−3 s, the discrete-time
system (4) is obtained with

As =

⎡
⎢⎢⎣

0.9994 0.0009945 0.001243 −0.0009916
−0.3653 0.9968 −0.003958 0.003218
0.0004475 3.879 · 10−6 0.9988 0.0009932
0.8925 0.007885 −2.483 0.9859

⎤
⎥⎥⎦ ,

Bs =

⎡
⎢⎢⎣

7.005 · 10−7

0.0004058
−4.973 · 10−7

−0.0009916

⎤
⎥⎥⎦ , Cs =

[
1 0 0 0
0 0 1 0

]
.

It is important to note that such a system is stable, but
with a very oscillatory response, i.e., its poles are located
in 0.9914 ± 0.0583i and 0.999 ± 0.0162i .

Consider the emulation problem with the control gain
K = [−2820 378 −5980 −36

]
and the observer

gain L = [−0.5208 −131 −3 −39
]′

and X0 as

defined in (33), with P0 =
[
P01 0
0 P02

]
, where P01 =

diag(105, 105, 105, 105) and

P02 =

⎡
⎢⎢⎣
1 · 105 0 0 0

0 2000 2.132 · 10−14 0
0 −2.22 · 10−14 2000 7.806 · 10−18

0 4.441 · 10−16 −9.454 · 10−17 2000

⎤
⎥⎥⎦ .

Applying the optimization problem (34) for the regional
case, with a decay rate α = 1, leads to the followingmatrices
for the triggering function (11):

Qδ =

⎡
⎢⎢⎣

51.52 6.877 −108.7 −0.6529
6.877 1.206 −14.58 −0.08764

−108.7 −14.58 230.7 1.385
−0.6529 −0.08764 1.385 0.2912

⎤
⎥⎥⎦ ,

Qε=

⎡
⎢⎢⎢⎢⎢⎢⎣

3.588 −2.608 −0.3562 −1.285 0.2576 0.37
−2.608 88.38 0.7257 −15.29 0.8049 −0.8064
−0.3562 0.7257 2.473 0.3717 −0.1501−0.0005431
−1.285 −15.29 0.3717 188.7 0.1195 −0.8735
0.2576 0.8049 −0.1501 0.1195 0.2705 0.262
0.37 −0.8064 −0.0005431 −0.8735 0.262 0.3547

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The simulation of the closed-loop system comparing the
designed PETC and the standard PUC strategy, considering
xo[0] = [

0 0 0 0
]′
and xp[0] = [−0.012 0.1 −0.001 0.7

]′
,

results in the responses shown in Fig. 12.
As in the previous examples, the PETC strategy has effi-

ciently reduced the number of control updates with respect
to the standard periodic strategy. With the PETC the con-
trol signal is updated 23 times versus 250 with the periodic
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Fig. 12 Example 4: response for the emulation case

strategy, for 0 < k ≤ 250. Note that, despite the fact the
control effectively saturates on the transient, the trajectories
converge to zero, as expected.

6 Conclusions

In this work, we proposed amethodology to design observer-
based periodic event-triggered controllers for linear plants
subject to input cone-bounded nonlinearities. The emulation,
co-design and re-design cases for regional and global sta-
bilization were addressed. The proposed triggering function
uses only available information, obtained from the output and
from an observer that estimates the plant state. The method-
ology is based on LMI conditions that ensure the stability of
the system and can be cast into convex optimization problems
aiming at reducing the number of control signal updates with
respect to a standard periodic (time-triggered) digital imple-
mentation of the control law. The efficiency of this method is
illustrated through some numerical examples. In these exam-
ples, a sensible reduction in the control updates with respect
to the periodic implementation was achieved.
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Wang, W., Postoyan, R., Nešić, D., & Heemels, W. P. M. H. (2020).
Periodic event-triggered control for nonlinear networked control
systems. IEEE Transactions on Automatic Control, 65(2), 620–
635.

Yan, S., Shen, M., Nguang, S. K., Zhang, G., & Zhang, L. (2019). A
distributed delay method for event-triggered control of T-S fuzzy
networked systemswith transmission delay. IEEE Transactions on
Fuzzy Systems, 27(10), 1963–1973.

Yang, J., Sun, J., Zheng,W.X., &Li, S. (2018). Periodic event-triggered
robust output feedback control for nonlinear uncertain systems
with time-varying disturbance. Automatica, 94, 324–333.

Yue, D., Tian, E., & Han, Q. L. (2013). A delay system method for
designing event-triggered controllers of networked control sys-
tems. IEEE Transactions on Automatic Control, 58(2), 475–481.

Zhang, D., Han, Q. L., & Jia, X. (2015). Network-based output tracking
control for T-S fuzzy systems using an event-triggered communi-
cation scheme. Fuzzy Sets and Systems, 273, 26–48.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Periodic Event-Triggered Control for Linear Systems in the Presence  of Cone-Bounded Nonlinear Inputs: A Discrete-Time Approach
	Abstract
	1 Introduction
	1.1 Notation

	2 Problem Statement
	2.1 Problem Setup
	2.2 Event-Triggering Strategy
	2.3 Emulation and Co-design Problems

	3 Emulation Design
	3.1 Stability Conditions
	3.2 Optimization Problem

	4 Co-design
	4.1 Stability Conditions
	4.2 Optimization Problem
	4.3 Re-design

	5 Numerical Examples
	5.1 Example 1: Unstable Plant
	5.2 Example 2: Global Stabilization
	5.3 Example 3: Servo System
	5.4 Exemple 4: Active Suspension

	6 Conclusions
	References




