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Abstract
Nowadays, in many industrial applications, energy management is recognized as an essential issue. Comprehensive under-
standing of exergetic perspectives can help save more resources. A unique exergy-based optimization approach in model
predictive control (MPC) framework is introduced in this paper to scale back Total Destroyed Exergy (TDE) of the controlled
process. The proposed MPC facilitates the capability to address both the process and energy constraints in a multiple-input
multiple-output (MIMO) system. To this end, the new MPC cost function is presented to unravel an optimal control prob-
lem supported TDE reduction and acceptable control performance to improve energy conservation. The findings will be
demonstrated through a case study of industrial alkylation of benzene process to assess the effectiveness of the proposed
energy-saving approach, which meets control performance needs.

Keywords Exergy analysis · Optimization · Model predictive control · Energy saving · Energy efficiency · MIMO system

1 Introduction

The energy utilization plays a vital role in many indus-
trial applications, and considerable effort is made to make
energy usage more recyclable, economical, effective, and
clean. Thermodynamic rules govern energy utilization, and
a decent understanding of exergetic perspectives can help
recognize sustainable energy options (Marty et al. 2019).
Exergy analysis has been introduced within the literature
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as a useful tool for an energy assessment. Luyao et al.
(2017) have employed exergy analysis for the economic
evaluation of the steam superheat utilization using regen-
erative turbine in ultra-supercritical power plants under
design/off-design conditions. Gutiérrez and Vandecasteele
(2011) presented an evaluation methodology by implement-
ing two new exergy-based metrics for the calcination process
thanks to decreased energy consumption. Ahmadi et al.
(2012) researched thermodynamic modeling and exergy and
environmental analyses alongside the optimization of poly-
generation energy supplies for electricity, cooling, heating,
and hot water. A replacement model for predicting the par-
ticular chemical exergy of municipal solid waste (MSW) has
been established in Eboh et al. (2016), where the model was
based on the content of carbon, hydrogen, oxygen, nitrogen,
sulfur, and chlorine on a dry ash-free.

Model predictive control (MPC), on the other hand, is
often considered to be one of the most distinguished control
strategies identified within the literature, dealing with con-
strained MIMO systems (Hadian et al. 2015; Hadian et al.
2014, 2019; Salahshoor and Hadian 2014). The optimizer is
the central part of MPC strategy, seeking for an economic
response, subjected to real-world constraints. The optimiza-
tion problems mainly described by an objective function,
which contributes to a cost-effective solution while holding
the process variables within reasonable limits. Optimiza-
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tion algorithms, namely classical or metaheuristic, have been
extensively used in control applications, ranging from to PID
(Shahbazian 2015; Hadian et al. 2019) and fuzzy logic con-
troller (Fard et al. 2016) to MPCs, to improve robustness,
identification and stability. Whidborne et al. (2003), as an
example, did an excellent review of Optimization applica-
tions in control engineering, exclusively focused on the PID
controller. On the subject of MPC, similar research works,
whether through single (Hadian et al. 2015; Salahshoor and
Hadian 2014) or multi-objective functions, have been carried
out. The importance of generic optimization can be perfectly
demonstrated inWang andBoyd (2009), where the controller
overcomes slow dynamics. A CSTR with a nonlinear model
is controlled with a group of optimized MPC to measure
the performance of various strategies in terms of feasibility
region and computational load. A multi-objective optimiza-
tion technique is presented forMPCstrategy inWojsznis et al.
(2007) that guarantees three essential criteria of MPC con-
trol andoptimization simultaneously: (a) constraint handling,
(b) economic optimization, and (c) control functionality. In
an identical approach, Ju et al. (2000) solved a nonlinear
MPC problem by employing a NARX model using. In our
previous study (Hadian et al. 2014), an event-based MPC
has been proved to reduce energy and computation load in
which energy consumption is analyzedwith exergy.Notwith-
standing prior research, to the best of our knowledge, the
optimization approach within the MPC framework has been
introduced for the first time to address the entire exergy
destruction of the controlled process to realize maximum
control efficiency subject to constraints. AnMPCwithmulti-
objective cost function is developed in this paper in which
mean-square error (MSE) and total destroyed exergy (TDE)
are designated for stability and economic factors, respec-
tively.

In this paper, a novel optimization approach is introduced
for MPC to contemplate the exergy losses of the whole
process combined with control objectives with constraint
handling. The proposedmethod is implemented on a catalytic
alkylation of benzene process to validate the desired sys-
tem performance for the new MPC strategy based on energy
assessment.

The rest of the paper is arranged as follows: Approachwill
be discussed in Sect. 2. Section 3 presents case studies, and
Sect. 4 illustrates the results and discussion.

2 Approach

The concept of the new optimizer will be described in the
following section. The conventional cost function for MPC
is so designed to form the control system output(s) follow-
ing the appropriate value referred to as output(s) set-point
while considering control input(s) and control output(s) con-

straints. This method has been known as one of the best
control strategieswith excellent performance among the con-
trol approaches. However, in some practical case studies,
energy-saving takes a crucial role as well as control per-
formance, and consequently, it needs to be considered in
the cost function. An intelligent tradeoff between control
performance and energy saving could be a useful way to
meet this goal. Exergy is introduced in Sect. 2.1 as a critical
concept, which makes us able to concentrate on the energy-
saving aspect; the more destroyed exergy reduction is, the
more energy is saved. The main contribution is made by this
paper is to take into account exergy reduction as a new sys-
tem output added to the desired system output(s). The new
cost function will be described so as to make use of this new
economic output.

2.1 Exergy

Exergy is described as a valuable part of total energy which
could be converted into work equally in a suitable condition.
Exergy analysis is conventionallywont to indicate thermody-
namic efficiency of the process, emphasizing on all materials
and energies quality losses (Calli et al. 2019). Exergy analysis
is known as a practicalmethod to understandwhat proportion
of wasted energy could be recycled if the required measure is
hired. Consistent with the concept of energy, the exergy of a
stream is dependent on the given reference environment con-
dition. This paper uses the reference environment condition
defined by Szargut et al. (1987), meaning T0 � 298.15 K,
P0 � 101.325 kPa (i.e., 1 atm). Chemical exergy, physical
exergy, and mixing exergy are three kinds of exergy, which
are included in the all fluid stream (Luyao et al. 2017). The
chemical exergy of a material stream Ẋch[kW] is calculated
using the standard chemical exergy for component i, denoted
by e0ch,i [kJ/mole], and molar flow of component i, shown by

Ḟi [mole/s], and then the summation of all present compo-
nents in the stream (Luyao et al. 2017):

Ẋch �
N∑

i�1

(
Ḟi e

0
ch,i

)
(1)

where N is the number of components.
The physical exergy, also known as thermomechanical

exergy, of a stream Ẋph [kW] is calculated by the difference
between work done in process conditions (T , P) and the one
done in the reference conditions (T0, P0) (Luyao et al. 2017):

(2)

Ẋph �
[

N∑

i�1

(
Ḟi hi

) −
N∑

i�1

(
Ḟ0,i h0,i

)
]

− T0

[
N∑

i�1

(
Ḟi si

) −
N∑

i�1

(
Ḟ0,i s0,i

)
]
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where hi and si represent the molar enthalpy and entropy
of component I, respectively. The mixing exergy, denoted
by Ẋmix [kW], is equal to the difference of mixture exergy
at process conditions (T , P) and the exergy of component i
(Luyao et al. 2017):

Ẋmix �
[
Ḟh −

N∑

i�1

(
Ḟi hi

)
]

− T0

[
Ḟs −

N∑

i�1

(
Ḟi si

)
]

(3)

where h and s are the molar enthalpy and entropy of the
mixture, in succession. The total exergy of a stream, denoted
by Ẋ tot [kW], at process conditions (T , P) is given as:

Ẋ tot � Ẋch + Ẋph + Ẋmix (4)

Subsequently, by rewriting an exergy formulation of the sec-
ond lawof thermodynamics for control volume, the destroyed
exergy of a chemical process is achieved as Cangel and Boles
(2002)

Ẋdestroyed � Ẋ tot,in − Ẋ tot,out − Ẇ + Q̇

(
1 − T

T0

)
(5)

where Ẇ is work done on the process, Q̇ is the amount of
heat entering the process, T is process temperature and T0 is
reference environment temperature. Every attempt to reduce
Ẋdestroyed will result in more energy-saving, and gain more
economic advantages.

2.2 MPC Cost Function

MPC cost function is designed in this section to achieve opti-
mal control law in the company of minimized TDE. This
objective function solves the optimization problem online
under process constraints in which a combination of the con-
trol and energy components that are defined as follows:

minimize F(x) (6)

G(x) ≤ 0, i � 1, 2, . . . ,m (7)

F(x) � [ f1(x) f2(x)] (8)

G(x) � [g1(x) g2(x)] (9)

where x � [x1, x2, . . . xn] are state variables, F(x) is the
objective function (also called cost function), G(x) includes
constraints regarding whether the process and economic lim-
itations, n is the number of optimization state variable or
optimization variables,m is the number of constraints, f1(x)
is associated with an energy cost function, g1(x) is associ-
ated with energy constraints, and f2(x) is related to control
cost function and g2(x) is related to process constraint. The

number of optimization variables and inequality constraint
equations is also indexed by two parameters n and m. The
aim is to minimize both objective functions f1(x) and f2(x)
with respect to variables x subjected to the constraints g1(x)
and g2(x) to attain both energy and control goals.

With a linear combination of energy and control cost func-
tion, the given multi-objective cost function is employed
subjected to linear inequality constraints:

minw1 f1 + w2 f2

G(x) ≤ 0 (10)

where w1 and w2 are weighting coefficients; the more the
w1 is, the more urgent is the minimization of energy loss and
similarly themore thew2 is, themore urgent is theminimiza-
tion of control desires, including transient and steady-state
responses. The mathematical equations of f1 and f2 can
be found in the next section. The fundamental distinction
of the current controller is to determine the optimum con-
trol actions, while less energy is destroyed, measured by the
amount of exergy destroyed.

3 Case Study

3.1 Process Description

Alkylation of benzene with ethylene, a principal process
in the petrochemical industry, produces ethylbenzene. As
shown in Fig. 1, the process studied in this work consists
of four continuously stirred tank reactors (CSTRs) and a
flash tank separator. A detailed description of the process
is widely described in Salahshoor and Hadian (2014), Ganji
et al. (2004) and Liu et al. (2010). Since the process is non-
linear, a linearized model must be derived so as to apply the
linear MPC. The manipulated variables of the process are
heat inputs to five vessels shown by Q1, Q2, Q3, Q4, Q5.
The concentrations of A, B, C, D in each of the five vessels
and the temperatures of each of them T1, T2, T3, T4, T5 are
considered as the states of the process. The controlled out-
puts are T1, T2, T3, T4, T5 plus total destroyed exergy, which
is illustrated in Sect. 3.2. The steady-state values indexed by
“s” are Q1s, Q2s, Q3s, Q4s, Q5s as the manipulated inputs
andT1s, T2s, T3s, T4s, T5s as controlled outputs, and their val-
ues are represented in Table 1.

3.2 Exergy Analysis

Keeping in mind the purpose of reduction in the destroyed
exergy, the exergy analysis of the described process is con-
ducted in the first step. The concept of exergy analysis for
every typical process is intimately illustrated in Sect. 2.1, and
it will be applied to the studied process in this section.
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Fig. 1 Flow diagram of
alkylation of benzene process
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CSTR-4
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F10, D
F9

F3
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F7

Q5
Q4

F8

Fr

Table 1 Steady-state values for inputs and outputs

Q1s − 4.4×106 (J/s) T1s 477.24 (k)

Q2s − 4.6×106 (J/s) T2s 476.97 (k)

Q3s − 4.7×106 (J/s) T3s 473.47 (k)

Q4s 9.2×106 (J/s) T4s 470.6 (k)

Q5s 5.9×106 (J/s) T5s 478.28 (k)

Destroyed exergy
(
Ẋ

)
has three significant resources:

chemical, physical, and mixing, as mentioned before. These
three significant parts will be described for every five vessels
(four CSTRs and one flash tank separator) and the exergy
destroyed in each vessel through the processwill be obtained.
The total exergy loss of the process is the summation of five
mentioned vessels.

The exergy losses of each vessel could be written as
Eq. (5). The work applied to each vessel to obtain mixture(
Ẇ

)
is neglected being deficient compared to other terms,

whereby the destroyed exergy for CSTR (1) could be written
as follows:

Ẋdestroyed,total1 �
∑

Ẋ in,1 −
∑

Ẋout,1 + Q̇1

(
1 − T1

T0

)

(11)

The chemical exergy of a material stream Ẋch is directly
related to the standard chemical exergy; not only does it
remain constant by manipulating the input variables, but also
it does not changewith time. Thismeans that chemical exergy

does not take a role in optimization problem and could be dis-
regarded. From Eq. (4), we have:

Ẋ tot � Ẋph + Ẋmix (12)

Substituting physical andmixing term of input exergy and
output exergy results in:

Ẋ in �
∑

(Ẋph,in + Ẋmix,in) (13)

Ẋout �
∑(

Ẋph,out + Ẋmix,out
)

(14)

Substituting Eq. (2) and Eq. (3) in Eq. (13) and Eq. (14)
ends in:

Ẋ in �{[F1(hA1 − h0) + F2(hB2 − h0) + Fr2(hr2 − h0)]

−T0[F1(sA1 − s0) + F2(sB2 − s0) + Fr2(sr2 − s0)]}
+ {[F3hT 1 − F1hA1 − F2hB2 − Fr2hr2]

−T0[F3sT 1 − F1sA1 − F2sB2 − Fr2sr2]} (15)

Ẋout � {[F3(h3 − h0)] − T0F3(s3 − s0)}
+ {[F3(hT 1 − h3)] − T0F3(sT 1 − s3)} (16)

Air behaves like an ideal gas at pressures less than 200 psi,
and the enthalpy difference and the change in entropy are
also given by Cangel and Boles (2002):

h2 − h1 � Cp(T2 − T1) (17)

s2 − s1 � Cp ln

(
T2
T1

)
− R ln

(
P2
P1

)
(18)
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Substitution of Eq. (17) and Eq. (18) in Eq. (15) and
Eq. (16) leads to a transparent relation between destroyed
exergy in CSTR (1)

(
Ẋdestroyed,total1

)
, controlled out-

puts (T1, T2, T3, T4, T5) and also manipulated inputs
(Q1, Q2, Q3, Q4, Q5). The previous procedure for CSTR
(1) could be repeated for other vessels. For the sake of sim-
plicity, the destroyed exergy of other vessels is notmentioned
here. It worth noting that pressure along the total of the pro-
cess is assumed to be constant (Ganji et al. 2004), so the
pressure term does not take any role in equations. Finally,
the total destroyed exergy (TDE) for the process of alky-
lation of benzene could be calculated by summation of the
destroyed exergy of each vessel:

TDE �
5∑

i�1

Ẋdestroyed,total,i (19)

Equation (19) plays a primary role in designing of the opti-
mizer as will be shown in the next section.

3.3 Optimizer Design

This section is aimed at designing a novel model predictive
control strategy to find a solution through an optimizer to
guarantee two main energy-based and control-based objec-
tives: (a) the vessels temperatures follow the set-point values
at steady-state condition, (b) Reduce Total Destroyed Exergy
(TDE) through the process. Added to two prime goals, MPC
is capable of handling control inputs and outputs constraints.
Moreover, it must ensure set-point tracking and have a bril-
liant control performance that can be evaluated by the mean
square error of the global system (GMSE). Another advan-
tage of MPC that distinguish it from other control method is
applicability for MIMO systems. Implemented for the first
time, the TDE obtained from Eq. (13) is considered as a
new state along with states mentioned before, indicated by
the sixth controlled output in addition to five previous out-
puts (T1, T2, T3, T4, T5). The closer TDE is to zero, the more
energy is saved, and more economical is the whole process.
The control inputs and outputs for the process have been
shown in Fig. 2.

The current controller requires a new cost function, as
stated in Eq. (10), in which both energy-oriented objective
function ( f1) and control-oriented objective function ( f2) is
designed as follows:

f1 � TDE2 (20)

f2 �
Hp∑

1

∣∣∣∣ŷ(k + i |k) − r(k + i |k)∣∣∣∣2Q +
Hu−1∑

0

∣∣∣∣�û(k + i |k)∣∣∣∣2R
(21)

Fig. 2 Themanipulated inputs and controlled outputs for the Alkylation
of Benzene process

Table 2 Initial values for
outputs

T1 443 (k)

T2 437.1 (k)

T3 428.4 (k)

T4 433.1 (k)

T5 457.6 (k)

Table 3 MPC controller
parameters

Hp 6

Hw 1

Hu 4

Q 106 ∗ diag([1111111])

R 10−7 ∗ diag([11111])

where Q and R are called weighting matrix, and Hp and
Hu are the prediction horizon and control horizon, respec-
tively. Predicted outputs, reference trajectory, and control
increments are also shown by ŷ, r and �û. The predicted
control output matrix ŷ and control input matrix is intro-
duced:

ŷ � [T1T2T3T4T5]
T

û � [Q1Q2Q3Q4Q5F4F6]
T

4 Result and Discussion

The controller desire to steer the system outputs from initial
conditions to the steady-state conditions while encountering
a disturbance of amplitude 10 in t � 80 s. The values of the
initial outputs are shown in Table 2. The controller design
parameters whichwere applied in the first simulation are also
presented in Table 3. The plant discretization was done using
the sampling interval h � 10 s, resulting in a discrete-time
model ready for applying to the MPC control design.

Referring to the earlier point, it is imperative to meet
four main specifications in the new optimizer: to ensure that
five outputs temperatures follow to predefined set-points, to
reduce total destroyed exergy (TDE) as far as possible, and to
handle constraints and to deliver an acceptable control per-
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Fig. 3 Set-point tracking of vessels temperatures (T1, T2, T3, T4, T5)

formance. The simulation results of the new designed MPC
are shown in Fig. 3. As can be seen, five vessels tempera-
tures follow the specific steady-state values from their initial
values in the presence of disturbance.

Total destroyed exergy (TDE) is a central feature of the
proposed optimizer. The TDE variation with time for various

weight ratio
(
w � w1

w2

)
is presented in Fig. 4. It is evident

from the supplied findings that MPC is capable of decreasing
TDE in the presence of disturbance after a while. According
to the theory of Thermodynamics, TDE of system or pro-
cess could not be precisely zero due to the concept of the
irreversibility (Van Wylen et al. 1976).

This paper is based on an analysis of two criteria,
namely TDE and global mean-square error (GMSE). By
calculating these indicators for all cases, the control per-
formance and the amount of energy saved are evaluated.
The output weighting matrix Q ≥ 0 and input weight-
ing matrix R ≥ 0 as MPC tuning parameters have a
profound effect on control performance. These matrixes
are assumed to be constant over the prediction horizon(
Q � 106 ∗ diag([111111]), R � 10−7 ∗ diag([11111])

)
.

According to Table 4, with increasing weight ratio, TDE is
reduced, and GMSE is increased. In other words, the amount
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Fig. 4 Total destroyed exergy (TDE) variation for different weight ratio

of energy consumption is decreased in contrast to increased
error (not desired controlled from).

Form a general point of view, output weightingmatrixQ is
appointed to oversee set-point tracking. In further detail, an
increase in one of the main diagonals of theQmatrix compel
the controller to exceed the corresponding output in impor-
tance and minimize deviations in that output. Thus, more
substantial output weights would end in outstanding control
performance. The effect of Q on TDE reduction is investi-
gated in Fig. 5. As it is clearly shown, TDE experiences a
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Table 4 Effect of W on integral
of TDE and GMSE W Q R Integral of TDE (J) GMSE

1 0.5 ∗ 106 ∗ diag([111111]) 10−7 ∗ diag([111111]) 1.35915E+09 0.5276

10 0.5 ∗ 106 ∗ diag([111111]) 10−7 ∗ diag([111111]) 2.1095E+08 1.9856

100 0.5 ∗ 106 ∗ diag([111111]) 10−7 ∗ diag([111111]) 9.7194E+07 8.3393

Table 5 Effect of Q on Integral
of TDE and GMSE Q W R Integral of TDE (J) GMSE

106 ∗ diag([111111]) 1 10−7 ∗ diag([111111]) 1.3091E+09 0.5197

105 ∗ diag([111111]) 1 10−7 ∗ diag([111111]) 1.3604E+09 0.5536

104 ∗ diag([111111]) 1 10−7 ∗ diag([111111]) 1.5174E+09 0.5887
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Fig. 5 Total destroyed exergy (TDE) variation for the different magni-
tude of Q

sharp upward trend by decreasing Q and consequently, more
energy is saved.DecreasingQ results in less accurate outputs,
which stems fromGMSEgrowth, and exacerbate control per-
formance. Rising output weightingmatrix, on the other hand,
make the MPC regulate vessels temperatures more accu-
rate, while bringing about more destroyed exergy and less
saved energy. Turning to Table 5, a careful selection ofQ is a
high priority to meet the two objectives and tradeoff between
energy-saving and control performance.

The input weighting matrix R another tuning parameter
in controller design that directly affects control increments.
If faster system response is needed, R should be chosen
quite small. Conversely, larger R can be chosen if a slower
dynamic is acceptable. The effect of R tuning on TDE reduc-
tion is investigated in Fig. 6. Looking at Table 6, raising R
could lessen GMSE and TDE, which would be the motive
for saving more energy. Though lowering R results in faster
response, TDE will be increased, i.e., with lowering input
weightingmatrix,MPC regulates vessels temperatures faster.
Apart from improved control performance, which is a posi-
tive outcome of increased R, more exergy is destroyed, and
less energy is saved. To sum up, a compromise between

Fig. 6 Total destroyed exergy (TDE) variation for the different magni-
tude of R

MPC free parameters, including input and output weight-
ing matrixes is an inevitable part of the proposed strategy
that brings a balance between energy and control.

5 Conclusion

A new exergy-based optimization approach has been pro-
posed in an MPC framework for MIMO processes subject to
imposed constraints to reduce total destroyed exergy (TDE)
and accomplish an optimal control performance in this paper.
The established MPC cost function has the characteristics to
simultaneously achieve TDE reduction and control regula-
tion in the presence of disturbance. The obtained simulation
results indicate the accomplishment of the TDE reduction
targeted on energy-saving aswell as enhanced control perfor-
mance, measured by GMSE. Different simulation tests have
been conducted to point out how substantial tuning matrixes,
denoted by Q and R, direct the outputs regarding control and
energy.
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Table 6 Effect of R on Integral
of TDE Q W R Integral of exergy (J) GMSE

106 ∗ diag([111111]) 1 10−9 ∗ diag([11111]) 2.2249E+09 0.6242

106 ∗ diag([111111]) 1 10−8 ∗ diag([11111]) 1.8321E+09 0.6067

106 ∗ diag([111111]) 1 10−7 ∗ diag([11111]) 1.3091E+09 0.5197
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