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Abstract
Data-driven controllers also called model-free controllers were invented in order to omit plant modeling step of model-based
controllers. Design procedure of these controllers is directly based on experimental I/O data collected from real plant. It can
ensure their reliability in real world applications, where the exact model is not available in most cases. In this paper, we
consider the problem of accurate tracking performance in presence of external disturbances using data-driven methodologies
combined withH∞ approach. Defining the improved subspace-based predictor, as the base step of the proposed controller’s
design procedure, an integrator is applied to the control loop, which increases the accuracy of controller’s reference tracking
performance. Moreover, a weighting function is considered for disturbance attenuation. Simulation results evidently illustrate
efficiency and satisfactory performance of the proposed controller.

Keywords Data-driven control · Subspace predictor · H∞ control · Offset-free tracking

1 Introduction

Plant modelling is a very important step in model-based
control design procedures. However, in most cases the
exact model is not available due to uncertainties of plants
or their nonlinear and time varying structures. Also, the
process of plant modelling is expensive and the obtained
model is limited for a special operating range. Therefore,
the model can not represent real plant properly. Accord-
ing to these drawbacks, many solutions were investigated
to reduce dependency of the controllers on plant model,
including adaptive controllers (Khajehsaeid et al. 2019),
neural-network based controllers (Ge et al. 2013), fuzzy
controllers (Precup and Hellendoorn 2011) or fuzzy neural
network based controllers (Esmaeili et al. 2018). Data-driven
controllers have attracted the attention of researchers in
recent years. A comprehensive review of aforementioned
controllers and their differences with model-based ones has
been presented in Hou andWang (2013). In data-driven tech-
nique, the controller is designed directly using input/output
(I/O) data of real plant, which eliminates difficulty and com-
putational burden ofmodel identification process and ismore
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reliable because of stabilizing the real plant and not only the
model of the system. This technique is divided into several
methods such as iterative feedback tuning (Heertjes et al.
2016), virtual reference feedback tuning (Yan et al. 2016),
model-free adaptive control (Esmaeili et al. 2019), and etc.
But among them, subspace approach has gained great popu-
larity in data-driven techniques (VanOverschee andDeMoor
1994; Van Overschee and De Moor 1996; Houtzager et al.
2012; Markovsky et al. 2005; Katayama 2006). However,
drastic computation burden of system identification step in
the aforementioned studies is a disadvantage for real-time
implementations. Hence, several studies have been published
concerning model-free subspace-based controllers. Favoreel
et al. (1999) used subspace approach for designing linear
quadratic Gaussian (LQG) controller. Woodley et al. (2001)
proposed a novel data-driven H∞ controller in order to
control unknown linear time-invariant (LTI) systems. An
adaptive determination algorithm for updating subspace pre-
dictor’s coefficients was presented inWoodley et al. (2001b),
which has been used in Elkaim et al. (2006) and Chen et al.
(2014) for robust tracking of an autonomous surface vehi-
cle and controlling solar power system, respectively. Also,
data-driven H∞ methodology has been used in fault toler-
ant control (Hallouzi and Verhaegen 2008) and simultaneous
fault detection and controller design procedure in Salim and
Khosrowjerdi (2016) and Salim and Khosrowjerdi (2017),
respectively.
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One of the most important objectives in control is accu-
rate and offset-free tracking performance, which is crucial
for real-world applications such as motion control systems
(linear-motor control, permanent-magnet motor control and
etc.), industrial processes (PH neutralization control, liq-
uid level control, temperature control, injection molding
process control and etc.), and its loss may cause unsatisfac-
tory closed-loop performance and also waste the controller’s
design cost. Themajor drawback of the aforementioned stud-
ies is their less tracking accuracy. In the literature, forcing an
integral action into the control design procedure is one of the
most commonmethods for bothmodel-based and data-driven
control fields. This method has been used in model-based
predictive controllers (MPC) (Cheng et al. 2015; Li et al.
2016), subspace based predictive controllers (Kadali et al.
2003; Wahab et al. 2011; Lu et al. 2011; Wu et al. 2014;
Lu et al. 2015; Shafiei et al. 2015; Luo and Song 2018;
Vajpayee et al. 2018) and feedback linearization control
(Errouissi et al. 2016) in which incremental control input is
determined instead of control input to reduce steady-state
tracking error. Also, in sliding mode controllers, an inte-
gral term has been utilized in sliding surface to enhance the
tracking performance (Esmaeili et al. 2019a; Van 2019). Up
to now, offset-free tracking performance in data-drivenH∞
controller has not yet been studied,whichmotivates us to pro-
pose a data-driven offset-freeH∞ controller to meet control
objectives, i.e., accurate reference tracking and disturbance
attenuation. To the best of authors’ knowledge, it is the first
time that both offset-free tracking and disturbance attenua-
tion issues are considered in data-drivenH∞ controller. The
main contributions of this work are summarized as follows:

(1) A weight function is considered to attenuate effect of
external disturbance.

(2) An integral action is imposed to the controller system
using an improved subspace predictor.

(3) Since only I/O data are used for designing process of the
controller, the proposed method is useful in industrial
processes with unknown models.

The rest of the paper is organized as follows: Sect. 2 defines
the problem of data-driven offset-free tracking as a time
domain H∞ optimization problem. In Sect. 3 improved
subspace predictor is determined using traditional subspace
predictor, which is necessary for data-driven technique. The
proposed data-driven H∞ offset-free controller design pro-
cedure is presented in Sect. 4. Two demonstrative examples
verify the effectiveness of the proposed study in Sects. 5 and
6 concludes the paper.

2 Preliminaries and Problem Statement

For amatrix P , PT and λ̄(P) stand for its transpose andmax-
imum eigenvalue, respectively. Matrix P is called symmetric
if P = PT . For symmetric matrices P and Q, P ≥ Q and
P > Q denote P − Q is positive semi definite and positive
definite, respectively. I andRH∞ indicate unitymatrix with
appropriate dimension and the space of real rational, proper
and stable transfer matrices, respectively.

Lemma 1 (Inversion lemma) If A−1
1 and A−1

3 exist, then

[
A1 A2

AT
2 A3

]−1

=
[

(A1 − A2A
−1
3 AT

2 )−1 −(A1 − A2A
−1
3 AT

2 )−1A2A
−1
3

−(A3 − AT
2 A

−1
1 A2)

−1AT
2 A

−1
1 (A3 − AT

2 A
−1
1 A2)

−1

]

(1)

It is worth pointing out that multiplying
[
0 I

]
to the left of

(1) yields

[
0 I

] [
A1 A2

AT
2 A3

]−1

= (A3 − AT
2 A

−1
1 A2)

−1 [−AT
2 A

−1
1 I

]

(2)

Lemma 2 (Schur decomposition) If D is a symmetric matrix,
therefore, it can be decomposed as

D =
[
A1 A2

AT
2 A3

]
=

[
I A2A

−1
3

0 I

] [
A1 − A2A

−1
3 AT

2 0
0 A3

]

×
[
I A2A

−1
3

0 I

]T

(3)

In this paper, we consider a linear time-invariant system as
follows

G :
{
xk+1 = A xk + B uk + Bd dk + ek,
yk = C xk + D uk + Dd dk + vk

(4)

where xk ∈ R
n , uk ∈ R

m , yk ∈ R
l and dk ∈ R

kd are
the system states, the known input of plant, the measured
output of plant and the external disturbance, respectively.
Also, ek ∈ R

n and vk ∈ R
l are process and measurement’s

normally distributed, white noise sequences, respectively.
System matrices A, B, Bd , C , D and Dd are supposed to be
unknown and constant matrices of appropriate dimensions.

Assumption 1 The pair (A, B) is stabilizable.

Assumption 2 The pair (C, A) is detectable.

Consider healthy system, i.e., system (4) such that dk = 0
and suppose that process and measurement noise sequences
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are integrated noises. We have:

{
xk+1 = A xk + B uk + ξk,

yk = C xk + D uk + ϑk
(5)

where ξk and ϑk are integrated noises. Therefore

ξk = ξk−1 + ek = 1

�
ek (6)

and

ϑk = ϑk−1 + vk = 1

�
vk (7)

where � is differentiating operator. By substituting (6) and
(7) into (5), one can obtain

{
�xk+1 = A�xk + B �uk + ek,
�yk = C �xk + D �uk + vk

(8)

which gives incremental control input �u instead of con-
trol input u. Assume the experimental I/O data of healthy
system are available. The purpose is to design a data-driven
H∞ controller to obtain an offset-free tracking performance
while external disturbance is attenuated with a reasonable
incremental control effort. Besides, the overall design pro-
cess of the proposed controller is merely based on the I/O
data of the controlled plant. Consequently, these objectives
are augmented as the following control objective vector:

zc �
[
zr
zu

]
=

[
Wr (r − y)
Wu�u

]
(9)

where Wr and Wu are proper stable weighting functions for
precise tracking performance and bounded incremental con-
trol effort, respectively. Define cost function as follows:

J (γ ) �
i−1∑
k=0

(zc
T zc − γ 2wTw) (10)

where i denotes finite horizon length, γ is design parameter
and w ∈ R

l+kd is the exogenous input defined as follows

w =
[
r
d

]
(11)

where r ∈ R
l is the reference input. In order to specify r and

d in terms of w, we define the following matrices

r = K1w, K1 = [
Il 0l×kd

]
d = K2w, K2 = [

0kd×l Ikd
]

Now, one can formulate the H∞ control problem as a finite
horizon min–max suboptimal problem as follows:

min
�u

sup
w

J (γ ) ≤ 0 (12)

in which the optimal �u and therefore, the optimal u is
obtained such that it guaranteesH∞ gain fromw to z be less
than γ in the presence of maximum exogenous input, i.e.,
w. The feasibility condition of the aforementioned optimiza-
tion problem and optimal solution of it will be determined in
Sect. 4.

3 Improved Subspace Predictor Design

In this section, first, we briefly review design procedure of the
traditional subspace predictor (Van Overschee and De Moor
1996) and then, the differentiated I/O data will be used to
obtain improved version, which is a function of incremental
control input �u.

3.1 Traditional Subspace Predictor

The problem of designing traditional subspace predictor can
be formulated as follows: Consider k to be the current time
step. Given past experimental data (Wp)k and future inputs⎡

⎢⎣
uk
...

uk+i−1

⎤
⎥⎦, calculate Lu , Lw to predict future outputs of

plant, namely

⎡
⎣ ŷk

· · ·
ŷk+i−1

⎤
⎦ = Lw(Wp)k + Lu

⎡
⎢⎣

uk
...

uk+i−1

⎤
⎥⎦ (13)

where

(Wp)k �

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

uk−i
...

uk−1

yk−i
...

yk−i

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(14)

Suppose the experimental I/O data of length N from the
unknown healthy LTI system

{
xk+1 = A xk + B uk + ek,
yk = C xk + D uk + vk

(15)
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is available as follows
⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

u0
u1
...

uN−1

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

y0
y1
...

yN−1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ (16)

In order to determine linear subspace predictor equation,
we should define Hankel matrices from the I/O data (16) as
follows:

Up =

⎡
⎢⎢⎢⎣

u0 u1 · · · u j−1

u1 u2 · · · u j
...

... · · · ...

ui−1 ui · · · ui+ j−2

⎤
⎥⎥⎥⎦ ∈ R

im× j (17)

Yp =

⎡
⎢⎢⎢⎣

y0 y1 · · · y j−1

y1 y2 · · · y j
...

... · · · ...

yi−1 yi · · · yi+ j−2

⎤
⎥⎥⎥⎦ ∈ R

il× j (18)

U f =

⎡
⎢⎢⎢⎣

ui ui+1 · · · ui+ j−1

ui+1 ui+2 · · · ui+ j
...

... · · · ...

u2i−1 u2i · · · u2i+ j−2

⎤
⎥⎥⎥⎦ ∈ R

im× j (19)

Y f =

⎡
⎢⎢⎢⎣

yi yi+1 · · · yi+ j−1

yi+1 yi+2 · · · yi+ j
...

... · · · ...

y2i−1 y2i · · · y2i+ j−2

⎤
⎥⎥⎥⎦ ∈ R

il× j (20)

where i denotes prediction horizon, which should be chosen
larger than the expected order of plant and j = N − 2i + 1
is the number of prediction problems. The subscripts p and
f denote past and future time, respectively. A single predic-
tor should be found such that optimizes (in the least square
sense) the j prediction problems. By solving the following
Frobenius normminimization problem, output prediction Ŷ f

can be obtained:

min
Lw,Lu

∥∥Y f − [
Lw Lu

] [
Wp

U f

] ∥∥2
F (21)

By performing a numerically reliable technique, i.e., QR
decomposition, subspace predictor coefficients Lw and Lu

can be obtained as follows:
⎡
⎣Wp

U f

Y f

⎤
⎦ = RT QT =

⎡
⎣R11 0 0
R21 R22 0
R31 R32 R33

⎤
⎦

⎡
⎣Q1

Q2

Q3

⎤
⎦ (22)

then

L = [
Lw Lu

] = [
R31 R32

] [
R11 0
R21 R22

]†
(23)

where † stands for the Moore–Penrose inverse.

3.2 Improved Subspace Predictor

By following the same steps in determining traditional sub-
space predictor, the improved subspace predictor (Mardi and
Wang 2009) can be obtained. Define Hankel matrices using
differentiated data:

�Up =

⎡
⎢⎢⎢⎣

�u0 �u1 · · · �u j−1

�u1 �u2 · · · �u j
...

... · · · ...

�ui−1 �ui · · · �ui+ j−2

⎤
⎥⎥⎥⎦ ∈ R

im× j , (24)

�Yp =

⎡
⎢⎢⎢⎣

�y0 �y1 · · · �y j−1

�y1 �y2 · · · �y j
...

... · · · ...

�yi−1 �yi · · · �yi+ j−2

⎤
⎥⎥⎥⎦ ∈ R

il× j (25)

�U f =

⎡
⎢⎢⎢⎣

�ui �ui+1 · · · �ui+ j−1

�ui+1 �ui+2 · · · �ui+ j
...

... · · · ...

�u2i−1 �u2i · · · �u2i+ j−2

⎤
⎥⎥⎥⎦ ∈ R

im× j , (26)

�Y f =

⎡
⎢⎢⎢⎣

�yi �yi+1 · · · �yi+ j−1

�yi+1 �yi+2 · · · �yi+ j
...

... · · · ...

�y2i−1 �y2i · · · �y2i+ j−2

⎤
⎥⎥⎥⎦ ∈ R

il× j (27)

and

�Wp =
[
�Up

�Yp

]
(28)

The improved subspace predictor is obtained by solving the
following problem:

min
Lw,�,Lu,�

∥∥∥∥�Y f − [
Lw,� Lu,�

] [
�Wp

�U f

]∥∥∥∥
2

F
(29)

Using the QR decomposition, we have:

⎡
⎣�Wp

�U f

�Y f

⎤
⎦ = RT

�QT
� =

⎡
⎣R11,� 0 0
R21,� R22,� 0
R31,� R32,� R33,�

⎤
⎦

⎡
⎣Q1,�

Q2,�

Q3,�

⎤
⎦

(30)

then

L� = [
Lw,� Lu,�

] = [
R31,� R32,�

] [
R11,� 0
R21,� R22,�

]†

(31)
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and therefore, prediction of differentiated output is as fol-
lows:

�Ŷ f = Lw,��Wp + Lu,��U f (32)

The simplified version of (32) can be written as follows

�ŷ f = Lw,��wp + Lu,��u f (33)

where �ŷ f and �u f are as follows:

�ŷ f =

⎡
⎢⎢⎢⎣

�ŷk
�ŷk+1

...

�ŷk+i−1

⎤
⎥⎥⎥⎦ , �u f =

⎡
⎢⎢⎢⎣

�uk
�uk+1

...

�uk+i−1

⎤
⎥⎥⎥⎦ , (34)

and

�wp =
[
�u p

�yp

]
(35)

where

�yp =

⎡
⎢⎢⎢⎣

�yk−i

�yk−i+1
...

�yk−1

⎤
⎥⎥⎥⎦ , �u p =

⎡
⎢⎢⎢⎣

�uk−i

�uk−i+1
...

�uk−1

⎤
⎥⎥⎥⎦

We can write:

ŷ f =

⎡
⎢⎢⎢⎣

ŷk
ŷk+1

...

ŷk+i−1

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

�ŷk
�ŷk+1

...

�ŷk+i−1

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

ŷk−1

ŷk
...

ŷk+i−2

⎤
⎥⎥⎥⎦ (36)

Assuming that experimental I/O data are available in time
step k − 1, one can replace ŷk−1 with yk−1. It yields

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ŷk = �ŷk + yk−1

ŷk+1 = �ŷk+1 + ŷk
...

ŷk+i−1 = �ŷk+i−1 + ŷk+i−2

(37)

where yk−1 is the plant output in previous time step. Sub-
stituting recursively ŷk, . . . , ŷk+i−2 in the right hand-side of
equations in (37) into their respective definitions on the left
hand-side, we have:

⎡
⎢⎢⎢⎣

ŷk
ŷk+1

...

ŷk+i−1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
ŷ f

=

⎡
⎢⎢⎢⎣
Il 0 · · · 0
Il Il · · · 0
...

... · · · ...

Il Il · · · Il

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
�l

⎡
⎢⎢⎢⎣

�ŷk
�ŷk+1

...

�ŷk+i−1

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
�ŷ f

+

⎡
⎢⎢⎢⎣
Il
Il
...

Il

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
�l

yk−1

(38)

Using (33) and (38), the improved subspace predictor is
obtained as follows:

ŷ f = �l yk−1 + �l�ŷ f = �l yk−1 + �l Lw,��wp

+�l Lu,��u f (39)

Note that in the presence of unknown external disturbance dk ,
its effect is expressedwith an additive term, i.e.,�l Ld,��d f ,
as follows:

ŷ f = �l yk−1 + �l�ŷ f = �l yk−1 + �l Lw,��wp+
�l Lu,��u f + �l Ld,��d f

(40)

where d f = [dTk , dTk+1, . . . , d
T
k+i−1]T is the vector of future

disturbances and �d f denotes the incremental version of it.
The nature of Ld,� is not important and the additive com-
ponent is compensated by the weighting functionWd , which
will be discussed in the next section.

Remark 1 Unlike the traditional subspace predictor (13), the
improved one (39) makes output prediction become a func-
tion of incremental input, i.e., �u and therefore, an integral
action will be imposed on the controller design procedure,
which will be the solution for increasing the accuracy of ref-
erence tracking performance.

Remark 2 It should be mentioned that differentiating the I/O
data may cause amplification of the measurement noises.
In order to deal with this drawback, assuming that a priori
knowledge about the characteristics of the noise is available,
a pre-filter step is considered to reduce the effect of mea-
surement noises by utilizing the inverse of the noise model
(See Mardi and Wang (2008) for more details). This attempt
can be classified as a preprocess step that should be made in
data-driven controllers.

4 A Data-Driven Offset-FreeH∞ Controller

According to development in Chen et al. (2014), a solution
is investigated to the problem (12) that gives a data-driven
offset-freeH∞ controller.

The block diagram for the proposed controller is shown in
Fig. 1 in which Wr , Wd and Wu are proper stable weighting
functions that can be used as design parameters. Accord-
ing to this figure, plant’s future output ŷ is predicted using
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Fig. 1 The block diagram of data-driven offset-free H∞ controller

the improved subspace predictor. Notice that the block with
dashed arrow in Fig. 1 represents the additive component
in (40), which will not be appeared in controller’s design
process and its effect will be compensated by Wd , which is
a low-pass filter and demonstrates the relative importance
along with the known or expected frequency substance of
the external disturbance dk . It should be pointed out that Wd

plays an important role in disturbance attenuation purpose of
the proposed controller and it is selected such that the effect
of external disturbance be reduced on the system output. In
other words, as discussed in the previous section, the effect
of the external disturbance, which has been expressed as
�l Ld,�d f in (40), is compensated by tuning of this weight-
ing function. Control objectives are formed by coupling the
weighting functions to the improved subspace predictor pro-
posed in Sect. 3. Wr is chosen as a low-pass filter to reduce
overshoots in system response, whileWu is chosen as a high-
pass filter. Suppose state-space realizations of the weighting
functions are as follows:

Wd :
{

(xwd )k+1 = Awd (xwd )k + Bwd dk
d ′

k = Cwd (xwd )k + Dwd dk
(41)

Wr :
{

(xwr )k+1 = Awr (xwr )k + Bwr (rk − yk)
(zr )k = Cwr (xwr )k + Dwr (rk − yk)

(42)

Wu :
{

(xwu )k+1 = Awu (xwu )k + Bwu �uk
(zu)k = Cwu (xwu )k + Dwu �uk

(43)

where k denotes the current time step. Consider 	r , 	d and
	u denote the extended observability matrices formed using
impulse responses of the weighting functions as follows:

	d =

⎡
⎢⎢⎣

Cwd

Cwd Awd

· · ·
Cwd Awd

i−1

⎤
⎥⎥⎦ , 	r =

⎡
⎢⎢⎣

Cwr

Cwr Awr

· · ·
Cwr Awr

i−1

⎤
⎥⎥⎦ ,

	u =

⎡
⎢⎢⎣

Cwu

Cwu Awu

· · ·
Cwu Awu

i−1

⎤
⎥⎥⎦

Hr , Hd and Hu denote lower triangular Toeplitz matrices
formed using impulse responses of the weighting functions,

Hd �

⎡
⎢⎢⎢⎢⎢⎣

Dwd 0 0 · · · 0
Cwd Bwd Dwd 0 · · · 0

Cwd Awd Bwd Cwd Bwd Dwd · · · 0
...

...
...

. . .
...

Cwd Awd
i−2 Bwd Cwd Awd

i−3 Bwd · · · Cwd Bwd Dwd

⎤
⎥⎥⎥⎥⎥⎦

Hr �

⎡
⎢⎢⎢⎢⎢⎣

Dwr 0 0 · · · 0
Cwr Bwr Dwr 0 · · · 0

Cwr Awr Bwr Cwr Bwr Dwr · · · 0
...

...
...

. . .
...

Cwr Awr
i−2 Bwr Cwr Awr

i−3 Bwr · · · Cwr Bwr Dwr

⎤
⎥⎥⎥⎥⎥⎦

Hu �

⎡
⎢⎢⎢⎢⎢⎣

Dwu 0 0 · · · 0
Cwu Bwu Dwu 0 · · · 0

Cwu Awu Bwu Cwu Bwu Dwu · · · 0
...

...
...

. . .
...

Cwu Awu
i−2 Bwu Cwu Awu

i−3 Bwu · · · Cwu Bwu Dwu

⎤
⎥⎥⎥⎥⎥⎦

then, using experimental I/O data, one has:

d ′ = 	d(xwd )k + Hdw (44)

zr = 	r (xwr )k + Hr (r − ŷ − d ′) (45)

zu = 	u(xwu )k + Hu�u (46)

where

w �

⎡
⎢⎢⎣

wk

wk+1

· · ·
wk+i−1

⎤
⎥⎥⎦ , �u �

⎡
⎢⎢⎣

�uk
�uk+1

· · ·
�uk+i−1

⎤
⎥⎥⎦ , ŷ �

⎡
⎢⎢⎣

ŷk
ŷk+1

· · ·
ŷk+i−1

⎤
⎥⎥⎦ ,

zr �

⎡
⎢⎢⎣

(zr )k
(zr )k+1

· · ·
(zr )k+i−1

⎤
⎥⎥⎦ , zu �

⎡
⎢⎢⎣

(zu)k
(zu)k+1

· · ·
(zu)k+i−1

⎤
⎥⎥⎦ , d ′ �

⎡
⎢⎢⎣

d ′
k

d ′
k+1
· · ·

d ′
k+i−1

⎤
⎥⎥⎦ .

Theorem (1) summarizes the results:

Theorem 1 If plant input measurements u, plant output mea-
surements y, and reference signals r are available for time
steps k − i, . . . , k − 2, k − 1, therefore, the finite horizon,
strictly causal, data-driven offset-free improved subspace-
based level-γ ,H∞ controller for time steps k, . . . , k+ i −1
is obtained as
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�uopt = −(M22 − MT
12M

−1
11 M12)

−1 [−MT
12M

−1
11 I

] ×⎛
⎜⎜⎝

[
M13 M14 M15 M16

M23 M24 M25 M26

] ⎡
⎢⎢⎣

�wp

xwd

xwr

xwu

⎤
⎥⎥⎦
k

+
[
N11

N21

]
yk−1

⎞
⎟⎟⎠ (47)

Provided that

γ > γmin

where

γmin �
√

λ̄(M11o − MT
12 M22

−1 M12). (48)

and

M11 = Hw
T Hw − γ 2 I , M12 = −Hw

T Hr �l Lu,�

M13 = −Hw
T Hr �l Lw,�, M14 = −Hw

T Hr 	d ,

M15 = −Hw
T 	r , M16 = 0,

M22 = Lu,�
T �l

T Hr
T Hr �l Lu,� + Hu

T Hu,

M23 = Lu,�
T �l

T Hr
T Hr �l Lw,�,

M24 = Lu,�
T �l

T Hr
T Hr 	d ,

M25 = Lu,�
T �l

T Hr
T 	r , M26 = Hu

T Hu,

N11 = −Hw
T Hr �l , N21 = Lu,�

T �l
T Hr

T Hr �l ,

M11o = M11 + γ 2 I ,

�uopt is the vector of optimal incremental future inputs at
time steps k, . . . , k + i − 1 as follows

�uopt =
⎡
⎢⎣

�uk
...

�uk+i−1

⎤
⎥⎦ (49)

and the vector of optimal future inputs can be obtained by
applying the following integral action:

uoptk = uoptk−1 + �uopt (50)

where uoptk−1 =

⎡
⎢⎢⎢⎣

uk−1

uk
...

uk+i−2

⎤
⎥⎥⎥⎦ and uoptk =

⎡
⎢⎢⎢⎣

uk
uk+1

...

uk+i−1

⎤
⎥⎥⎥⎦.

Proof See “Appendix”. ��
It isworth noting that for non-zero reference signal inputs, the
objective function utilized inChen et al. (2014) does notmeet
zero steady-state tracking error, unless the open-loop system
possesses an integral action (Kadali et al. 2003; Shafiei et al.
2015). Thereupon, by taking the integrated noise model into
account, the I/O data are differentiated and an integrator is

incorporated into the proposed controller. Strictly speaking,
the modified objective function (56) becomes a function of
incremental input. Notice that (50) contains a guaranteed
integrator. Designing steps of the proposed controller are
summarized by the following algorithm:

Algorithm 1 Data-DrivenOffset-freeH∞ ControllerDesign

1. Collect experimental I/O data from the unknown healthy
LTI system (5) and differentiate it.

2. Define differentiated Hankel matrices �Up, �Yp, �U f ,
�Y f according to (24)–(27).

3. Form �Wp using (28).
4. Compute Lu,� and Lw,� regarding Eqs. (30) and (31).
5. Choose weighting functions Wr , Wd and Wu.
6. Calculate γmin using (48) and choose γ > γmin.
7. Initialize states of weighting functions (xwr , xwd and xwu )

using (41)–(43).
8. Form �wpk according to (35).
9. Compute �uopt for current time step k according to (47).

10. Apply first time step of �uopt and take measurements yk
(real system output) and rk.

11. Update states of weighting functions.
12. k := k + 1 and go to Step 8.

Steps 8–12 should be repeated i times.

Remark 3 By selecting less value for γ , better results are
obtained in control objectives. However, as noticed inWood-
ley et al. (2001), choosing γ nearby γmin can cause control
objectives not met. Because the formula used for calculating
�uopt is close to singularity near γmin. Hence, it is better to
choose γ ≥ 1.1γmin in which γmin is calculated according to
equation (48).

Remark 4 Due to the fact that determination of precise
subspace predictor is necessary for desired closed-loop per-
formance, the richness and frequency content of I/O data are
significantly important in order to excite all modes of the
plant and capture its real behavior. Hence, quality of the I/O
data should be ensured. In the other hand, length of the I/O
data is another term that affects the performance of the pre-
dictor. The subspace-based predictor derived utilizing short
length of I/O data will not be able to favorably capture the
plant’s dynamic behavior. Therefore, an accurate predictor
can be obtained by longer length of I/O data. Meanwhile, the
sampling frequency should be chosen well above the plant’s
cut-off frequency in order to capture all modes of the plant
and obtain a satisfactory predictor.

Remark 5 The main constraint of the subspace-based con-
trollers is the stability of the open-loop system.Acquiring I/O
data from the open-loop plant is required for the step of com-
puting predictor’s coefficients. Unstable plant will generate
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unbounded output data, which are useless for determination
of subspace-based predictors. Designing simple and low-cost
controllers such as proportional–integral–derivative (PID)
controller as an inner loop for stabilizing the open-loop sys-
tem is one of the solutions. In other words, for unstable
systems, the I/O data is collected from the inner closed-loop
system instead of the open-loop one.

5 Numerical Examples

In this section, to verify the effectiveness of the theoretical
results, Algorithm 1 and the method of Chen et al. (2014),
which will be referred as Chen’s method for convenience,
are applied to the following numerical examples by means
of MATLAB/Simulink and the results are compared. Notice
that, in order to illustrate the effect of considering Wd in
design procedure and emphasize the superior robustness of
the proposed study, an external disturbance, i.e., dk , is con-
sidered to perturb the plants. It should be mentioned that the
weighting function Wd has not been considered in Chen’s
method.

5.1 Example 1

Consider the following LTI system:

G :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẋ =
[−49.2 −1.3
59.04 −2.5

]
x +

[
190.4
0

]
u

+
[

0
−54.26

]
d + ξ

y = [
0 1

]
x + ϑ

(51)

where x = [
x1 x2

]T
is system state vector. I/O data are col-

lected by applying pseudo random binary sequence (PRBS)
to the system (51) and recording its output with sampling
frequency of 200 Hz, N = 2000 and i = 55. Figure 2a and
b respectively show the PRBS input and the response of the
system (51), which are used for evaluating the coefficients
of both traditional and improved subspace predictors. Notice
that output data are distributed by an integrated noise with
signal to noise ratio (SNR) of 20 db. Asmentioned in Sect. 3,
in traditional subspace predictor, we use normal data, while
differentiated data are used for improved one. The weight-
ing transfer functions are chosen in continuous domain as
follows and discretized by tustin transform:

Wr = 0.01(s + 10)

(s + 0.01)
,Wd = 0.1(s + 10)

(s + 0.01)
,Wu = 10(s + 0.01)

(s + 10)
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Fig. 2 I/O data collected from system in example 1

As mentioned above, the control objective is to force the
system state to track a desired signal, while attenuating the
effect of external disturbance. For this issue, consider the
reference signal and the disturbance as follows:

r(t) =
⎧⎨
⎩
0, t < 10
2, 10 ≤ t < 77
1.5, 77 ≤ t

and

d(t) =
⎧⎨
⎩
0, t < 37
1.5, 37 ≤ t < 56
0, 56 ≤ t

Figure 3 compares the tracking performance of the proposed
study with that of Chen’s method. Evidently, one can see the
tracking performance of the proposed controller is offset-
free, while the compared work has a significant steady-state
tracking error and the output response of the proposed work
tracks the reference signal faster. It can be seen that when
the external disturbance perturbs the system during the time
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Fig. 3 Comparison of trajectory tracking performance of example 1

interval of 37 to 56 s, the proposed controller quickly atten-
uates its effect because of the weight function, i.e., Wd ,
has been used in the controller’s design procedure to com-
pensate the effect of the external disturbance. Furthermore,
the output response has less overshoot than that of Chen’s
method. Therefore, the proposed controller has more robust-
ness. Considering the tracking error results in Fig. 4a and b,
performance indexes including the integral of the absolute
error (IAE), the integral of the square error (ISE) and the
integral of the time multiplied by the absolute error (ITAE)
(Hsiao et al. 2008) have been calculated for quantitative
comparison and listed in Table 1, which emphasizes better
tracking performance of our work.

The control efforts of both works are demonstrated in
Fig. 5a and b. It is worthmentioning that the proposed control
input is more aggressive than that of Chen’smethod, which is
reasonable due to its fast offset-free tracking and disturbance
attenuating performance. Nevertheless, it has not abrupt and
fast changes, which has been emphasized in Fig. 5b.

5.2 Example 2

In this subsection, another simulation study is accomplished
in order to demonstrate the performance of the proposed
study. Consider the discrete-time process of injection mold-
ing (IM) as follows:

G :

⎧⎪⎪⎨
⎪⎪⎩
xk+1 =

[
1.582 −0.592
1 0

]
xk +

[
1
0

]
(uk + dk) + ξk

yk = [
1.69 1.419

]
xk + ϑk

(52)

where dk = (
(−0.15z−1 −0.2z−2)/(1−0.993z−1)

)
δk−k0 is

the external disturbance shown in Fig. 6 and δk−k0 = 0.01.
k0 = 6600 and according to the sampling frequency, i.e.,
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(b) Proposed method

Fig. 4 Tracking error of example 1

Table 1 Tracking performance comparison of example 1

Controller IAE ISE ITAE

Chen’s method 27.40 22.25 1.039 × 103

Proposed method 1.93 1.33 0.071 × 103

200 Hz, it is equal to 33th second in the time interval of
simulation. In other words, in 33th second of simulation, dk
perturbs the process. The interested readers can refer to Hou
et al. (2018) for more details about this process. I/O data
are acquired by applying pseudo random binary sequence
(PRBS) to the system (52), which are used to compute the
coefficients of both traditional and improved subspace pre-
dictors. i = 10 and the other parameters are selected as those
of example 1. The weighting transfer functions are chosen
in continuous domain as follows and discretized by tustin
transform:

Wr = 0.01(s + 5)

(s + 0.01)
,Wd = 0.1(s + 5)

(s + 0.01)
,Wu = 10(s + 0.01)

(s + 5)
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Fig. 5 Control input of example 1
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Fig. 6 Disturbance of example 2

To challenge the tracking performance of the proposed study,
a time-variant reference signal is given as follows:

r(k + 1) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

50 × (−1)round(k/2000) + 70, k ≤ 4001

(
50sin(kπ/1000)+
20cos(kπ/500) + 70

)
, 4001 < k ≤ 6001

50 × (−1)round(k/2000) + 70, 6001 < k ≤ 1000
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Fig. 7 Tracking performance comparison of example 2

For comparison purpose, Chen’smethod is also implemented
on IM process and the compared results are illustrated in
Figs. 7 and 8. Regarding Fig. 7, more accurate tracking per-
formance of the proposed controller is deduced. In contrast
to the proposed method, the system output of Chen’s method
has undesired overshoots. In addition, the robustness of the
proposed controller has been improved due to the weighting
function Wd has been considered in design procedure. For
quantitative comparison, the root mean square of the track-
ing error is computed and listed in Table 2. According to this
table, better tracking performance of the proposed controller
is concluded.

Finally, Fig. 8 displays both methods’ control signals. The
proposed controller has more aggressive control signal in
order to provide more accurate tracking performance. How-
ever, it is smooth and sensible as emphasized in Fig. 8b.
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Fig. 8 Control input of example 2

Table 2 Tracking performance
comparison of example 2

Controller RMS

Chen’s method 23.30

Proposed method 13.11

6 Conclusion

This paper, addresses the problem of accurate reference
tracking performance in presence of external disturbances
using data-drivenH∞ controller. Merely using the I/O data,
the improved subspace-predictor is formulated to predict the
plant outputs. In contrast with the traditional subspace pre-
dictor, the improved one imposes an integral action to the
control loop to enhance the tracking accuracy. A low-pass
filter as a weighting function is also considered to attenuate
the effect of external disturbances. The effectiveness of the
proposed study is demonstrated bymeans of simulations, and
the comparative results indicate its superiority. The extension
of the proposed work for unknown nonlinear systems will be
our future work.

Appendix

Proof of Theorem 1: Calculate ŷ using improved subspace
predictor (39) using differentiated I/O data collected from
the unknown healthy system (15). Substituting (13) and (44)
into (45), one can get

zc =
[
zr
zu

]
=

[
	r (xwr )k + Hww − Hr	d (xwd )k

	u(xwu )k + Hu �uk

]
+

[−Hr �l Lu,� �u − Hr �l Lw,� �(wp)k − Hr �l yk−1

0

]

(53)

where

Hw � Hr Kref − Hr HdKdist

and

Kref �

⎡
⎢⎢⎢⎣
K1 0 · · · 0
0 K1 · · · 0
... 0

. . . 0
0 0 · · · K1

⎤
⎥⎥⎥⎦ , Kdist �

⎡
⎢⎢⎢⎣
K2 0 · · · 0
0 K2 · · · 0
... 0

. . . 0
0 0 · · · K2

⎤
⎥⎥⎥⎦

Defining

XT = [
wT �ukT �wpk

T xwd k
T xwr k

T xwu k
T
]

(54)

we have

zc =
[
Hw −Hr �l Lu,� −Hr �l Lw,� −Hr 	d 	r 0
0 Hu 0 0 0 	u

]
︸ ︷︷ ︸

�

X +

[−Hr �l

0

]
︸ ︷︷ ︸




yk−1 (55)

Substituting (55) into (10) yields

J = XT �T�︸ ︷︷ ︸
M

X + XT �T
︸ ︷︷ ︸
N

yk−1 + yk−1
T
T�X +

yk−1
T
T
 yk−1

where

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

M11 M12 M13 M14 M15 M16

M21 M22 M23 M24 M25 M26

M31 M32 M33 M34 M35 M36

M41 M42 M43 M44 M45 M46

M51 M52 M53 M54 M55 M56

M61 M62 M63 M64 M65 M66

⎤
⎥⎥⎥⎥⎥⎥⎦

, N =

⎡
⎢⎢⎢⎢⎢⎢⎣

N11

N21

N31

N41

N51

N61

⎤
⎥⎥⎥⎥⎥⎥⎦
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and

M21 = M12
T ,

M31 = M13
T , M32 = M23

T ,

M33 = Lw,�
T �l

T Hr
T Hr �l Lw,�,

M34 = Lw,�
T �l

T Hr
T Hr 	d ,

M35 = Lw,�
T �l

T Hr
T 	r , M36 = 0,

M41 = M14
T , M42 = M24

T ,

M43 = M34
T , M44 = 	d

T Hr
T Hr 	d ,

M45 = 	d
T Hr

T Hr 	r , M46 = 0,

M51 = M15
T , M52 = M25

T ,

M53 = M35
T , M54 = M45

T ,

M55 = 	r
T 	r , M56 = 0,

M61 = M16
T , M62 = M26

T ,

M63 = M36
T , M64 = M46

T ,

M65 = M46
T , M66 = 	u

T 	u,

N31 = Lw,�
T �l

T Hr
T Hr �l , N41 = 	d

T Hr
T Hr �l ,

N51 = −	r
T Hr �l , N61 = 0.

and M1i , M2i (i = 1, . . . , 6) and N11, N21 were defined in
Theorem 1. Hence, Eq. (12) is written as

min
�u

sup
w

(XT MX + XT Nyk−1 + yk−1
T NT X

+yk−1
T
T
 yk−1) ≤ 0 (56)

Solve the following equation

∂ J

∂

[
w

�u

] = 0,

which gives the optimal �u and the worst case w, i.e., wwc

as follows

[
wwc

�uopt

]
= −

[
M11 M12

M21 M22

]−1

×

⎛
⎜⎜⎝

[
M13 M14 M15 M16

M23 M24 M25 M26

]
⎡
⎢⎢⎣

�wp

xwd

xwr

xwu

⎤
⎥⎥⎦ +

[
N11

N21

]
yk−1

⎞
⎟⎟⎠
(57)

Defining

Hhess � ∂2 J

∂2
[

w

�u

] =
[
M11 M12

M21 M22

]
=

[
A1 A2

A2
T A3

]

and using lemma (2), one has

Hhess = ϒT Qϒ,

where

ϒ =
[

I 0
A3

−1A2
T I

]
, Q =

[
A1 − A2A3

−1A2
T 0

0 A3

]

The sufficient (saddle) condition of optimization is that
matrix Q must have (kd +l)i positive andmi negative eigen-
values. Since, A3 > 0, therefore, it provides aforementioned
positive eigenvalues. So the sufficient condition reduces to
A1 − A2A3

−1A2
T < 0. Then

M11 − M12M22
−1M12

T < 0,

M11o − MT
12 M22

−1 M12 < γ 2 I ,

γmin < γ,

where

γmin =
√

λ̄(M11o − MT
12 M22

−1 M12),

The proof is completed.
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