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Abstract
This study investigates a new chattering-free robust predefined-time sliding mode control (CFRPSMC) scheme for the
trajectory tracking control problem of a three-degree-of-freedom (3-DOF) remotely operated vehicle (ROV) in the presence
of matched uncertainties. The advanced notion of predefined-time stability is used to provide a maximum convergence time as
desired that can be set during the control design and independently of the initial conditions. Based on defining a new form of
sliding surfaces, a new control law is designed to ease the undesirable chattering phenomenonwithout damaging the robustness
properties and tracking precision. The proposed control scheme can not only solve the predefined-time tracking controller
design problem, but also provide the robustness to various uncertainties. The Lyapunov stability theory is used to establish the
stability analysis of the closed-loop system in both the reaching phase and the sliding phase. The performance of the proposed
CFRPSMC scheme is evaluated for the 3-DOF ROV through two comparative simulation cases using Simulink/MATLAB.
The comparative simulation results and analytical comparisons demonstrate the efficacy and superiority of the proposed
method compared with other relevant conventional methods.
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1 Introduction

It is now possible to use an ROV for underwater explo-
ration for a riskymission (Hosseinabadi 2018). The ROV has
attracted interest due to its important role in the underwater
exploration including military applications, oceanographic
mapping, inspection of the pipeline, pipeline maintenance,
mineral exploration, and oil and gas exploration. Lack of
accurate ROV kinematic model might lead to the extremely
ROV nonlinear dynamics, which is called parametric uncer-
tainty. Because of the change in water density, the weight of
the ROV is likely to change, namely, the modelling uncer-
tainty. Hence, ROV research is challenging because of the
modelling uncertainty and parametric uncertainty (Wang
et al. 2016a; Hosseinabadi 2018). It should be noted that the
sum of these modelling uncertainty and parametric uncer-
tainty is called uncertainties throughout the paper.

To fully utilize the potential of the ROVs in underwa-
ter tasks, trajectory tracking problem with good precision
and fast convergence has attracted the interest of many
researchers (Da Cunha et al. 1995; Zhu and Gu 2011; Wei
et al. 2015; Fernandes et al. 2013; Abadi and Hosseinabadi
2017). Two basic shortcomings of the incipient approaches
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to overcome the trajectory tracking issue are classified as
follows: Firstly, they are not robust against uncertainties of
ROVs (Da Cunha et al. 1995; Fernandes et al. 2013). Sec-
ondly, they are only able to achieve the globally asymptotic
stability with infinite settling time (Da Cunha et al. 1995;
Fernandes et al. 2013; Wei et al. 2015; Zhu and Gu 2011).
However, theVS-MRACscheme proposed inDaCunha et al.
(1995) has been reported as a robust algorithm with respect
to substantial unmodelled dynamics and even delays. The
issue concentrating on heading motion control for ROV has
been investigated, and an adaptive integral back-stepping
control schemewith nonlinear disturbance observer was sug-
gested in Wei et al. (2015). Integral terms have been added
into the feedback loop to develop the system’s robust per-
formance. The results in Wei et al. (2015) show that the
controller would tackle and approximate factors including
the uncertainty model. The system can track the reference
trajectory precisely and with a high robustness to paramet-
ric uncertainty. In Ettefagh et al. (2017), a novel Lyapunov
function has been defined to ensure asymptotic stability of
the linear time-varying system. In (Berdnikov and Lokhin
2019), the systemasymptotic stability has been ensured using
new spline Lyapunov functions instead of classical quadratic
Lyapunov functions which provide bigger stability regions.
However, the above-mentioned studies have not dealt with
the notions of finite-/fixed-/predefined-time stability which
are often necessary to consider in many practical applica-
tions.

To overcome the first deficiency, SMC method has been
used to deal with uncertainties of ROVs (Pezeshki et al.
2016; Dyda et al. 2016; Chin and Lin 2018; Khalid et al.
2019). SMC has been known as an effective control method
for nonlinear uncertain systems because of its fast response,
robustness against uncertainties, unresponsiveness to exter-
nal disturbances and its easy implementation (Mobayen et al.
2017). The basic idea of SMC is to force the system state tra-
jectories (by applying a designed control law to the system)
to slide onto the sliding surface (specific switching mani-
fold) and to define a sliding surface such that tracking errors
reach zero along with the sliding surface. SMC scheme has
also been employed for different applications to ensure the
robustness feature of the controllers (Tchinda et al. 2019;
Taheri et al. 2019; Van Nguyen et al. 2019; Zaihidee et al.
2019; Eaton et al. 2009; Shafiei and Binazadeh 2013; Yousefi
and Binazadeh 2018; Elsayed et al. 2015). On the other hand,
SMC individually merely guarantees asymptotic stability of
the system to which it is applied. To cater for this drawback
and to enable the system to have a finite-time state conver-
gence, terminal SMC (TSMC), TSMC has been designed
for various systems (Mobayen 2015; Abadi et al. 2018a, b;
Song et al. 2018; He et al. 2017; Tiwari et al. 2015; Hos-
seinabadi and Abadi 2019; Boonsatit and Pukdeboon 2016;
Homaeinezhad et al. 2020). The TSMC possesses the advan-

tage of the SMC, improves system stability and performance,
and accelerates the convergence time around the equilibrium
point (Zhou et al. 2015). These features have led to the design
of TSMC for ROVs (Wang et al. 2014, 2015, 2016b, 2018).

On the other hand, the presented finite settling time (using
finite-time control methods) is not independent of the initial
conditions that would limit its practical applications because
of likely unknown initial conditions of the system. To sur-
mount the above, Polyakov has introduced the fixed-time
stabilitymethod in 2012 (Polyakov 2011). Thismethod gives
a bounded convergence time independent of initial condi-
tions. The notion of fixed-time stability has been studied in
(Parsegov et al. 2012, 2013; 2015). A novel combination of
a nonsingular SMC scheme and fixed-time stability method
has been presented for second-order systems (Zuo 2014).
However, the chattering problem is observed in the control
signal of this study. Although the notion of fixed-time sta-
bility is superior to the finite-time stability notion, there is
no direct relationship between the convergence time-bound
and the system parameters, which is necessary for many
control problems that need to satisfy hard time constraints
(Sánchez-Torres et al. 2018b). To cope with this shortage,
the notion of predefined-time stability has been presented in
Sánchez-Torres et al. (2015, 2018a) and Jiménez-Rodríguez
et al. (2017a). Using the predefined-time stability notion in
the controller provides a class of fixed-time controller with
convergence time-bound as an explicit parameter which can
be determined as desired in advance.Worded in another way,
in the predefined-time methods, the fixed convergence time-
bound is a tunable parameter. This advanced stability notion
has been incorporatedwith the SMCmethod to control differ-
ent systems. It can be pointed out in the work of Becerra et al.
(2017) that a high-order integral system has been controlled
using a predefined-time SMC (PSMC) scheme.A robust con-
troller has been designed in Munoz-Vazquez et al. (2019)
using PSMC scheme for manipulators. In Sánchez-Torres
et al. (2018a), a new PSMC scheme has been presented for a
class of second-order systems. However, the chattering prob-
lem exists in this method due to using signum function in the
control law and no effort has been made to alleviate it.

The SMC scheme often causes the unwanted chatter-
ing phenomenon due to its discontinuous nature of the
control law in the existing studies using SMC method
(Eaton et al. 2009; Yousefi and Binazadeh 2018; Shafiei
and Binazadeh 2013; Dyda et al. 2016), TSMC method
(Feng et al. 2002; Yu and Zhihong 2002; Mobayen 2015),
fixed-time SMC (FSMC) method (Zuo 2014) and PSMC
method (Sánchez-Torres et al. 2018a). The inherent chat-
tering of conventional SMC needs ample energy for high
efficiency, and it might damage the system’s physical parts
(Castillo-García et al. 2017). Many studies in the literature
have made efforts to alleviate or eliminate this problem. In
(Badfar et al. 2020), the chattering phenomenon in the con-
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Fig. 1 Structure of trajectory tracking for the 3-DOF ROV

trol input signal of the proposed finite-time SMCmethod has
been eliminated by replacing the hyperbolic tangent func-
tion instead of the signum function. However, the stability
analysis of the closed-loop system using a hyperbolic tan-
gent function in control law has not been established in this
study. In Benosman and Lum (2009) and Yang and Yang
(2011), approximating signum function in controllers by
saturation or sigmoid functions managed to reduce this prob-
lem. However, these approaches created large steady-state
errors, due to the boundary layer around sliding surfaces.
Motivated by above discussion, in this paper, we aim to
investigate the problem of designing a new chattering-free
robust predefined-time controller on the basis of SMC the-
ory for trajectory tracking of a 3-DOF ROV in the presence
of uncertainties, which is yet to be developed based on our
knowledge.

Therefore, focusing on the major issues for ROV con-
trol including trajectory tracking problem, the presence of
uncertainties, unavailability of initial conditions (for deter-
mining the system convergence time in advance), fulfilling
hard time constraints, chattering problem and stability, a new
CFRPSMC method is proposed. This proposed method is
aimed to design a robust tracking controller against uncer-
tainties of a nonlinear 3-DOF ROV on the basis of SMC
theory with predefined-time convergence. This trajectory
tracking controller is used to control a ROV with 3 DOFs
which are the position (x, y) and the orientation (yaw angle)
of ROV in planes parallel to the sea surface. ROV is aimed to
track a desired plane (desired trajectory) with 3 DOFs (x, y
and yaw angle) by using the proposed trajectory tracking
controller. The structure of trajectory tracking control for the
3-DOF ROV is illustrated in Fig. 1. Note that ROV has an
umbilical cable for communication, controlling the vehicle
depth and providing power by a human operator.

The undesirable chattering phenomenon (which is a com-
mon problem with the conventional SMC) is eliminated by
defining new forms of sliding surfaces and control laws.
Lyapunov stability theory is utilized to establish predefined-
time stability analysis of closed-loop system based on SMC
technique. An accurate comparison is made between the
proposed CFRPSMC scheme and an RPSMC scheme with

conventional forms of sliding surfaces and control laws to
demonstrate the effectiveness of the proposed sliding sur-
faces and control laws in eliminating the chattering problem.
The effectiveness of the notion of predefined-time stabil-
ity in the proposed CFRPSMC method is demonstrated by
comparing this method with the other two methods with
no predefined time: FSMC and TSMC. It should be noted
that the ideas behind designing FSMC and TSMC schemes
(which are presented and simulated in this paper) are simi-
lar to the ones given in Zuo (2014) and Zuo and Tie (2016),
respectively. Additionally, the proposed CFRPSMC scheme
is compared with a relevant study for the 3-DOF ROV given
in Dyda et al. (2016) to verify the validity of the proposed
scheme. For a thorough comparison, three well-known per-
formance criteria are used.

Compared with the existing works, the main contributions
of this paper can be highlighted as follows:

(1) In this paper, thematched uncertainties are considered in
controlled systems, by considering bounded uncertain-
ties in CFRPSMC design. Hence, the proposed control
method can solve the predefined-time tracking con-
troller design problem in the presence of uncertainties,
in addition to having robustness to uncertainties.

(2) Based on defining a new form of sliding surfaces, a
new control law is designed (where the integral of
signum function is used) to eliminate the chattering phe-
nomenon and fulfil trajectory tracking in a predefined
time.

(3) The proposed CFRPSMC method presents a desired
maximum convergence time which is a tunable param-
eter. That is, the upper bound of convergence time can
be set during the control design and independently of
initial conditions.

(4) The proposed control method is applicable for
predefined-time stabilizing and trajectory tracking of an
extensive class of nonlinear double integrator systems.

(5) Some design parameters exist in the control laws, slid-
ing surfaces and predefined settling time all of which
are tunable. Also, a proper adjustment of these design
parameters used in the proposed control method is done
to decrease energy consumption, reduce convergence
time and improve tracking performance.

The rest of this paper is arranged as follows. The second
section presents the notation, lemmas and mathematical pre-
liminaries used throughout the paper. In the third section,
the problem statement is given which includes the nonlin-
ear mathematical model of a 3-DOF ROV and control goal
description. The fourth section is devoted to designing the
proposed controller using the CFRPSMC method. RPSMC,
FSMC and TSMC methods are given in this section. In the
fifth section, the comparative simulation results are reported.
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An analytical comparison is made among results. The con-
clusion of this article is given in the last section.

2 Mathematical Preliminaries

2.1 Notation

The following notation is used throughout the paper:

• R is the set of real numbers; R+ � {y ∈ R|y > 0} and
R≥0 � {y ∈ R|y ≥ 0}.

• For y ∈ R, yT signifies its transpose, |y| denotes absolute
function, y � √

yT y denotes Euclidean norm and exp(y)
denotes exponential function.

• ϑ̇(t) � dϑ
dt and ϑ̈(t) � d2ϑ

dt2
signify the first and the second

derivative, respectively, for the function of ϑ : R → R.
That is, the dot (·) denotes the differential with respect to
time.

• sign(.) signifies the signum function.

2.2 Fundamental Facts

Some standard definitions and lemmas are provided here that
are used throughout the paper.

Consider a system (1) as follows

ẋ � f (t, x ; a) (1)

where x ∈ R
n is the system state and f : R → R

n is a
nonlinear function. Also, a ∈ R

b with ȧ � 0 represents the
system parameters. The time t is considered on the interval
[t0,∞), where t0 ∈ R+ ∪ {0}. The system initial conditions
are x(t0) � x0.

Definition 1 (Global finite-time stability (Bhat andBernstein
2000; Jiménez-Rodríguez et al. 2017c)). If the origin of sys-
tem (1) has global asymptotic stability and any solution x
(t, x0) of system (1) converges to the equilibrium point in a
finite time for all x0, i.e., t ≥ T (x0) : x(t, x0) � 0, where
T : Rn →, is said settling time function, then the origin of
system (1) has global finite-time stability.

Definition 2 (Fixed-time stability (Polyakov 2011; Jiménez-
Rodríguez et al. 2017c)). If the origin of system (1) has finite-
time stability and the settling time function is bounded, i.e.,
∃Tmax ≥ 0 : T (x0) ≤ Tmax, for all x0, then the origin is
fixed-time stable.

Definition 3 (Predefined-time stability (Sánchez-Torres
et al. 2014; Sánchez-Torres et al. 2018b)). For the case of
fixed-time stability when the parameters a of system (1) can
be chosen such that the settling time function Tmax can be

predefined as desired, it is said the origin of system (1) has
predefined-time stability.

Definition 4 (Strongly predefined-time stable (Jiménez-
Rodríguez et al. 2017c; Sánchez-Torres et al. 2018b)). For
the system parameters a, a nonempty set M ⊂ R

n is called
globally strongly predefined-time attractive if any solution x
(t, x0) of system (1) converges toM at a finite time t � t0+T
(x0), where the settling time function is sup T (x0) � Tc ∈
R
n and Tc is said the strong predefined time.

Definition 5 (Weakly predefined-time stable (Jiménez-
Rodríguez et al. 2017c; Sánchez-Torres et al. 2018b)). For
the system parameters a, a nonempty set M ⊂ R

n is called
globally weakly predefined-time attractive for system (1),
if any solution x(t, x0) of system (1) converges to M at a
finite time t � t0 + T (x0), where the settling time function
is T (x0) ≤ Tcx0 ∈ R

n ; then, Tc is said the weak predefined
time.

Lemma 1 (Lyapunov characterization of weak predefined-
time stability (Jiménez-Rodríguez et al. 2017c; Sánchez-
Torres et al. 2018b)).With a Lyapunov function of continuous
radially unbounded V : R

n → R≥0 and real numbers
Tc > 0 and 0 < q ≤ 1 such that V (0) � 0, V (x) > 0x �� 0
and the derivative of V satisfies V̇ ≤ − 1

qTc
exp(V q)V 1−q ,

then the origin of system (1) is globally weakly predefined-
time stable and the weak predefined stabilization time is T
(x0) ≤ Tc.

Definition 6 ((Sánchez-Torres et al. 2015; Jiménez-
Rodríguez et al. 2017b)). Consider h ≥ 0. For x ∈ R

n ,
define the function (2) as follows

|x |h � x

x1−h
(2)

where x is the norm of x . Because lim
x→0

|x |h � 0, for h > 0,

then it is defined |0|h � 0. Therefore, this function for h > 0
is continuous, and it is discontinuous in x � 0 for h � 0.

Definition 7 (Predefined-time stabilizing function (Sánchez-
Torres et al. 2015; Jiménez-Rodríguez et al. 2017b)). For
x ∈ R

n , the predefined-time stabilizing function (3) is as
follow

Φq(x ; Tc) � 1

Tcq
exp

(
xq

)|x |1−q (3)

where Tc > 0 and 0 < q ≤ 1 also Φ̇q(x ; Tc) � dΦq (x ;Tc)
dt

exists for all x and Tc.

Lemma 2 (Predefined-time stable dynamical system
(Sánchez-Torres et al. 2015; Jiménez-Rodríguez et al.
2017b)). For every initial condition x0, the system (4)
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Fig. 2 Configuration of the ROV operation

is globally strongly predefined-time stable with a strong
predefined time Tc.

ẋ � −Φq(x ; Tc) (4)

where Tc > 0 and 0 < q ≤ 1. That is, x(t) � 0 for all
t ≥ t0 + Tc in spite of the value of x0.

Definition 8 (Wu and Li 2018). The signum function is

defined as sign(x) �
⎧
⎨

⎩

1; x > 0
0; x � 0
−1; x < 0

and |x | � xsign(x) is

always true.

Definition 9 (Wu and Li 2018). The sig(x) function is math-
ematically related to the sign(x) function as siga(x) �
|x |asign(x), where a ∈ R.

Lemma 3 (Yu et al. 2005) For positive constants
a1, a2, . . . , an ∈ Rand 0 < q < 2, inequality (5) is
always true as follows

(
a21 + a22 + . . . + a2n

) q
2 ≤ |a1|q + |a2|q + . . . + |an|q (5)

3 Problem Statement

In Fig. 2, a schematic of a 3-DOF (x, y, φ) ROV is shown.
The ROV is assumed to operate on the surface parallel to the
x–y plane to be controlled by the surface vessel.Accordingly,
x, y and the yaw angle φ are controllable variables of the
ROV (Corradini et al. 2010).

3.1 The ROV Nonlinear Model

Themathematicalmodel of a nonlinear 3-DOFROVhas been
presented in Corradini et al. (2010), Dyda et al. (2016) and
Fossen (2002). This model (6) is given as follows

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

p1 ẍ + VxV (p2|cos(φ)| + p3|sin(φ)|)
+p4x − p5VcxVc � Tx

p1 ÿ + VyV (p2|sin(φ)| + p3|cos(φ)|)
×p4y − p5VcyVc � Ty

p6φ̈ + p7φ̇
∣∣φ̇

∣∣ + p8V 2
c sin

(
φ−φc
2

)
+ p9 � Mz

(6)

where the vector V � [
Vx , Vy

]T �
[
(ẋ − Vcx ),

(
ẏ − Vcy

)]T and the vector Vc � [
Vcx , Vcy

]T

are the vector of velocity in directions x, y, which are
considered constants. Also, pn, n � (1, 2, . . . , 9) are coeffi-
cients that are given in Table 1 (which has been reported in
Corradini et al. (2010) based on a case study). Note that the
physical characteristics of the vehicle are tied to these coeffi-

cients. We have Vc �
√
V 2
cx + V 2

cy and V �
√
V 2
x + V 2

y . The

control inputs are
(
Tx , Ty, Mz

) � (u1, u2, u3) that should
be designed. The angle between the x-axis and the velocity
direction of the current is φc.

3.2 Control Goal

The state variables are defined as X �
[x1, x2, x3, x4, x5, x6]T � [

x, ẋ, y, ẏ, φ, φ̇
]T
. From a

practical point of view, the system should be involved with
uncertainties. As a result, the state space nonlinear model of
the ROV (7) is obtained as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 � x2

ẋ2 � −p−1
1

⎛

⎝VxV

(
p2|cos(x5)|
+p3|sin(x5)|

)

+p4x1 − p5VcxVc

⎞

⎠ + p−1
1 u1 + d1

ẋ3 � x4

ẋ4 � −p−1
1

⎛

⎝VyV

(
p2|sin(x5)|
+p3|cos(x5)|

)

+p4x3 − p5VcyVc

⎞

⎠ + p−1
1 u2 + d2

ẋ5 � x6

ẋ6 � −p−1
6

⎛

⎜
⎝

p7x6|x6|
+p8V 2

c sin
(
x5−φc

2

)

+p9

⎞

⎟
⎠ + p−1

6 u3 + d3

(7)

where d j , j � (1, 2, 3) are the bounded uncertainties. As
the goal of this study is to control the ROV for trajectory
tracking, the error model is defined as ei � xi − xdi , i �
(1, 2, . . . , 6), where xdi are the desired reference tracking
trajectories of the system.
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Table 1 System parameters with
their uncertainties p1 12,670 kg±10% p2 2667 kg m−1±10% p3 4934 kg m−1±10%

p4 417 N m−1 ±5% p5 46,912 kg m−1±10% p6 18,678 kg m2 ±10%

p7 9200 kg m2 ±10% p8 −308.4 kg±5% p9 1492 N m±5%

Assumption 1 (Feng et al. 2014). The uncertainties d j , j �
(1, 2, 3) and its time derivative ḋ j , j � (1, 2, 3) are bounded,
i.e., the upper bound of uncertainties and its time derivative
are given by (8) as follows
{ ∣∣d j

∣∣ ≤ l j∣∣ḋ j
∣∣ ≤ h j

(8)

where h j and l j are given known constants.

Assumption 2 (Liu et al. 2016). The desired trajectory xdi
and its two-time derivatives are given.

Assumption 3 For x � [x1, x2, . . . , xn]T , all states of sys-
tem (6) are measurable.

The tracking error dynamics (9) is obtained as follows

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ė1 � e2
ė2 � f1 − ẋd2 + g1u1 + d1
ė3 � e4
ė4 � f2 − ẋd4 + g2u2 + d2
ė5 � e6
ė6 � f3 − ẋd6 + g3u3 + d3

(9)

where we have (10) as follows
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1 � −p−1
1

⎛

⎝ VxV

(
p2|cos(x5)|+
p3|sin(x5)|

)
+ p4x1

−p5Vcx Vc

⎞

⎠

f2 � −p−1
1

⎛

⎝ VyV

(
p2|sin(x5)|
+p3|cos(x5)|

)
+ p4x3

−p5VcyVc

⎞

⎠,

f3 � −p−1
6

(
p7x6|x6|
+p8V 2

c sin
(
x5−φc

2

)
+ p9

)

and

{
g1,2 � p−1

1
g3 � p−1

6
.

(10)

The desired tracking trajectories (11) are considered as
follows
{
xd2 j−1 � ζ j (t, x)
xd2 j � ẋd2 j−1 � ζ̇ j (t, x)

j � (1, 2, 3). (11)

Nonlinear functions ζ j (t, x) can be any trajectories for
tracking, where ζ̇ j (t, x) are available.

4 Stability Analysis Using Predefined-Time
SMC Scheme

The predefined-time stability analysis based on SMC tech-
nique in both the reaching phase and the sliding phase of

Chattering-free Predefined-time Controller

Predefined-
time Sliding 

Surfaces

Chattering-
free Control 

Laws

3-DOF ROV 
with 

Uncertainties

Desired 
Trajectories States

Fig. 3 Block diagram of the proposed method

the closed-loop system is investigated and presented in this
section by using Lyapunov stability theory. To establish
predefined-time stability analysis utilizing SMC scheme, the
following two phases are required:

(1) Reaching phase: ensuring the designed control law can
drive the tracking errors onto the defined sliding surface
in a predefined time, i.e., the reachability of the tracking
errors onto the sliding surface should be achieved in a
predefined time.

(2) Sliding phase: ensuring that the slidingmodemotion can
fulfil the control objective (convergence tracking errors
to zero) in a predefined time and maintain it afterwards,
i.e., the predefined-time stability of sliding motion (s �
0) should be guaranteed.

In the following, a new form of sliding surfaces is pro-
posed. The control inputs (u1, u2, u3) are designed to control
the 3-DOF ROV with a predefined-time trajectory track-
ing goal and to eliminate the chattering phenomenon. A
schematic block diagram of the proposed chattering-free
predefined-time sliding mode tracking controller for the 3-
DOF ROV with uncertainties is illustrated in Fig. 3.

The tracking error dynamics (12) is considered as follows

{
ė2 j−1 � e2 j
ė2 j � f j + g ju j − ẋd2 j + d j ;

j � (1, 2, 3). (12)

The sliding surfaces (13) are defined as follows

{
s2 j−1 � ė2 j−1 + Φq2 j−1

(
e2 j−1; Tc2 j−1

)

s2 j � ṡ2 j−1 + Φq j

(
s2 j−1; Tc2 j

) (13)
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where the definition of Φq j

(
e2 j−1; Tc2 j−1

)
and Φq j(

s2 j−1; Tc2 j
)
are given by (3). The control laws (14) are

defined as follows

u j � g−1
j

⎛

⎜⎜⎜⎜
⎝

− f j + ẋd2 j − Φ̇q2 j−1

(
e2 j−1; Tc2 j−1

)

−Φq j

(
s2 j−1; Tc2 j

)

− ∫ (
h j + l j

)
sign

(
s2 j

)
dt

− ∫ 1(√
2
)β j +1

p j Tc f j

exp(V pj )sigβ j
(
s2 j

)
dt

⎞

⎟⎟⎟⎟
⎠

(14)

where we have 0
〈
p j ≤ 1, Tc2 j , Tc2 j−1 , Tc f j

〉
0 and 0 < β j ≤

1.

Theorem 1 Let system (12) satisfy Assumptions 1, 2 and 3.
The tracking errors reach zero in a predefined time using
control laws (14) and sliding surfaces (13), i.e., the ROV
states converge to their desired trajectories.

Proof To investigate the predefined-time stability analysis
of the above design, the two phases, reaching phase and the
sliding phase, require to be obtained as follows:

Phase 1 (reaching phase) The candidate Lyapunov func-
tion is defined as V � ∑3

j�1
1
2 s

2
2 j , which satisfies the

conditions given in Lemma 1. Taking the time derivative of
V yields V̇ � ∑3

j�1 s2 j ṡ2 j . Then, taking the time derivative

of (13) and substituting in V̇ , we obtain (15) as follows

V̇ �
3∑

j�1

⎛

⎜
⎝− 1

(√
2
)β j+1

p j Tc f j

exp
(
V pj

)∣∣s2 j
∣∣β j+1(s2 j

)

−(
h j + l j

)∣∣s2 j
∣∣ + s2 j ḋ j

)

V̇ ≤
3∑

j�1

⎛

⎝
− 1(√

2
)β j +1

p j Tc f j

exp(V pj )
∣∣s2 j

∣∣β j+1(s2 j
)

−(
h j + l j

)∣∣s2 j
∣∣ +

∣∣s2 j
∣∣∣∣ḋ j

∣∣

⎞

⎠ (15)

where we have
∣∣s2 j

∣∣∣∣ḋ j
∣∣ ≤ h j

∣∣s2 j
∣∣ and −l j

∣∣s2 j
∣∣ ≤ 0. Then,

(15) can be rewritten as (16).

V̇ ≤
3∑

j�1

− 1
(√

2
)β j+1

p j Tc f j

exp
(
V pj

)∣∣s2 j
∣∣β j+1(s2 j

)
(16)

According to Lemma 3, we have
√
2V ≤ ∑3

j�1

∣∣s2 j
∣∣β j+1.

Subsequently, (16) can be rewritten as (17).

(17)

Considering β j � 1 − 2p j , we obtain (18) as follows.

V̇ ≤ − 1

p j Tp j

exp
(
V pj

)
V 1−p j (18)

Based on Lemma 1, we have s2 j → 0 in a predefined time
presented by (19).

T1 ≤
3∑

j�1

Tp j (19)

Therefore, the reaching phase is ensured in a predefined
time T1.

Phase 2 (sliding phase: Using (13) and s2 j � 0, we have
(20) as follows.

0 � ṡ2 j−1 + Φq j

(
s2 j−1; Tc2 j

) → ṡ2 j−1 � −Φq j

(
s2 j−1; Tc2 j

)

(20)

According to Lemma 2, we obtain s2 j−1 � 0 in a prede-
fined time. Then, we obtain (21) as follows.

(21)

0 � ė2 j−1 + Φq2 j−1

(
e2 j−1; Tc2 j−1

)

→ ė2 j−1 � −Φq2 j−1

(
e2 j−1; Tc2 j−1

)

Similarly, based on Lemma 2, we obtain e2 j−1 � 0. Then,
using (12) we obtain ė2 j−1 � e2 j � 0. Hence, the sliding
phase is ensured in a predefined time presented by (22).

T2 ≤
3∑

j�1

(t0 j + Tc2 j−1 + Tc2 j ) (22)

This concludes the proof. �

Remark 1 Considering phases 1 and 2 in Theorem 1, the
predefined-time tracking for the ROV (7) is ensured in a pre-
defined time as T � T1 + T2, where T1 and T2 are given by
(19) and (22), respectively.

Remark 2 The parameters β j , p j , qi , Tc f j , Tc2 j and Tc2 j−1 in
the sliding surfaces (13), the control laws (14) and the pre-
defined stabilization time T are tunable design parameters.
Thus, the control efforts and the system convergence time
can be adjusted by selecting them properly.

The configuration of the presented design algorithm is
displayed in Fig. 4.

Proposition 1 Let system (12) satisfy Assumptions 1, 2and
3. The tracking errors reach zero in a predefined time, using
control laws (24) and sliding surfaces (23). Note that con-
ventional forms of sliding surfaces and control laws are
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Fig. 4 Flowchart of the proposed design algorithm

considered in this RPSMC method, which is likely to create
chattering problem (Remark 3).

s j � ė2 j−1 + Φq j

(
e2 j−1; Tc j

)
(23)

where the definition of Φq j

(
e2 j−1; Tc j

)
is given by (3).

u j � g−1
j

⎛

⎜⎜⎜⎜
⎝

− f j + ẋd2 j
−Φ̇q j

(
e2 j−1; Tc j

)

−l j sign
(
s j

)

− 1(√
2
)β j +1

p j Tc f j

exp(V pj )sigβ j
(
s j

)

⎞

⎟⎟⎟⎟
⎠

(24)

where we have 0
〈
p j ≤ 1, Tc j , Tc f j

〉
0 and 0 < β j ≤ 1. Also,

we have
∣∣d j

∣∣ ≤ l j (given by (8)).

The proof of this proposition is similar to that of Theo-
rem 1.

Proposition 2 Let system (12) satisfy Assumptions 1, 2and 3.
The tracking errors reach zero in a fixed time, using control
laws (26) and sliding surfaces (25), and by utilizing FSMC
technique. (The idea behind this scheme is similar to the one
given in (Zuo 2014).)

{
s2 j−1 � ė2 j−1 + A2 j−1

(
e2 j−1

)
+ B2 j−1

(
e2 j−1

)

s2 j � ṡ2 j−1 + A2 j
(
s2 j−1

)
+ B2 j

(
s2 j−1

) (25)

where we have Ai (ξ) � a2i−1ξ
p2i−1
q2i−1 , Bi (ξ) � a2iξ

p2i
q2i , a j >

0, 0 < q2i−1 < p2i−1 < 2q2i−1 and 0 < p2i < q2i . Also,

q2i−1, p2i−1, q2i and p2i must be odd numbers to avoid
singularity problem.

u j � g−1
j (t, x)

⎛

⎜⎜⎜⎜⎜⎜
⎝

− f j (t, x) − Ȧ2 j−1
(
e2 j−1

)

−Ḃ2 j−1
(
e2 j−1

) − A2 j
(
s2 j−1

)

−B2 j
(
s2 j−1

)

− ∫
r2 j−1sigγ2 j−1

(
s2 j

)
dt

− ∫
r2 j sigγ2 j

(
s2 j

)
dt

− ∫ (
h j + l j

)
sign

(
s2 j

)
dt

⎞

⎟⎟⎟⎟⎟⎟
⎠

(26)

where we have r1,2 > 0 and 1 < γ2, 0 < γ1 < 1.Its proof is
similar to the proof of Theorem 1.

Proposition 3 Let system (12) satisfy Assumptions 1, 2and 3.
The tracking errors reach zero in a finite time, using control
laws (28) and sliding surfaces (27), and by utilizing TSMC
technique. (The idea behind this scheme is similar to the one
given in (Zuo and Tie 2016).)
{
s2 j−1 � ė2 j−1 + A2 j−1

(
e2 j−1

)

s2 j � ṡ2 j−1 + A2 j
(
s2 j−1

) (27)

where we have Ai (ξ) � a2i−1ξ
p2i−1
q2i−1 , ai > 0, and 0 <

p2i−1 < q2i−1. Also, p2i−1 and q2i−1 must be odd numbers
to avoid singularity problem.

u j � g−1
j (t, x)

⎛

⎜⎜
⎝

− f j (t, x) − Ȧ2 j−1
(
e2 j−1

)

−A2 j
(
s2 j−1

)

− ∫
r2 j−1sigγ2 j−1

(
s2 j

)
dt

− ∫ (
h j + l j

)
sign

(
s2 j

)
dt

⎞

⎟⎟
⎠ (28)

where we have r1 > 0 and 0 < γ2 j−1 < 1. The proof is
analogous to the proof of Theorem 1.

Remark 3 It is worthwhile to mention that the chattering
problem is likely to exist in the control signals of RPSMC
and the control scheme given in (Dyda et al. 2016) because
of using signum function in their control laws (given by (24)
and (35), respectively).However, this unwanted phenomenon
is expected to ease in the control signals of the CFRPSMC,
FSMC, and TSMC by using the integral of signum function
in their control laws (given by (14), (26) and (28), respec-
tively).

Remark 4 The nonlinear dynamical model of the considered
3-DOF ROV (6) is in a form of double integrator systems. A
wide group of practical systems can be described with this
form of the dynamical model, which includes n independent
double integrator subsystems, such as the ship course system
(Sun and Chen 2016), two-link robotic manipulators (Liu
and Zhang 2014), MEMS system (Ranjbar et al. 2019) and
quadrotor (Modirrousta and Khodabandeh 2015). Hence, by
adjusting the proposed control scheme design, the predefined
control scheme can be applied to control a huge group of
practical systems.
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5 Simulation and Comparison

In this section, the efficacy of the proposed CFRPSMC
scheme is verified by performing simulation for the 3-
DOF ROV (6) and providing an analytical comparison with
RPSMC, FSMC and TSMC (given in Proposition 1, 2 and
3, respectively) in the first subsection. Then, in the second
subsection an analytical comparison is presented between
CFRPSMC scheme and a relevant study for the 3-DOF ROV
(6) given in (Dyda et al. 2016). The numerical simulation
is performed by using Simulink/MATLAB with numerical
method ode4 and step size 0.001.

To provide more detailed comparison and assess the
performance of the proposed method, the subsequent per-
formance criteria are utilized (given in (Liu and Zhang 2014;
Yi and Zhai 2019; Abadi et al. 2018a)).

(i) Integral of the absolute value of the error (IAE) given
by (29)

IAEei �
t f∫
0
|ei |dt (29)

(ii) Integral of the time multiplied by the absolute value of
the error (ITAE) given by (30)

ITAEei �
t f∫
0
t |ei |dt (30)

(iii) Integral of the square value (ISV) of the control input
given by (31)

ISVu �
t f∫
0
u2dt (31)

where t f is the total running time. The ITAE and IAE
give the numerical measures of tracking performance
for a whole error curve. The IAE provides an interme-
diate result, while time is as a term in ITAE, heavily
emphasizing the errors that occur late in time. The ISV
gives the energy consumption.

5.1 Case One of Comparison

In this subsection, the numerical simulation is performed for
the 3-DOF ROV (6) using CFRPSMC, RPSMC, FSMC and
TSMC approaches and their simulation results are reported.
Then, an analytical comparison is provided among results by
utilizing the three performance criteria (29), (30) and (31).

The system initial conditions are chosen as
(x0, y0, ϕ0, ẋ0, ẏ0, ϕ̇0) � (0.5, 0.2, 0.5, 0, 0, 0). The
desired tracking trajectories are considered as (xd , yd , ϕd) �(
x1d , x3d , x5d

) � (cos(2t), sin(t), t). The model of uncer-
tainties is supposed as d j � 0.1 sin(0.1t). The upper bounds

Table 2 Selected design parameters for the CFRPSMC and RPSMC
methods

β j pj Tc f j qi Tc2 j , Tc2 j−1

CFRPSMC &
RPSMC

0.2 0.4 0.5 0.9 0.5

Table 3 Selected design parameters for the FSMC and TSMCmethods

a2 j−1 a2 j γ2 j−1 γ2 j q2 j−1 p2 j−1 q2 j p2 j r j

FSMC 1.4 1.4 0.1 1.1 103 105 103 101 1

TSMC 2.8 – 0.1 – 101 103 – – 10

of uncertainties are considered as l j � 0.1, and the upper
bounds of the time derivative of uncertainties are considered
as h j � 0.01. The selected design parameters for different
methods are given in Tables 2 and 3. The design parameters
for both CFRPSMC and RPSMC methods are considered
identical. It should be noted that all design parameters (given
in Tables 2 and 3) are arbitrary constants, which can be
tuned by the designer.

Remark 5 It is worth pointing out that the notion of
predefined-time stability provides an essential feature for the
controller that the upper boundof convergence time can be set
by the user during the control design and prior to performing
numerical simulation that is independent of initial conditions.
Worded in another way, by using a predefined-time notion in
the controller, the states are driven to the desired trajectories
in the desired convergence time-bound which can be set as
design parameters. The desired upper bound of convergence
time is calculated for the proposed CFRPSMC scheme prior
to performing numerical simulation as follows.

Using (19), (22) and Remark 1, we obtain (32) as follows.

T � T1 + T2 ≤ 3
(
Tp j + Tc2 j + Tc2 j−1 + t0 j

)
(32)

Using Tp j �
(√

2
)β j+1

Tc f j (given by (17)) and

Tc2 j , Tc2 j−1 � 0.5 (Table 2), we obtain (33) as follows.

T ≤ 3(0.75 + 0.5 + 0.5 + 0) ≤ 5.25 (33)

Therefore, the desired upper bound of convergence time
is predefined to be 5.25(s).

Remark 6 It is worthwhile mentioning that the convergence
times of FSMC and TSMC schemes are set (by adjusting
their design parameters during performing simulation) to be
approximately equal to the convergence times of CFRPSMC
and RPSMC schemes (which are set prior to performing sim-
ulation) for comparing them using the performance criteria
given by (29), (30) and (31).
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Fig. 5 Time responses of x1(t) and x1d of the CFRPSMC, FSMC and
TSMC methods
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Fig. 6 Time responses of x2(t) and x2d (t) of the CFRPSMC, FSMC and
TSMC methods

The simulation results of the CFRPSMC, FSMC and
TSMC schemes are reported in Figs. 5, 6, 7, 8, 9, 10, 11 and
12. Figure 13 shows the comparative simulation results of
the control signal of the CFRPSMC and RPSMC schemes.

The tracking performances of the system states with
respect to the desired references are demonstrated in Figs. 5,
6, 7, 8, 9 and 10. It can be seen that the desired references
can be reached with suitable tracking performance and high
tracking precision after t ≈ 2(s), t ≈ 2.5(s), t ≈ 1(s),
t ≈ 1.8(s), t ≈ 1.5(s) and t ≈ 2.75(s) in Figs. 5, 6, 7,
8, 9 and 10, respectively. It should be noticed that the con-
vergence time in Figs. 5, 6, 7, 8, 9 and 10 of CFRPSMC
scheme iswithin T ≤ 5.25(s), which is determined by (33) in
advance as a desired upper bound of predefined convergence
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0

0.5

1

Time (s)

x 3(t)

x3d(t)

CFRPSMC
FSMC
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Fig. 7 Time responses of x3(t) and x3d (t) of the CFRPSMC, FSMC and
TSMC methods
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x4d(t)
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FSMC
TSMC

t~1.8 < T=5.25

Fig. 8 Time responses of x4(t) and x4d (t) of the CFRPSMC, FSMC and
TSMC methods

time (Remarks 5 and 6). It demonstrates the effectiveness of
using a predefined-time notion in the proposed controller.

The tracking errors of e1(t), e2(t), e3(t), e4(t), e5(t) and
e6(t) are shown in Fig. 11. Figure 11 shows that the tracking
errors reach zero precisely and remain zero afterwards. Fig-
ure 12 shows the time responses of the control signals of the
CFRPSMC, FSMC and TSMC methods. Figure 12 shows
that the chattering problem does not exist in the control sig-
nals of the proposed CFRPSMC scheme and the other two
schemes: FSMC and TSMC (Remark 3).

The control signals of CFRPSMC and RPSMC are illus-
trated in Fig. 13. It can be seen that the designed controller
of CFRPSMC is continuous without the undesirable chatter-
ing phenomenon (Figs. 12 and 13), while the chattering is
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Fig. 9 Time responses of x5(t) and x5d (t) of the CFRPSMC, FSMC and
TSMC methods
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Fig. 10 Time responses of x6(t) and x6d (t) of the CFRPSMC, FSMC
and TSMC methods

observed in the controller of RPSMC (Fig. 13 and Remark
3).

Tables 4, 5 and 6 provide the numerical values of the cri-
teria ISV, IAE and ITAE, respectively, of the CFRPSMC,
PSMC, FSMC and TSMC schemes. The comparisons of
these performance criteria of the CFRPSMC, PSMC, FSMC
and TSMC schemes are shown in Figs. 14, 15 and 16. It is
apparent that the proposed CFRPSMC scheme gives lower
numerical values (inmost cases) for ISV, IAE and ITAE com-
paredwith the other three schemeswhich areRPSMC,FSMC
and TSMC. In consequence, the proposed RPSMC scheme
outperforms the other three schemes in terms of these three
performance criteria given by (29), (30) and (31).

To sum up, the main advantage of CFRPSMC scheme
over FSMC and TSMC schemes is that the upper bound
of convergence time of CFRPSMC is predefined as desired
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e 6(t)
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Fig. 11 Time responses of e1(t), e2(t), e3(t), e4(t), e5(t) and e6(t) of
the CFRPSMC, FSMC and TSMC methods
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Fig. 12 Time responses of u1(t), u2(t) and u3(t) of the CFRPSMC,
FSMC and TSMC methods

prior to performing simulation, while the convergence time
of FSMC and TSMC is adjusted to be equal to the con-
vergence time of CFRPSMC during performing simulation
(Remarks 5 and 6), which takes more consumption of energy
for FSMC and TSMC than CFRPSMC (Table 4 and Fig. 14).
CFRPSMCprovides a better tracking performance compared
with the other three methods based on the performance IAE
and ITAE (Tables 5, 6 and Figs. 15, 16). The main advantage
of CFRPSMC over RPSMC is the elimination of chattering
problem.
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Fig. 13 Time responses of u1(t), u2(t) and u3(t) of the proposed
CFRPSMC and the conventional RPSMC

5.2 Case Two of Comparison

In this subsection, the comparative simulation results are pro-
vided between the proposed CFRPSMC and a relevant study
for the 3-DOF ROV (6) given in (Dyda et al. 2016). Then, an
analytical comparison is provided among results. To validate
the superiority of the proposed predefined controller in this
study, it was compared against the controller given in (Dyda
et al. 2016).

The sliding surfaces (34) and control laws (35) of the com-
parative example are considered as follows (based on (Dyda
et al. 2016))

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1x �
(
x1d − x1 + c1x

(
x2d − x2

)∣∣x2d − x2
∣∣

+k1x
(
x2d − x2

)
)

s2x �
(
x1d − x1 + c2x

(
x2d − x2

)∣∣x2d − x2
∣∣

+k2x
(
x2d − x2

)
)

s1y �
(
x3d − x3 + c1y

(
x4d − x4

)∣∣x4d − x4
∣∣

+k1y
(
x4d − x4

)
)

s2y �
(
x3d − x3 + c2y

(
x4d − x4

)∣∣x4d − x4
∣∣

+k2y
(
x4d − x4

)
)

s1φ �
(
x5d − x5 + c1φ

(
x6d − x6

)∣∣x6d − x6
∣∣

+k1φ

(
x6d − x6

)
)

s2φ �
(
x5d − x5 + c2φ

(
x6d − x6

)∣∣x6d − x6
∣∣

+k2φ

(
x6d − x6

)
)

(34)

and

Table 5 Criterion IAE

CFRPSMC RPSMC FSMC TSMC

IAEe1 (m) 1.1138 1.1557 1.5868 1.5613

IAEe2 (m) 2.2572 2.2485 2.1451 2.1520

IAEe3 (m) 0.1823 0.2465 0.2058 0.1988

IAEe4 (m) 1.0053 0.9479 1.0877 1.0779

IAEe5 (rad) 0.9856 0.9927 1.0401 1.0218

IAEe6 (rad) 2.2859 2.3142 2.2725 2.2773

Table 6 Criterion ITAE

CFRPSMC RPSMC FSMC TSMC

ITAEe1 (m s) 0.1002 0.1022 0.1876 0.1787

ITAEe2 (m s) 0.2429 0.2518 0.3551 0.3481

ITAEe3 (m s) 0.0091 0.0145 0.0198 0.0172

ITAEe4 (m s) 0.0452 0.0524 0.0619 0.0588

ITAEe5 (rad s) 0.0634 0.0851 0.0977 0.0923

ITAEe6 (rad s) 0.1859 0.2141 0.2276 0.2229

⎧
⎨

⎩

u1 � (p1)
(− f1 + u0x

(
sign

(
s1x

)
+ sign

(
s2x

)))

u2 � (p1)
(− f2 + u0y

(
sign

(
s1y

)
+ sign

(
s2y

)))

u3 � (p6)
(− f3 + u0φ

(
sign

(
s1φ

)
+ sign

(
s2φ

))) . (35)

The system initial conditions and the desired tracking tra-
jectories are considered as (36) given in (Dyda et al. 2016).

(36)

(x0, y0, ϕ0, ẋ0, ẏ0, ϕ̇0) � (0, 0, 0, 0, 0, 0) , (xd , yd , ϕd )

� (
x1d , x3d , x5d

) �
(
2, 4,

π

6

)

Themodel of uncertainties is supposed as d j � 0.1 sin(t).
The upper bounds of uncertainties are considered as l j � 0.1,
and the upper bounds of the time derivative of uncertainties
are considered as h j � 0.1. The selected design parameters
for both methods are given in Table 7. It should be noted
that all design parameters (given in Table 7) are arbitrary
constants, which can be tuned by the designer.

Remark 7 As mentioned in Remark 5, the upper bound of
convergence time of the proposed predefined-time method,
CFRPSMC, can be predefined as desired prior to perform-
ing numerical simulation regardless of initial conditions. The

Table 4 Criterion ISV
CFRPSMC RPSMC FSMC TSMC

ISVu1

(
v2

)
7 × 105 7.0014 × 105 7.0125 × 105 7.0200 × 105

ISVu2

(
v2

)
1.0063 × 106 1.0250 × 106 1.0075 × 106 1.0084 × 106

ISVu3

(
v2

)
2.8322 × 107 2.8329 × 107 2.8331 × 107 2.8333 × 107
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desired upper bound of convergence time is calculated for the
CFRPSMCschemeprior to performing numerical simulation
as follows.

Using (19), (22) and Remark 1, we obtain (37) as follows.

T � T1 + T2 ≤ 3
(
Tp j + Tc2 j + Tc2 j−1 + t0 j

)
(37)

Using Tp j �
(√

2
)β j+1

Tc f j (given by (17)) and

Tc2 j , Tc2 j−1 � 10 (Table 7), we obtain (38) as follows.

T ≤ 3(4.5 + 10 + 10 + 0) ≤ 73.5 (38)

Therefore, the desired upper bound of convergence time
is predefined to be 73.5(s).

Table 7 Selected design parameters

CFRPSMC Ref. (Dyda et al. 2016)

β j 0.2 cix 9

p j 0.1 ciy 9

Tc f j 3 ciφ 9

qi 0.9 kix 10

Tc2 j−1 10 kiy 10

Tc2 j 10 kiφ 10

– – u0x 15

– – u0y 15

– – u0φ 15
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Fig. 17 Time responses of x1(t) and x1d of both methods

0 10 20 30 40 50 60 70 80
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Time (s)

x 2(t)

x2d
CFRPSMC
Ref. (Dyda et al. 2016)

t~62
t~58 < T=73.5

Fig. 18 Time responses of x2(t) and x2d of both methods

123



1190 Journal of Control, Automation and Electrical Systems (2020) 31:1177–1195

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time (s)

x 3(t)

x3d
CFRPSMC
Ref. (Dyda et al. 2016)

t~44 < T=73.5

t~45 

Fig. 19 Time responses of x3(t) and x3d of both methods

0 10 20 30 40 50 60 70 80
-1

0

1

2

3

4

5

6

7

8

9

Time (s)

x 4(t)

x4d
CFRPSMC
Ref. (Dyda et al. 2016)

t~25 < T=73.5

t~30

Fig. 20 Time responses of x4(t) and x4d of both methods

The comparative simulation results of the proposed con-
troller and the controller given in (Dyda et al. 2016) are
reported in Figs. 17, 18, 19, 20, 21, 22, 23, 24, 25 and 26.

The state tracking performances
of x1(t), x2(t), x3(t), x4(t), x5(t), x6(t)
with respect to the desired references
x1d (t), x2d (t), x3d (t), x4d (t), x5d (t), x6d (t) are shown in
Figs. 17, 18, 19, 20, 21 and 22, respectively. Figures 17, 18,
19, 20, 21 and 22 show that it takes the proposed controller
about t ≈ 55(s), t ≈ 58(s), t ≈ 44(s), t ≈ 25(s), t ≈ 50
(s) and t ≈ 50(s), respectively, to drive the states into the
desired states. It takes the controller given in (Dyda et al.
2016) about t ≈ 70(s), t ≈ 62(s), t ≈ 45(s), t ≈ 30(s),
t ≈ 55(s) and t ≈ 52(s) in Figs. 17, 18, 19, 20, 21 and 22,
respectively, to drive the states into the desired states. Hence,
it is obvious that the proposed CFRPSMC provides a faster
response than the other method. Figures 17, 18, 19, 20, 21
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Fig. 21 Time responses of x5(t) and x5d of both methods
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Fig. 22 Time responses of x6(t) and x6d of both methods

and 22 show that the proposed CFRPSMC scheme exhibits
a better tracking performance than the control scheme given
in (Dyda et al. 2016) in terms of convergence rate, tracking
precision, smooth tracking, and reducing overshoot and
lower shoot. In addition, the efficacy and correctness of
the proposed predefined-time method is proved because
the convergence time in Figs. 17, 18, 19, 20, 21 and 22 of
the CFRPSMC scheme is within T ≤ 73.5(s), which is
predefined by (38) as a desired maximum convergence time
(Remark 7).

Figure 23 demonstrates the tracking state errors of the
system. As shown in Fig. 23, the tracking errors of the sys-
tem states e1(t), e2(t), e3(t), e4(t), e5(t) and e6(t) converge
to zero accurately by using both methods and remain zero
afterwards.

Figures 24, 25 and 26 show time responses of the con-
trol signals using both methods. Figures 24, 25 and 26 show
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Table 8 Criterion ISV

CFRPSMC Ref. (Dyda et al. 2016)

ISVu1

(
v2

)
2.7342 × 107 4.3927 × 107

ISVu2

(
v2

)
1.7670 × 108 2.2294 × 108

ISVu3

(
v2

)
1.2769 × 108 1.7808 × 108

Table 9 Criterion IAE

CFRPSMC Ref. (Dyda et al. 2016)

IAEe1 (m) 21.3843 22.7043

IAEe2 (m) 2.001 2.2572

IAEe3 (m) 24.5811 44.6251

IAEe4 (m) 3.9986 4.0738

IAEe5 (rad) 5.4919 6.5047

IAEe6 (rad) 0.5234 0.7494

that the control signal of CFRPSMC scheme is continuous
without the chattering problem (Remark 3), while undesir-
able chattering phenomenon is observed (in Figs. 24, 25 and
26) in the control signal of the method given in (Dyda et al.
2016). It is obvious that the amplitude of the control signal of
the CFRPSMC scheme is lower than the other one (Figs. 24,
25 and 26).

Tables 8, 9 and 10 represent the numerical values of the
criteria ISV, IAE and ITAE, respectively, of the CFRPSMC
scheme and the control method given in (Dyda et al. 2016).
These performance criteria are compared in Figs. 27, 28 and
29. It can be observed that the proposed CFRPSMC scheme
gives lower numerical values for ISV, IAE and ITAE, com-
pared to the method given in (Dyda et al. 2016). As a result,
the proposed method is better than the other method in terms
of these three performance criteria given by (29), (30) and
(31).
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Table 10 Criterion ITAE

CFRPSMC Ref. (Dyda et al. 2016)

ITAEe1 (m s) 232.8271 233.5671

ITAEe2 (m s) 22.7131 30.8391

ITAEe3 (m s) 246.7145 445.4563

ITAEe4 (m s) 24.5899 45.2400

ITAEe5 (rad s) 60.7014 66.4101

ITAEe6 (rad s) 6.4927 11.5452
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Compared with the results of the control method given
in (Dyda et al. 2016), it is concluded that the proposed
CFRPSMCmethod has not only faster convergence property

but also less energy consumption, better tracking perfor-
mance with higher tracking precision, less chattering and
predefined convergence time.

6 Conclusion

In this article, the problem of chattering-free robust
predefined-time design on the basis of SMC theory has
been studied for trajectory tracking of the nonlinear 3-DOF
ROV in the presence of matched uncertainties. The proposed
CFRPSMC scheme has been designed by incorporating an
advanced notion of predefined-time stability, a chattering-
free control law, a new form of predefined-time sliding
surfaces and a robust sliding mode tracking controller. The
advantage of using a predefined-time stability notion in this
study is that it provides a desiredmaximumconvergence time
regardless of the initial conditions which can be adjusted by
theuser prior to performingnumerical simulation.Newforms
of sliding surfaces and control laws have been defined such
that undesirable chattering phenomenon does not exist in the
control signal and both reaching phase and sliding phase have
predefined-time convergenceproperty.Corresponding stabil-
ity analysis of the closed-loop system has been established
utilizing Lyapunov stability theory. The analysis of simula-
tion results shows that the desired reference can be attained
with superior performance under the designed CFRPSMC
approach over the conventional PSMC, FSMC and TSMC
control schemes. Also, comparing the proposed scheme with
an existing scheme for the 3-DOFROV in the literature shows
the efficacy and superiority of the proposed scheme in this
study. In the future, we intend to study state and disturbance
observers-based chattering-free fixed-/predefined-time SMC
design problem for ROVs with unknown disturbances along
with optimizing design parameters.
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