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Abstract

Given the possibilities provided by smart grids in terms of communication infrastructure and information acquisition, there
are new options on how to use the signals coming from meters to locate short circuits that occur in the system. This paper
presents a framework for fault location in radial distribution systems based on machine learning algorithms and a multistage
approach. A methodology in order to segment the system for proper identification of the outage region is presented. Studies
are carried out involving the variation of the fault impedance, the fault incidence angle and the number and position of the
meters. The IEEE 34-bus bar distribution feeder was considered for the tests. The results so far are promising, attesting and

validating the presented methodology.

Keywords Machine learning - Meters positioning - Multistage approach - Fault location - Smart grids

1 Introduction

The current operation and management status of the electric
power systems, with little or no automatism, represents an
obstacle hindering a quick restoration of the power supply
when facing certain adverse situations, such as interruptions
caused by short circuits. In this sense, the development and
application of concepts that permeate smart grids (SG) can be
addressed as part of the solution (Goel and Agarwal 2015).

In the outlined context, SG creates an environment that
is favorable to the development of several tools to improve
the operation and management of the PS (power system) as a
whole. The algorithms are one of these tools that are focused
on the precise (physical) fault location.

It is worth emphasizing that the fault location algorithm
is a supplementary step to the protection system (Saha et al.
2009). Therefore, fault locators must provide a quick and
accurate fault location.
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It is also worth noting that, among the main problems and
challenges in fault location, especially for the distribution
systems, the focus of this research is the existence of non-
homogeneous lines; the presence of lateral branches (which
may incur in multiple locations of faults), transformers with
distinct relations, and the presence of single-phase and three-
phase loads; limitations in measurements; dynamic topology;
and the effect of the fault resistance, which must also be
considered as shown in Bahmanyar et al. (2017).

For the distribution systems, fault location algorithms are
generally divided into two basic groups, which are the algo-
rithms that estimate the fault distance from a reference point
in the PS, for example, the power substation, and methods
that identify the outage area, pointing in which part of the
system the fault occurred (Bahmanyar et al. 2017).

Regardless of the group, various articles have proposed
alternatives for fault location based on intelligent techniques,
among which Adewole et al. (2016), Rafinia and Moshtagh
(2014), Dehghani and Nezami (2013), Zayandehroodi et al.
(2013), Ray et al. (2015), Farias et al. (2016), Lovisolo et al.
(2012), Lout and Aggarwal (2013), Zapata-Tapasco et al.
(2014) and Pérez and Vasquez (2016) can be cited.

The research reported in Adewole et al. (2016) presents
an approach to identify in which section of the system a fault
occurred. It uses artificial neural networks (ANNS) to esti-
mate the distance of the fault from the substation and extracts
fault signal features by using the discrete wavelet transform
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(DWT). In Rafinia and Moshtagh (2014), the authors also
used an approach involving ANN, but in conjunction with
fuzzy logic, to determine the fault type and estimate the dis-
tance of the fault from the substation. DWT was also used
to extract the required features. In Dehghani and Nezami
(2013), ANN was trained to estimate the fault distance from
the substation. Zayandehroodi et al. (2013) and Ray et al.
(2015) used ANN with radial basis function to estimate the
fault distance. On the other hand, Farias et al. (2016) used a
hybrid approach in which ANN was used to estimate param-
eters of an analytical model for estimating fault distance.
ANN was used in Lovisolo et al. (2012) to estimate the areas
where the fault may have occurred. The research reported
in Lout and Aggarwal (2013) also used an ANN to identify
in which region of the system the fault occurred, and a sec-
ond ANN to estimate the fault distance. In Zapata-Tapasco
et al. (2014), decision trees were used to identify the area
of the fault. Pérez and Vasquez (2016) used support vector
machines to identify areas where the fault occurred.

This paper proposes a multistage approach to identify the
region of the fault occurrence, to develop a methodology that
is as robust as possible when there are changes in the fault
profile (location, impedance and incidence angle) and in the
placement of the meters. For this purpose, the generalization
capacity of the ANN is used to estimate the fault distance.
Then, the response is used as one of the inputs of the deci-
sion trees that will estimate the outage region. As for the
preprocessing of fault signal information, the wavelet packet
transform (WPT) was used, which provides greater accessi-
bility to the information on these signals when compared to
DWT.

In addition to the fault location, tests were released chang-
ing the number and positions of meters.

2 Wavelet Packet Transform

The discrete wavelet transform (Saha et al. 2009) enables
multiresolution wavelet analysis, in which the signal is
decomposed into multiple frequency bands. At each step
of the wavelet analysis, the signal is divided into two com-
ponents. These components are obtained by low-pass and
high-pass filters and by sampling the signal with a degree
of two. In this multiresolution analysis, only the low fre-
quency bands are processed. Unlike DWT, the wavelet packet
transform (WPT) considers the processing of high-frequency
signals as well. Figure 1 illustrates the approximations and
details that are obtained at each WPT decomposition level.
Thus, for example, for the fourth level of decomposition,
there are 16 frequency ranges between approximations and
details.

(15~30kHz)

(0~15kHz)

Fig.1 Decomposing tree of orthogonal wavelet package

3 Artificial Neural Networks and Decision
Trees

In this research, multilayer perceptron ANN was used
through the toolbox available in the MATLAB software,
known as nntool, with training by Levenberg—Marquardt
(Adewole et al. 2016), to estimate the distance of the fault
from the substation.

The decision tree is a good alternative to solve classifica-
tion problems, as it allows to infer to which class a particular
set of features is most correlated. To obtain the desired deci-
sion tree, binary divisions of the search space are recursively
performed in order to segment it. The Gini index (James et al.
2013) is calculated to define the best binary division. It can
be defined as:

K
G = Zﬁmk (1 - ﬁmk) . (1)
k=1

where K is the number of classes, and p is the propor-
tion of observations of the training set in region mth of the
kth class. When the values of p,,; are close to O or 1, the
Gini index tends to be small. Thus, when it is evident that a
particular binary division has a small value of Gini index, it
means that this division indicates groups with predominantly
a single class. The decision trees, by their training process,
enable the identification of the parameter (or parameters) that
is the most relevant for the identification of classes in a given
problem. Therefore, in this article, the decision trees were
applied to infer which parameters/magnitudes are actually
more relevant for solving the problem. The toolbox Statis-
tics and Machine Learning, also available in MATLAB, was
used to implement the decision trees. Decision trees classify
the instances from the root of the tree to some node (leaf),
which provides the classification of this instance (Mitchell
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Fig.2 ANN topology used in this paper

etal 1997; James et al. 2013). Like most ANNSs, decision trees
also have supervised training (James et al. 2013). Therefore,
the training database must contain the input parameters (sig-
nal information) and the desired outputs (area or region of
the fault occurrence) for each input pattern. At the end of the
training, the tree is formed by a series of [F-THEN condi-
tions (disjunctive expressions) that lead to the area or region
of the fault occurrence.

By way of illustration, ANNs with 6 inputs, 2 hidden lay-
ers and one output were used in this article. Figure 2 presents
the ANN topology used in this paper. As shown below, the
6 input parameters of the ANNs are the RMS values of the
three-phase voltage and current signals.

4 Algorithm for Fault Location

Figure 3 presents the general methodology of the fault loca-
tion algorithm.

This framework is divided into four main stages. The first
stage is the processing of the voltage and current signals (of
the second post-fault cycle) that is used for locating the fault.
In this preprocessing, a total of 114 parameters are obtained.
The parameters were obtained based on the second post-fault
cycle of the three-phase voltage and current signals by cal-
culating the RMS value of these signals (6 parameters), by
extracting the magnitude and phase angle of the fundamental
component of these signals (12 parameters), extracting the
approximations and details of the fourth WPT decomposition
level using 4 db as the mother wavelet (plus 96 parameters:
6 signals, with 16 coefficients for the fourth decomposition
level each). Thus, for the signals obtained from each of the
meters present in the system, 114 parameters are obtained.

@ Springer
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Fig. 3 Flowchart representing the main steps of the implemented
methodology

After processing the fault signals and obtaining the
required parameters, the fault distance is estimated through
multilayer perceptron networks.

The area of the fault occurrence (bigger delimited por-
tion) is identified by decision trees (training algorithm—
classification and regression trees). Finally, the parameters
obtained by the processing of the signals, as well as the esti-
mation of the fault distance and the identification of the fault
area are used to identify in which region (more precise or
better delimited portion) the fault occurred. All these stages
are presented in this section.

4.1 Post-fault Signal Processing

This methodology is based on the context of SG and con-
siders, therefore, the presence of intelligent meters installed
in the system, and an entire communication infrastructure
that enables the access to recorded voltage and current sig-
nals. In addition, sending these voltage and current signals
to an operation center, where the fault location algorithms is
executed, is also considered.

When the instant of the fault situation is properly detected
and classified in one of its 11 possible types (single-phase,
two-phase, two-phase-ground, three-phase and three-phase-
ground faults), the three-phase voltage and current signals of
the substation and intelligent meters are preprocessed. The
detection and classification modules were not implemented
in this research. Therefore, their information is considered
as known.

For the preprocessing of the signals, the discrete Fourier
transform (DFT) is used to obtain the amplitude and phase of
the fundamental component. The calculation of the root mean
square (RMS) value and the application of the WPT (consid-
ering Daubechies with support 4 as mother wavelet) are used
to calculate the energy of the coefficients of the fourth level
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of decomposition. Thus, in total, each measurement point
enables the extraction of 114 parameters (6 RMS values, 12
amplitudes and phases of the fundamental frequency compo-
nent, and 96 energies of the WPT coefficients of the 4th level
of decomposition). A sample rate of 256 samples per cycle
was used to process the fault signals. Only the second post-
fault cycle was considered. It is worth noting that the first
post-fault cycle was not used, as it has a higher presence of
transients and exponential decay direct current component.
In addition, the fault location is a complementary function
to the protection of the electrical system. Therefore, as in
most practical implementations, before activating the fault
location process, this must be detected and spotted by the
associated protection system. Then, in the case of permanent
faults, the oscillographic records can only be retrieved and
accessed for the fault location process after the protection
system is activated.

The presence of measurement errors and/or lack of syn-
chronism, although not considered in the sensitivity analysis
presented in this article, are seen as elements that should
be analyzed in future studies related to the context of smart
grids.

4.2 Estimation of the Fault Distance Using ANN

After preprocessing the signals, the fault distance is esti-
mated through multilayer perceptron neural networks using
a Levenberg—Marquardt-based back propagation algorithm.
It is worth mentioning that this distance estimation is used
later in the segmentation algorithm to better define the regions
of the system under analysis.

For the estimation of the fault distance, only the RMS
values of the signals from the meter near the substation and
the data of the phases directly involved in the disturbances
are used, since the noninvolved phases are influenced by the
load variation of the system. Thus, for example, for faults
involving phase A with connection to ground, only the RMS
values of the voltage and current signals of phase A are used
as input parameter of the ANN.

Eleven (11) ANNs (one for each fault type) are used in
total to estimate the fault distance. In addition, both input
and output parameters were normalized within the range of
— 1 to 1. The activation functions used in the hidden layers
and in the output layer were, respectively, the hyperbolic
tangent and the linear function. Another important point was
the use of an algorithm for an optimized search of the best
topology for each of the 11 ANNSs trained. This algorithm
was based on an evaluation of ANN performance by varying
the number of neurons in their hidden layers. Each topology
was evaluated based on its error.

Each type of fault considered has a specific ANN associ-
ated. The topology of each of these ANNs was obtained by
the following procedure:

1. Each initial topology has 2 hidden layers with 5 neurons
each;

2. The ANN is trained with the training dataset and vali-
dated with the test set. Three different training sessions
are performed with this topology, and the 95th percentile
(P95) of the error obtained is stored for each training;

. The lowest P95 value obtained in 3 trainings is stored;

4. Five neurons are kept in the first hidden layer, 2 neurons
are sequentially added to the second hidden layer, up to
a maximum of 25 neurons. Steps (2) and (3) are repeated
every time two neurons are added;

5. Next, 2 neurons are added to the first hidden layer, and
steps (2), (3) and (4) are repeated. The number of neurons
in the first layer remains fixed,;

6. The algorithm ends when the last topology with 25 neu-
rons in the first hidden layer and 25 neurons in the second
hidden layer are evaluated;

7. The topology with the lowest P95 value among all eval-
uated architectures is used.

W

It is worth noting that these ANNs will be trained only
once. However, if there are considerable changes in the
representative standards of the electrical system under con-
sideration, a new training and testing/validation process
addressing the new characteristics is probably necessary.
Therefore, using them after their training does not require
a high computational effort.

4.3 ldentification of the Area and Region of the Fault

For a better understanding of the implemented methodology,
two terms are initially defined. The first term is the area in
which the fault occurred, and the second is the region of the
fault occurrence. The area is a larger portion on the system
in which the fault occurred. The region is a more physically
delimited (better defined) portion, so that the physical loca-
tion of the fault is more precise.

4.3.1 Defining the Areas

The areas have been defined according to the placement of
the smart meters, which in this case are only considered in
the main feeder. Figure 4 illustrates the definition of areas

for an allocation of 3m in the IEEE 34-bus bar distribution
feeder.

4.3.2 Defining the Regions

The methodology characterizes the regions of a distribution
system according to two criteria:

(i) each lateral branch is considered as a region; and
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Fig.5 IEEE 34-bus bar distribution feeder with the region definition

(ii) all portions of the main branch before a lateral branch
(or between lateral branches) define a region.

According to the two criteria presented, the main element
for the definition of the regions is the presence of lateral
branches. However, to avoid an excessive number of regions,
which may be small, regions much smaller than their neigh-
bors are grouped. The clusters of these small regions are
based on da Silva Pessoa et al. (2018).

Figure 5 presents the IEEE 34-bus bar distribution feeder
with the defined regions. Eleven regions were considered for
the fault location.

@ Springer

4.3.3 Decision Trees Applied in the Identification of the
Area and Region of the Fault Occurrence

The method extracts all 114 parameters from the three-phase
voltage and current signals and uses them both to estimate
the area of occurrence of the fault and to determine in which
region the fault occurred.

Regarding the configurations of the decision trees, those
that will estimate the area as well as those estimating the
region are identical. Therefore, the difference is basically in
the input and output data, that is, in the training and validation
database.

The constitution of the database used in this stage is pre-
sented hereinafter.

— Database to identify the area of the fault occurrence:
For each type of fault, only one decision tree is designed
to identify in which area of the system the fault occurred.
To do so, the database for training and validation consists
of the 114 parameters resulting from the signals of each
meter installed in the system.

— Database to identify the region of the fault occur-

rence:
This method requires one decision tree for each meter
installed, in order to identify the region of the fault
occurrence on the distribution system. The training and
validation database consists of the 114 parameters result-
ing from the processing of the three-phase voltage and
current signals. The information on the occurrence area
of the fault and the estimation of the fault distance is then
added. Hence, for each of these decision trees, there are
116 input parameters.

As shown, for each type of fault, regardless of the number
of meters, a single decision tree is used to identify the outage
area. For the identification of the outage region, the same
number of decision trees as the number of meters installed
in the system will be used.

Each of the decision trees that identifies the outage region
reports on which region of the system the fault occurred.
If most of these decision trees present the same response,
the response of the majority is considered as final. If there
is no consensus on the response presented by the trees, the
response of the tree belonging to the area in which the fault
occurred is adopted as the final response.

5 Case Study

In order to estimate the fault distance, a second fault cycle of
three-phase voltage and current signals was considered.
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Table 1 Number of simulated short circuits for the training and test
database for each of the 11 fault types

Fault type Training dataset ~ Test dataset
A-ground 6936 1248
B-ground 6768 1278
For each of the other fault types 5712 1038

As for the fault positions, these were applied in distribution
system branches with less than 4000 m, at 1%, 25%, 50%,
75% and 99 % of their length.

The short-circuit situations were applied at every 1000 m
for lines longer than 4000 m. In addition to the fault position
variation, fault impedances were also considered with values
0of 0.0001 €2, 10 €2, 20 €2, 30 €2, 40 2 and 50 €2, and incidence
angles of 0, 30, 60 and 90 degrees to generate a representative
dataset to train the algorithms.

To generate a test dataset, faults applied at every 2,000
m, with fault impedance values of 5 €2, 25 2 and 45 €2, and
incidence angles of 45° and 75° were used.

Based on the methodology used for short-circuit simula-
tions, Table 1 shows the number of simulations performed to

Fig. 6 Indication of the 6
potential positions of the meters
used in this research

form the training and test databases for each of the 11 types
of faults simulated.

As shown in Fig. 6, to evaluate the performance of the
proposed methodology, based on the results of the allocation
of the meters presented in Gomes et al. (2016), three scenarios
were considered. The situations of absences before meter
1 were applied to verify the performance of the proposed
methodology against different information not used in the
learning phase.

Scenario 1 considered 6 m installed at positions related
to M1, M2, M3, M4, M5 and M6.

Scenario 2 considered 3 m allocated in the positions M1,
M3 and M6.

Scenario 3 also considered 3 m allocated in the system,
but in the positions M2, M4 and MS.

In this way, the sensitivity of the framework presented is
evaluated considering a variation of the number and position
of the meters.
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5.1 ANN Performance

Figure 7 shows the performance of the ANN for the location
of the faults in phase A involving ground. In this figure, the
estimation by the ANN of the distance of phase A-ground
faults is represented in red. The real distance of the faults
considered is represented in black. Since the data used for the
ANNSs training were from meter MO1, and the faults applied
before MO1 have an atypical profile in relation to the entire

Distance (m)

1000

Faults

Fig. 7 Comparison of ANN performance in relation to the expected
distance

database used in the training process, it is justified that the
faults near the substation have a high percentual error.

The ANNs were satisfactory for the estimation of the fault
distances. Tables 2 and 3 evaluate the performance of the
ANN better.

Table 2 evaluates the percentage error (%) for three types
of fault (A-ground, AB-ground and ABC-ground faults) by
varying the fault resistance, the fault distance and keeping
the fault incidence angle fixed at 45° radians.

Table 3 evaluates the percentage error (%) for the same
three types of fault, but varying the angle of incidence of the
fault, the fault distance and keeping the resistance of the fault
fixed at 5 €2.

The percentage error presented was calculated by:

Dreal — Destimated

7 @

E (%) = 100 -
where Dy is the actual fault distance, Degtimated 1S the dis-
tance estimated by the ANNSs, and L is the largest length
observed in the system from the substation.

According to these tables, although the fault distances
were estimated from the substation, no increase in the per-
centage error is observed when the actual fault distance is

Table 2 Percent error (%) in the estimation of the fault distance, varying the resistance of the fault and keeping the incidence angle of the fault

fixed at 45°
Real fault distance A-ground error AB-ground ABC-ground
Ry=5Q Ry =45Q Ry =5Q Ry =45Q Ry =5Q Ry =45Q
1.05 km (Region 01) 4.68 0.02 0.11 1.23 3.60 0.37
9.31 km (Region 01) 0.84 0.08 0.53 0.71 0.31 0.40
19.14 km (Region 03) 0.28 0.35 0.02 0.32 1.19 0.40
31.74 km (Region 05) 0.56 0.98 1.07 0.94 0.02 0.15
34.84 km (Region 06) 0.82 0.87 1.33 1.25 0.58 1.48
43.48 km (Region 08) 0.40 0.59 1.25 1.30 0.68 0.75
52.7 km (Region 09) 0.01 0.29 0.87 1.10 0.31 0.43
55.98 km (Region 10) 0.16 0.11 0.24 0.39 0.47 0.31
55.99 km (Region 11) 0.16 0.25 0.24 0.53 0.47 0.46
Z:t'i)rlsa?;ioiec:(f:iﬁz igruoli Eiiz;?ctehe Real fault distance A-ground AB-ground ABC-ground
varying the resistance of the ’ $=%" =7 $=4" =7 9 =4 =7
fault and keeping the resistance 1.05 km (Region 01) 4.68 4.46 0.11 0.59 3.60 4.03
of the fault fixed at 5 Q .
9.31 km (Region 01) 0.84 0.62 0.53 1.16 0.31 0.42
19.14 km (Region 03) 0.28 0.15 0.02 0.35 1.19 1.20
31.74 km (Region 05) 0.56 0.65 1.07 0.89 0.02 0.03
34.84 km (Region 06) 0.82 0.89 1.33 1.20 0.58 0.61
43.48 km (Region 08) 0.40 0.41 1.25 1.19 0.68 0.69
52.7 km (Region 09) 0.01 0.02 0.87 0.84 0.31 0.33
55.98 km (Region 10) 0.16 0.01 0.24 0.08 0.47 0.35
55.99 km (Region 11) 0.16 0.13 0.24 0.22 0.47 0.49
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increased, but there is a tendency of percentage error decrease
when the distance increase is observed. Moreover, there was
no correlation between the percentage error and the fault
resistance. This also occurred with the incidence angle of
the fault, where no correlation between the variation of this
element and the percentage error was evidenced.

A key point in identifying the faulty region is to use the
estimation of the distance indicated by the ANN as input of
the decision trees that will identify the faulty region.

5.2 Decision Trees Feature Selection

The decision tree favors the identification of parameters that
are the most significant for the problem under analysis. The
estimate predictor importance values (EPIV) of the decision
trees used were evaluated in order to estimate, among all the
parameters used, which are in fact the most significant for the
identification of the faulty area and region. EPIV was calcu-
lated using the predictor importance method of the MATLAB
Statistics and Machine Learning toolbox. According to the
MATLAB documentation, the method estimates the predic-
tor importance by summing changes in the mean squared
error (MSE) due to splits on every predictor and dividing the
sum by the number of branch nodes. If the tree is grown with-
out surrogate splits, this sum is taken over best splits found at
each branch node. If the tree is grown with surrogate splits,
this sum is taken over all splits at each branch node including
surrogate splits. The predictor importance values have one
element for each input predictor in the data used to train this
tree. At each node, MSE is estimated as node error weighted
by the node probability. Variable importance associated with
this split is computed as the difference between MSE for the
parent node and the total MSE for the two children.

The following analyses allow the identification of the most
significant parameters for the identification of the area and
region, considering all types of fault applied. Thus, two types
of graphs will be shown. The first graph identifies which
are the most significant parameters, and the second one (a
histogram) identifies how these parameters are distributed in
terms of EPIVs.

In the analyses performed on Figs. 8, 9, 10 and 11, all
EPIVs were normalized for better interpretation. In Fig. 8,
it is evidenced that most of the parameters used—333 of the
342 (based on a scenario with 3 m present in the system)—are
not so relevant for the identification of the area, and that only
3 have an EPIV value above 0.5. These parameters (Fig. 9)
are: RMS value of the voltage signal of phase A of meter 01;
RMS value of the voltage signal of phase B of meter 01; and
RMS value of the current signal of phase A of meter 03.

For the identification of the faulty region (by Fig. 10),
it is also observed that only a minority of the considered
parameters is really relevant for the decision trees to carry out
the classification process. Also, only 1 parameter has EPIV

w

33 T T T T T T

Number of features

0 L . . P I T— I

0 01 0.2 03 04 0.5 06 07 0.8 0.9 1
Estimates

Fig. 8 EPIV histogram of parameters for area identification decision
trees
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Fig.9 EPIV of parameters for area identification decision trees
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Fig.10 EPIV histogram of parameters for region identification decision
trees

greater than 0.5. In Fig. 11, itis evidenced that the most rele-
vant parameter for the identification of the faulty region is the
estimation of the distance of the fault, followed by the area
in which the fault occurred. Still in Fig. 11 of the parameter
group with low EPIV value, the group formed by the val-
ues of RMS, amplitude, and phase angle of the three-phase
voltage and current signals stands out when compared to the
parameters formed by the energy of the WPT coefficients.

5.3 The Performance of the Decision Trees
Tables 4 and 5 present, respectively, the results for the esti-

mation of the area and region of faults occurrence for each
of the 3 scenarios evaluated.
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Table 4 Hit rate (%) for the identification of the fault occurrence area
for each of the 11 types of faults evaluated

Fault type Scenario 01 Scenario 02 Scenario 03
A-ground 99.52 100 99.52
B-ground 98.28 100 98.12
C-ground 98.17 100 98.5
AB 99.42 100 99.7
BC 99.71 100 99.7
AC 99.42 100 99.4
AB-ground 98.46 100 98.1
BC-ground 98.94 100 99.2
AC-ground 98.65 100 99.4
ABC 99.42 100 100
ABC-ground 98.65 100 98.9

Table5 Hitrate (%) for the identification of the fault occurrence region
for each of the 11 types of faults evaluated

Fault type Scenario 01 Scenario 02 Scenario 03
A-ground 91.1 89.0 92.5
B-ground 87.7 80.2 82.4
C-ground 88.6 82.6 79.4
AB 95.1 98.6 93.6
BC 96.0 97.7 95.7
AC 97.4 96.8 96.8
AB-ground 86.3 84.7 87.8
BC-ground 91.0 88.9 89.8
AC-ground 94.0 93.5 94.5
ABC 94.8 94.2 94.5
ABC-ground 90.4 88.8 93.4

For the identification of the outage area, it is evident that,
regardless of the number of meters or their position, the hit
rate varied around 99%. This proved that increasing the num-
ber of meters not necessarily results in a significant gain of
result.

Regarding the general performance for the identification
of the outage region, the best result was obtained for sce-
nario 01 (highest number of meters). However, the difference
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Fig. 12 Overall performance for the identification of the outage region
considering scenario 1

between scenarios 2 and 3 was not very significant (with
exception to phase C-ground faults). Thus, there was little
sensitivity of the algorithm for a variation of the number of
meters and their positioning.

Figure 12 shows a global view on the performance of all
types of fault. This figure shows an indication of how well
each type of fault was identified for each evaluated region.
The lighter colors in the figure indicate a higher hit rate, and
regions where a specific type of fault cannot occur are empty.
For example, only the B-ground faults can be considered in
regions 2 and 7. And in region 4, only the A-ground faults
can be considered.

Thus, for the meter allocation considered, region 3 demon-
strated greater difficulty to locate the faults through the
application of decision trees.

The confusion matrix for the location of A-ground faults in
scenario 1 is presented in Fig. 13. Among the 114 fault cases
that actually occurred in region 3, 60 of them were improperly
indicated as if occurring in region 5. This confusion matrix
shows that in all cases with a location error, they were pointed
outas if occurring in aregion neighboring the region in which
the fault actually occurred.

When scenarios 2 and 3 (Figs. 14, 15), in which the number
of meters was reduced from 6 to 3, were evaluated, region
3 continued to have the greatest difficulty in locating faults,
and region 6 had difficulties in locating the respective faults.

It is observed that even in these two scenarios, where the
meters were installed in different positions, the algorithm
performance changed very little. This suggests a tolerance
of this fault location approach based on machine learning
algorithms for the variations in the distribution of the meters.

It is also clear that it is necessary to have an optimized
meter allocation that is focused on fault location.

Another highlight is the possibility of allocating meters
in the system based on the return of this framework to the
location of faults.
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Fig. 13 Confusion matrix concerning the location of phase A-ground
faults in scenario 1
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6 Conclusions

This paper presented a framework based on machine learning
for fault location in radial distribution systems that meets the
needs and trends of intelligent electrical networks.

In this approach, ANNs were used to estimate the distance
of the fault from the power substation, and decision trees
were used to identify the area (larger delimited portion) and
the region (better delimited portion) of the system where the
fault occurred.

Percentage errors between 0.01 and 4.68% were observed
in the evaluated situations for the estimation of the fault dis-
tance by ANNS.

The problem of multiple estimation of the fault was also
addressed in the research. For the location of the faults, a
multistage approach was considered in which some infer-
ences obtained by the algorithm itself were used in its search
process of the fault location. In order to identify the most
specific location (region) of the fault occurrence, a previous
identification of a more general region of the fault occurrence
was used. The more general identification of the faults (area)
presented a hit rate above 99%. This was a relevant infor-
mation to aid the algorithm in identifying the region of fault
occurrence.

A methodology for the segmentation of the system was
presented for the identification of the outage region of the sys-
tem. This segmentation considered the ability of the ANNs
to understand the nature of faults. Therefore, small and close
regions were added. Hit rates ranging from 79 to 98.6% for
the identification of the outage region were observed. It is
worth noting that in cases with an error in the location, the
fault was pointed out as if occurring in neighboring regions.
Hence, the identification of the region of the fault by the pro-
posed methodology is a good indication for the utility to find
the outage region in the system even when there is an error.

A study was also presented evaluating the impact of the
variation of the resistance and the incidence angle of the fault,
of the number of meters and their position in the system. In
view of the situations and scenarios evaluated, it is concluded
that this framework was not very sensitive to the evaluated
aspects.

It is worth mentioning that the methodology presented has
not yet been validated in relation to other radial distribution
systems, as well as in the presence of distributed generation.
However, the knowledge obtained about the test system used
in this research allows to assume that the methodology, as
presented, can be applied in new topologies, lacking a new
set of computational simulations to generate a representative
database. The studies will be in this direction.
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