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Abstract
In this paper, the hybrid projective compound combination synchronization (HPCCS) in a class of commensurate fractional-
order chaotic Genesio–Tesi system with unknown disturbance has been investigated. To deal with the problem of bounded
disturbance, the nonlinear HPCCS is proposed for the fractional-order chaotic system. Further, by choosing the appropriate
control gain parameters, the nonlinear fractional-order disturbance observer can approximate the disturbance efficiently.
Based on the sliding mode control (SMC) method, a simple sliding mode surface has been introduced. Moreover, by using
the Lyapunov stability theory, the designed adaptive SMC method establishes that the states of the three master and two
chaotic slave systems are synchronized expeditiously. Finally, some numerical simulation results are illustrated to visualize
the effectiveness and the utility of the developed approach on the considered system in the presence of the external unknown
bounded disturbances using MATLAB.

Keywords Compound combination synchronization · Genesio–Tesi system · Hybrid projective synchronization · Adaptive
SMC · Fractional-order disturbance observer

1 Introduction

Chaos control and synchronization of chaotic systems have
been a very attractive field for researchers in recent times.
Chaos synchronization has many applications in differ-
ent areas such as ecology, biological structures, chemical
systems, physical systems, electrical circuits, information
processing, secure communication, networking systems, etc.
(Yildirim and Eski 2010; Vaidyanathan and Azar 2016;
Vaidyanathan 2015; Moghadasianx et al. 2012; Das and
Pan 2012; Yuanqing and Renquan 2017). The history of the
chaotic dynamics goes back to the timeswhen in the late eigh-
teenth century, a great French mathematician and physicist
Henri Poincare tried to evaluate the celestial three-body prob-
lem,which includes the earth, sun, andmoon having amutual
gravitational pull. He showed that in orbital dynamics, the
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three-body problem has a complicated behavior, which is
known as the chaos, and later this characteristic was known
as sensitive dependence to the initial state, which is the pri-
mary feature of chaos (Russell 1967). Chaos theory is a
branch of mathematics focusing on the behavior of nonlinear
dynamical systems. The chaotic synchronization, trajectories
of identical and nonidentical chaotic systems (master and
slave) having different initial conditions, the synchroniza-
tion error converges to zero. Despite the observation made
by Poincare, the first introduction of chaos in a determinis-
tic system was given by Lorenz (1963). Pecora and Carroll
(1990) introduced the concept of chaos synchronization
using master-slave configuration, which was unprecedented
before the last three decades. Later on, researchers extended
the pioneering work of Pecora and Carroll and established
that synchronization is also possible for non-identical sys-
tems having entirely different properties. Till now, several
control techniques to attain chaos synchronization and con-
trol have been explored in the literature. These are active
control (Bhalekar 2014), adaptive control (Shao et al. 2016),
sliding mode control (SMC) (Vaidyanathan and Sampath
2012), adaptive SMC (Khan and Tyagi 2017a), optimal con-
trol (Khan and Tyagi 2017b), robust adaptive sliding mode
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control (Khan and Singh 2018a), anti disturbance rejection
control (ADRC) (Guo and Zhou 2014), feedback control
method (Chen and Han 2003), time-delayed feed-back con-
trol (Soukkou et al. 2018) etc.

Models based on fractional-order (FO) differential sys-
tems introduced the concept of chaos control and chaos
synchronization in FO chaotic systems. It has been noticed
that the behavior of FO and integer-order differential sys-
tems has many disparities. The conclusions made on the
stabilization for the integer-order chaotic systems may not
be applicable to FO chaotic systems. The stability regions
of FO differential systems differing from the integer order
system are the main difficulty. This gives rise to the different
stability criteria for FO chaotic systems. Various techniques
to achieve chaotic synchronization have been presented for
the FO chaotic systems such as complete synchronization
(Mahmoud and Mahmoud 2010), anti-synchronization (Li
and Zhou 2007), projective synchronization (Ding and Shen
2016), hybrid synchronization (Vaidyanathan 2016), hybrid
projective synchronization (Khan and Tyagi 2018), com-
pound synchronization (Sun et al. 2014; Prajapati et al.
2018), compound combination synchronization (Sun et al.
2016), combination-combination synchronization (Khan and
Singh2018b), dual combination synchronization (Singh et al.
2017b), dual combination combination (Khan et al. 2017),
dual compound synchronization (Khan et al. 2018), dou-
ble compound synchronization (Zhang and Deng 2014),
and sampled-data synchronization (Yuanqing et al. 2017).
Hybrid synchronization is very interesting because it pos-
sesses the coexistence of complete synchronization and anti-
synchronization techniques for achieving hybrid projective
synchronization between two different chaotic systems, and
hybrid projective in chaotic nonlinear systems is described
in Delavari and Mohadeszadeh (2018) and Manfeng et al.
(2008). The different excellent approach in dealing with
the disturbance is the ADRC technique. The ADRC, as
an unusual design approach, was first introduced by Han
(2009). ADRCmethod to eliminate the disturbance by creat-
ing a robust gain estimated was discussed in Guo and Zhou
(2014), Guo and Liu (2014) and Guo and Jin (2013). But
the SMC approach is an efficacious instrument for designing
robust control law for complex nonlinear systems. The vital
advantage of SMC is low sensitivity to the disturbance and
uncertain parameters, which completely destroyed the pre-
requisite accurate modeling (Vaidyanathan and Azar 2015;
Singh et al. 2017a). Aforesaid, inmost studies of the research
works, the effect of external bounded disturbance(BD) has
been discussed, which has the consequent impact such that
energy variation, modeling ingratitude, etc. These BD will
diminish the achievement of the system and even desta-
bilizing the system. There are two types of disturbances,
such as matched disturbance and mismatched disturbance.
The matched disturbance is classified for a class of opera-

tions; the uncertainties and disturbances perform thematched
state, that is, the uncertainties and disturbances influence the
systemvia the same passagewith the control input. For amis-
matched disturbance, the uncertainties and disturbances do
not fulfill the matched state. In Shi et al. (2019), Pashaei and
Badamchizadeh (2016) and Yang et al. (2012), mismatched
disturbance is discussed using the SMC only. Disturbance
cannot be easily ignored in practical applications. A non-
linear fractional-order disturbance observer (FODO) was
designed to control the disturbance, and then adaptive SMC
lawwas introduced for FO chaotic system in Khan and Tyagi
(2017a) and Mofid et al. (2019). However, these techniques
are not feasible for the system with mismatched disturbance.

Motivated by the above-mentioned studies, we present the
adaptive SMChybrid projective compound combination syn-
chronization (HPCCS) scheme in the Genesio–Tesi system.
The important highlights of this research are summarized as
follows:

– The proposed HPCCS scheme deals with five identical
fractional-order Genesio–Tesi systems.

– To the best of our knowledge, we are the first to pro-
pose two slave systems with unknown external bounded
disturbance using adaptive SMC technique.

– An adaptive SMC technique with fast convergence is
designed for the synchronization of FO chaotic systems.

– A more extensive type of nonlinear FODO fulfills the
convergence of the disturbance estimation error to the
origin.

– Simulation result with a comparison example shows the
effectiveness of the introduced method.

The rest of the paper is structured as follows: Sect. 2 con-
tains preliminaries and basic properties of fractional calculus.
Problem formulation in which a general scheme of HPCCS
is proposed in Sect. 3 and the system description of FO
Genesio–Tesi systems is discussed in Sect. 4. The design
methodology of the nonlinear FODO of a chaotic system
is discussed in Sect. 5. An example of HPCCS of identical
Genesio–Tesi system using adaptive SMC is investigated in
Sect. 6. The numerical simulations and comparison results
are discussed in Sect. 7. In Sect. 8, the application of the
suggested HPCCS scheme in secure communication is pre-
sented. The results are concluded in Sect. 9.

2 Preliminaries

FO calculus is acknowledged as an expansion to the classi-
cal integer order calculus. In the literature, there are several
definitions of FO derivatives available such as Riemann–
Liouville’s, Caputo’s derivative, Grunwald–Letnikov’s etc.
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(Podlubny 1999). Out of these, Caputo’s derivative defini-
tion is the most generally used.

Definition 1 (Podlubny 1998) The Caputo’s derivative for
function f (t) with FO α is defined by:

cDα
y f (y) = 1

γ (n − α)

∫ y

c

f n(x)

(y − x)α−n+1 dx

where n − 1 < α < n, n ∈ N and γ (α) = ∫ ∞
0 xα−1e−xdx

is the gamma function.

Due to the wide range of applications of Caputo’s deriva-
tive, we have also used it in our proposed research work.
Some basic properties, including lemmas and assumptions
of Caputo’s derivative of FO, are used to prove our results,
which are listed below.

Property 1 (Li andDeng 2007) If f1(t) is a constant function
and the order α > 0, the Caputo FO derivative satisfies the
given condition:

Dα f1(t) = 0

Property 2 (Li and Deng 2007) The Caputo fractional
derivative satisfies the following linear property:

Dα[a f1(t) + bg1(t)] = aDα f1(t) + bDαg1(t)

where f1(t) and g1(t) are functions of t and a and b are
constants.

Lemma 1 (Aguila-Camacho et al. 2014) Suppose Φ(t) ∈ R
be a continuous derivable function. Then, we have

1

2
DαΦ(t)2 ≤ Φ(t)DαΦ(t)

for any time t ≥ t0 and 0 < α < 1.

Lemma 2 (Li and Sun 2015) Let the FO system satisfies

DαC(t) ≤ −b0C(t) + b1

Then, there exists a constant t1 > 0 in which for all t ∈
(t1,∞), we get

‖C(t)‖ ≤ 2b1
b0

where b0 > 0, b1 > 0 are constants and C(t) is the state
variable.

Assumption 1 Let Φi (t) be the unknown external distur-
bance for i = 1, 2, . . . , n, Then, the Caputo derivative of
Φi (t) is bounded, i.e, |DαΦi (t)| ≤ ξi , where ξi > 0 is an
unknown positive constant. The upper bound of disturbance
needs to be known in advance.

3 Problem Formulation

(Manfeng et al. 2008; Ojo et al. 2015) Hybrid projective
compound combination synchronization scheme.

We consider the following FO chaotic systems as the three
master systems.

Dαx1(t) =Ax1(t) + g(x1(t)) (1)

Dαx2(t) =Ax2(t) + g(x2(t)) (2)

Dαx3(t) =Ax3(t) + g(x3(t)) (3)

where A ∈ Rm×m denotes a constant matrix, x1(t) =
(x11, x12, . . . , x1m)T ∈ Rm ,x2(t) = (x21, x22, . . . , x2m)T ∈
Rm , and x3(t) = (x31, x32, . . . , x3m)T ∈ Rm represent the
state vectors of the master systems (1), (2) and (3), respec-
tively, and g(x1(t)) = (g1(x1(t)), g2(x1(t)), . . . , gm(x1(t)))
∈ Rm , g(x2(t)) = (g1(x2(t)), g2(x2(t)), . . . , gm(x2(t))) ∈
Rm , and g(x3(t)) = (g1(x3(t)), g2(x3(t)), . . . , gm(x3(t))) ∈
Rm are the nonlinear function vector.

Corresponding slave systems are defined as follows:

Dα y1(t) = Ay1(t) + g(y1(t)) + Φ1 + u1(t) (4)

Dα y2(t) = Ay2(t) + g(y2(t)) + Φ2 + u2(t) (5)

where y1(t) = (y11, y12, . . . , y1m)T ∈ Rm , y2(t) =
(y21, y22, . . . , y2m)T ∈ Rm represent the state vectors
of slave systems (4) and (5), respectively, g(y1(t)) =
(g1(y1(t)), g2(y1(t)), . . . , gm(y1(t))) ∈ Rm and g(y2(t)) =
(g1(y2(t)), g2(y2(t)), . . . , gm(y2(t))) ∈ Rm are the non-
linear function vector of systems (4) and (5), respectively,
Φ1(t) = (Φ11, Φ12, . . . , Φ1m)T ∈ Rm and Φ2(t) =
(Φ21, Φ22, . . . , Φ2m)T ∈ Rm are the unknown external
BD of systems (4) and (5), respectively, and u1(t) =
(u11, u12, . . . , u1m)T ∈ Rm and u2(t) = (u21, u22, . . . ,
u2m)T ∈ Rm represent controllers of slave systems which
are to be designed.

The HPCCS scheme is achieved if there exist controllers
u j = u1 j +u2 j , j = 1, 2, . . . ,m and constants ρ = ρ j , j =
1, 2, ...,m.

Definition 2 (Ojo et al. 2015; Manfeng et al. 2008) If the
order of the master and the slave systems is the same and
there exist a scaling matrix ρ ∈ R such that

limt→∞‖e‖ = limt→∞‖(y1(t) + y2(t))

−ρx1(t)(x2(t) + x3(t))‖ = 0

where ‖.‖ express the matrix norm, then the master systems
(1)–(3) and the slave systems (4)–(5) achieved hybrid pro-
jective compound combination synchronization.
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The error dynamics is:

Dαe(t) =Dα y1(t) + Dα y2(t) − ρDαx1(t)(x2(t) + x3(t))

− ρx1(t)(D
αx2(t) + Dαx3(t))

Dαe(t) =Ay1(t) + g(y1(t)) + Φ1 + u1(t) + Ay2(t)

+ g(y2(t)) + Φ2 + u2(t)

− ρ(Ax1(t) + g(x1(t)))(x2(t) + x3(t))

− ρx1(t)(Ax2(t) + g(x2(t)) + Ax3(t) + g(x3(t))) (6)

Here the design of controller u1(t) + u2(t) is given by

u1(t) + u2(t) = − Ay1(t) − g(y1(t)) − Ay2(t) − g(y2(t))

+ ρ(Ax1(t) + g(x1(t)))(x2(t) + x3(t))

+ ρx1(t)(Ax2(t) + g(x2(t))

+ Ax3(t) + g(x3(t)))

− ηs − K̂ ∗ sign(s) − Φ̂1 − Φ̂2 (7)

where sign(s) = |s|
s and η > 0 are constants. K̂ is the esti-

mated value of K . Φ̂1 and Φ̂1 are the estimated values ofΦ1,
and Φ2, respectively.

The HPCCS scheme can be described as follows.

– (Zhang et al. 2019; Khan and Tyagi 2018) Disturbances
that exist in various fields like economic, physical, bio-
logical, mechanical, and medical systems may create
an unfavorable influence on system stability. Thus, the
impact of disturbances should be dismissed efficiently.

– Disturbance Φi j (i = 1, 2; j = 1, 2, 3) is entirely
unknown in the slave systems with fractional deriva-
tive, so it is not possible to formulate a synchronized
mechanism of three master systems and two slave sys-
tems. To solve this difficulty, we introduce a nonlinear
FODO designed for compensating the effect of external
unknownBD.The externalBDcanbe estimated correctly
by the suitable nonlinear FODO.

– Further, we apply an adaptive SMC method so that the
synchronized error becomes globally asymptotically sta-
ble.

4 SystemDescription

In compound combination synchronization, we take five
identical Genesio–Tesi systems.

Consider the Genesio–Tesi FO chaotic system as a master
system (Park et al. 2007; Genesio and Tesi 1992; Sambas
et al. 2016) .

Dαx11(t) = x12

Dαx12(t) = x13

Dαx13(t) = −b1x11 − b2x12 − b3x13 + b4x
2
11 (8)

where x11, x12, x13 are state variables and b1 = 1.0, b2 =
1.1, b3 = 0.4, b4 = 1.0 are parameters of system and
order α = 0.99. Initial condition of Genesio–Tesi sys-
tem (x11, x12, x13) = (−0.3, 0.1,−0.2), so that the system
displays the suspected chaotic behavior. The suggested
Genesio–Tesi system producing design may have significant
application value in the area of information technology such
as secure communication.

Corresponding to three master systems, we take two slave
systems

Dα y11(t) = y12 + Φ11 + u11

Dα y12(t) = y13 + Φ12 + u12

Dα y13(t) = −b1y11 − b2y12 − b3y13 + b4y
2
11 + Φ13 + u13

(9)

Dα y21(t) = y22 + Φ21 + u21

Dα y22(t) = y23 + Φ22 + u22

Dα y23(t) = −b1y21 − b2y22 − b3y23 + b4y
2
21 + Φ23 + u23

(10)

5 Fractional-Order Disturbance Observer
(FODO) Design

In Sect. 5, we construct a nonlinear FODO to approximate
the unknown external BD in the slave systems (9–10). As BD
Φi j (i = 1, 2; j = 1, 2, 3), which are developed in the slave
system (9–10), is entirely unknown, so it is not possible to
formulate a synchronizedmechanismof threemaster systems
and two slave systems. To undertake this difficulty, we create
a nonlinear FODO to evaluate the unknown BD. Nonlinear
FODO is constructed for compensating the effect of unknown
external BD. To estimate the unknown external BD in the
slave systems, we design a nonlinear FODO. For designing
the FODO, we propose an auxiliary variable that is based on
the integer-order disturbance observer as follows (Chen et al.
2014).

Θ1(t) = Φ11(t) + Φ21(t) − σ1(y11(t) + y21(t))

Θ2(t) = Φ12(t) + Φ22(t) − σ2(y12(t) + y22(t))

Θ3(t) = Φ13(t) + Φ23(t) − σ3(y13(t) + y13(t)) (11)

where σ1, σ2, σ3 > 0 are constants to be determined.
In Eq. (11), applying Caputo derivative and using Eqs. (9)

and (10), we get

DαΘ1(t) = DαΦ11(t) + DαΦ21(t) − σ1(y12 + y22

+ Θ1 + σ1(y11 + y21))
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− σ1(u11 + u21)

DαΘ2(t) = DαΦ12(t) + DαΦ22(t) − σ2(y13 + y23

+ Θ2 + σ2(y12 + y22)

− σ2(u12 + u22)

DαΘ3(t) = DαΦ13(t) + Dq3Φ23(t) − σ3(−b1(y11

+ y21) − b2(y12 + y22)

− b3(y13 + y23) + b4(y
2
11 + y221)

+ Θ3(t) + σ3(y13 + y23)

− σ3(u13 + u23) (12)

We estimateΘ j (t)(j = 1, 2, 3) in order to calculate the exter-
nal unknown disturbances, which is described as:

DαΘ̂1(t) = − σ1(y12 + y22 + σ1(y11 + y21))

− σ1Θ̂1(t) − σ1(u11 + u21)

DαΘ̂2(t) = − σ2(y13 + y23 + σ2(y12 + y22))

− σ2Θ̂2(t) − σ2(u12 + u22)

DαΘ̂3(t) = − σ3(−b1(y11 + y21) − b2(y12 + y22)

− b3(y13 + y23)

+ b4(y
2
11 + y221)) − σ3Θ̂3(t)

− σ3(u13 + u23) (13)

where Θ̂ j (t) is the estimate of Θ j

Using Eq. (11),Φ1 j (t) andΦ2 j (t), j = 1, 2, 3 are written
in the form

Φ̂11(t) + Φ̂21(t) = Θ̂1(t) + σ1(y11 + y21)

Φ̂12(t) + Φ̂22(t) = Θ̂2(t) + σ2(y12 + y22)

Φ̂13(t) + Φ̂23(t) = Θ̂3(t) + σ3(y13 + y23) (14)

Define disturbance estimation error as:

Φ̃11(t) + Φ̃21(t) = Φ11 + Φ21 − (Φ̂11 + Φ̂21)

Φ̃12(t) + Φ̃22(t) = Φ12 + Φ22 − (Φ̂12 + Φ̂22)

Φ̃13(t) + Φ̃23(t) = Φ13 + Φ23 − (Φ̂13 + Φ̂23) (15)

From Eqs. (11) and (14), we obtain

Θ̃1(t) =Θ1(t) − Θ̂1(t) = (Φ11(t) + Φ21(t))

− (Φ̂11(t) + Φ̂21(t)) = Φ̃11(t) + Φ̃21(t)

Θ̃2(t) =Θ2(t) − Θ̂2(t) = (Φ12(t) + Φ22(t))

− (Φ̂12(t) + Φ̂22(t)) = Φ̃12(t) + Φ̃22(t)

Θ̃3(t) =Θ3(t) − Θ̂3(t) = (Φ13(t) + Φ23(t))

− (Φ̂13(t) + Φ̂23(t)) = Φ̃13(t) + Φ̃23(t) (16)

By subtracting Eq. (13) from (12), the Caputo derivatives Θ̃ j

are expressed in the following form:

DαΘ̃1(t) = − σ1Θ̃1(t) + Dα(φ11(t) + φ21(t))

DαΘ̃2(t) = − σ2Θ̃2(t) + Dα(φ12(t) + φ22(t))

DαΘ̃3(t) = − σ3Θ̃3(t) + Dα(φ13(t) + φ23(t)) (17)

Based on the above discussion, to check the convergence
of approximated disturbance estimation error, a Lyapunov
function can be selected as (Shao et al. 2016).

VΦ1 j (t)+Φ2 j (t) = 0.5(Φ̃1 j (t) + Φ̃2 j (t))
2

= 0.5Θ̃ j
2
(t), ( j = 1, 2, 3) (18)

Apply the Caputo derivative in Eq. (18) and using Lemma 1,
we get

DαVΦ1 j (t)+Φ2 j (t) < Θ̃ j (t)D
αΘ̃ j (t) (19)

Substituting Eq. (17) into (19), the following equation can
be attained:

DαVΦ1 j (t)+Φ2 j (t) ≤ Θ̃ j (t)(−σ j Θ̃ j (t) + Dα(Φ1 j (t)

+ Φ2 j (t))), j = 1, 2, 3

≤ − σ j Θ̃ j (t)
2 + Θ̃ j (t)D

α(Φ1 j (t)

+ Φ2 j (t)) (20)

We notice that

(Θ̃ j (t) − Dα(Φ1 j (t) + Φ2 j (t)))
2

= (Θ̃ j (t))
2 + (Dα(Φ1 j (t) + Φ2 j (t)))

2

− 2Θ̃ j (t)D
α(Φ1 j (t) + Φ2 j (t)) > 0 (21)

Θ̃ j (t)D
α(Φ1 j (t) + Φ2 j (t))

<
1

2
(Θ̃ j (t))

2 + 1

2
(Dα(Φ1 j (t) + Φ2 j (t)))

2 (22)

Using Eq. (22) in Eq. (20)

DαVΦ1 j (t)+Φ2 j (t) ≤ − σ j Θ̃ j
2
(t) + 1

2
(Θ̃ j (t))

2

+ 1

2
(Dα(Φ1 j (t) + Φ2 j (t)))

2 (23)

Now using Assumption 1 in Eq. (23), we obtain

DαVΦ1 j (t)+Φ2 j (t) ≤ − σ j Θ̃ j
2
(t) + 0.5Θ̃ j

2
(t) + 0.5ξ j

2

= − (σ j − 0.5)Θ̃ j
2
(t) + 0.5ξ j

2
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= − (2σ j − 1)
1

2
Θ̃ j

2
(t) + 0.5ξ j

2

≤Ω0VΦ1 j (t)+Φ2 j (t) + Ω1, wi th j = 1, 2, 3 (24)

where Ω0 = 2σ j − 1, and Ω1 = 0.5ξ2j . If σ j > 0.5, this
confirms that estimated errors are bounded. Using Lemma 2
and Eq. (24), then we have.

|VΦ1 j (t)+Φ2 j (t)| ≤ 2Ω1

Ω0
(25)

Substitute the value of Ω0 and Ω1 in equation(25), we get

|VΦ1 j (t)+Φ2 j (t)| ≤ ξ2j

2(σ j − 0.5)
(26)

Using Eq. (18) in Eq. (26), we have

|1
2
(Φ̃1 j (t) + Φ̃2 j (t))

2| ≤ ξ j
2

2(σ j − 0.5)
(27)

|Φ̃1 j (t) + Φ̃2 j (t)| ≤
√

ξ j
2

σ j − 0.5
(28)

According to (28), indicate that Φ̃1 j (t) + Φ̃2 j (t) is bounded
above, where Φ̃1 j (t) + Φ̃2 j (t) is known as disturbance esti-
mation error. Thus, for the external disturbance Φ1 j (t) +
Φ2 j (t), the disturbance approximation error |Φ̃1 j (t) +
Φ̃2 j (t)| ≤ K j , where K j > 0 is unknown constant. In
real genuine approach, it is very hard to find the upper
bounds of |Φ̃1 j (t) + Φ̃2 j (t)|, therefore, we have presented
estimated value K̂ j of K j ( j = 1, 2, 3). Thus, from the
above study, for the slave systems (9) and (10), the nonlinear
FODO designed in (13) and (14), the disturbance estimated
error Φ̃1 j (t) + Φ̃2 j (t) of the suggested nonlinear FODO is
bounded.

6 Numerical Example of Adaptive Sliding
Mode Synchronization

(Khan and Tyagi 2017a; Chen and Jing 2015) This section
illustrates the validity of the proposed hybrid projective com-
pound combination synchronization (HPCCS) scheme using
adaptive sliding mode control. The following FO Genesio–
Tesi system is considered as master systems.

Dαx11(t) = x12

Dαx12(t) = x13

Dαx13(t) = −b1x11 − b2x12 − b3x13 + b4x
2
11 (29)

Dαx21(t) = x22

Dαx22(t) = x23

Dαx23(t) = −b1x21 − b2x22 − b3x23 + b4x
2
21 (30)

Dαx31(t) = x32

Dαx32(t) = x33

Dαx33(t) = −b1x31 − b2x32 − b3x33 + b4x
2
31 (31)

Corresponding two slave systems are described as:

Dα y11(t) = y12 + sign(sin(t + 1)) + u11

Dα y12(t) = y13 + 5 cos 6t + u12

Dα y13(t) = −b1y11 − b2y12 − b3y13 + b4y
2
11

+ 5(sin 4t + cos 4t) + u13 (32)

where Φ11 = sign sin(t + 1),Φ12 = 5 cos 6t ,Φ13 =
5(sin 4t + cos 4t) are the disturbances of the system, and
u11, u12, u13 are the controllers.

Dα y21(t) = y22 + sign(sin(2(t + 1))) + u21

Dα y22(t) = y23 + 6 cos 5t + u22

Dα y23(t) = −b1y21 − b2y22 − b3y23 + b4y
2
21

+ 4(sin 5t + cos 5t) + u23 (33)

where Φ21 = sign(sin(2(t + 1))),Φ22 = 6 cos 5t ,Φ23 =
4(sin 5t + cos 5t) are the disturbances of the system, and
u21, u22, u23 are the controllers.

In HPCCS, error state can be defined as (Khan and Tyagi
2018; Ojo et al. 2015)

e11(t) = y11 + y21 − α1x11(x21 + x31)

e12(t) = y12 + y22 − α2x12(x22 + x32)

e13(t) = y13 + y23 − α3x13(x23 + x33) (34)

Then, the error dynamics takes the form

Dαe11(t) = Dα y11 + Dα y21 − α1D
αx11(x21 + x31)

− α1x11(D
αx21 + Dαx31)

Dαe12(t) = Dα y12 + Dα y22 − α1D
αx12(x22 + x32)

− α2x12(D
αx22 + Dαx32)

Dαe13(t) = Dα y13 + Dα y23

− α3D
αx13(x23 + x33) − α3x13(D

αx23 + Dαx33) (35)

Using the slave systems (32–33) and master systems (29–
30–31), the error dynamics becomes:

Dαe11(t) = e12 + (x22 + x32)(α2x12

− α1x11) − α1x12(x21 + x31)

+ sign(sin(t + 1)) + sign(sin(2(t + 1)))

+ u11 + u21 (36)

Dαe12(t) = e13 + (x23 + x33)(α3x13 − α2x12)

− α2x13(x22 + x32)

123



Journal of Control, Automation and Electrical Systems (2020) 31:885–899 891

+ 5 cos 6t + 6 cos 5t + u12 + u22 (37)

Dαe13(t) = − b3e13 − b1(y11 + y21 − α3x11(x21 + x31)

− α3x11(x23 + x33))

− b2(y12 + y22 − α3x12(x23 + x33)

− α3x13(x22 + x32))

+ b3α3(x11(x23 + x33) + b4(y
2
11 + y221

− α3x
2
13(x23 + x33)

− α3x13(x
2
21 + x231)) + 5(sin 4t + cos 4t)

+ 4(sin 5t + cos 5t)

+ u13 + u23 (38)

To achieve the goal of stabilization of FO error system, the
sliding mode surface (SMS) is considered as (Shao et al.
2016):

s j (t) = e1 j (t), j = 1, 2, 3 (39)

Applying the Caputo derivative in (39), we have:

Dαs j (t) = Dαe1 j (t), j = 1, 2, 3 (40)

Synchronization controller input is composed as:

u11(t) + u21(t) = − e12 − (x22 + x32)(α2x12 − α1x11)

+ α1x12(x21 + x31)

− η1s1 − K̂1sign(s1(t)) − Φ̂11 − Φ̂21
(41)

u12(t) + u22(t) = − e13 − (x23 + x33)(α3x13 − α2x12)

+ α2x13(x22 + x32)

− η2s2 − K̂2sign(s2(t)) − Φ̂12 − Φ̂22
(42)

u13(t) + u23(t) = b3e13 + b1(y11 + y21 − α3x11(x23 + x33)

− α3x13(x21 + x31))

+ b2(y12 + y22 − α3x12(x23 + x33)

− α3x13(x22 + x32))

− b3α3x13(x23 + x33) − b4(y
2
11

+ y221 − α3x
2
13(x23 + x33)

− α3x13(x
2
21 + x231)) − η3s3

− K̂3sign(s3(t)) − Φ̂13 − Φ̂23 (43)

where sign(s) = |s|
s and η j > 0 are constants. K̂ j is esti-

mated value of K j updated by

Dα K̂1 = γ1(|s1(t)| − K̂1)

Dα K̂2 = γ2(|s2(t)| − K̂2)

Dα K̂3 = γ3(|s3(t)| − K̂3) (44)

where γ j > 0, j = 1, 2, 3 are constants. Using equations
(41–42–43) in equations (36–37–38), the error dynamics can
be written in the form.

Dαe11(t) = − η1s1 − K̂1sign(s1(t)) + (Φ11 + Φ21)

− (Φ̂11 + Φ̂11)

Dαe12(t) = − η2s2 − K̂2sign(s2(t)) + (Φ12 + Φ22)

− (Φ̂12 + Φ̂12)

Dαe13(t) = − η3s3 − K̂3sign(s3(t)) + (Φ13 + Φ23) − (Φ̂13

+ Φ̂23) (45)

The SMS s j (t) is bounded and stable if the hybrid projective
compound combination synchronization controllers are cal-
culated as (41–42–43) for the error dynamics (36–37–38).
Thus, we get:

|s j (t)| ≤ �,where � > 0 (46)

Using Eq. (39) and (46), we obtain

e1 j (t) ≤ �, j = 1, 2, 3 (47)

According to the above discussions, it is clear that if the
SMS s j (t) is bounded, then the error e1 j (t) is also bounded.
Therefore, the nonlinear FODO based adaptive SMC syn-
chronization technique for FOchaotic systemswith unknown
BD can be compiled in the following theorem and will be
achieved by applying the FO Lyapunov method.

Theorem 1 (Shao et al. 2016; Khan and Tyagi 2017a, 2018)
For HPCCS error system (36–37–38) with 0 < α < 1, if
the SMS is designed according to (39) and unknown external
BD is approximated by using the developed nonlinear FODO
(13), and (14), then HPCCS error e(t) is eventually bounded
and stable under the adaptive SMC as (41–42–43) and (44).

Proof The Lyapunov function V (t) is selected for the con-
vergence of synchronization error e(t) as:

V (t) =
3∑
j=1

0.5s j (t)
2 +

3∑
j=1

0.5(Φ̃1 j (t) + Φ̃2 j (t))
2

+
3∑
j=1

0.5

(
1√
γ j

(K̂ j − K j )

)2

(48)

Using Property 2 in Eq. (48), we get

DαV (t) = 0.5(
3∑
j=1

Dαs j (t)
2 +

3∑
j=1

Dα(Φ̃1 j (t) + Φ̃2 j (t))
2

+
3∑
j=1

Dα

(
1√
γ j

(K̂ j − K j )

)2

(49)
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Substituting K̃ j = K̂ j − K j and Lemma 1 in Eq. (49), we
have

DαV (t) ≤
3∑
j=1

0.5s j (t)D
αs j (t)

+
3∑
j=1

0.5Dα(Φ̃1 j (t) + Φ̃2 j (t))
2

+
3∑
j=1

1√
γ j

K̃ j D
α

(
1√
γ j

K̃ j

)
(50)

On applying Property 2 in Eq. (50), we achieve

DαV (t) ≤
3∑
j=1

s j (t)D
αs j (t) +

3∑
j=1

0.5Dα(Φ̃1 j (t) + Φ̃2 j (t))
2

+
3∑
j=1

1

γ j
K̃ j D

α K̃ j (51)

Using Eq. (40) and substituting the value of Eq. (45) in (51),
we obtain

DαV (t) ≤
3∑
j=1

s j (t)(−η j s j + Φ̃1 j (t) + Φ̃2 j (t)

− K̃ j sign(s j (t)))

+
3∑
j=1

0.5Dα(Φ̃1 j (t) + Φ̃2 j (t))
2

+
3∑
j=1

1

γ j
K̃ j D

α K̃ j (52)

Applying Property 1 and using K̃ j = K̂ j −K j ( j = 1, 2, 3),
we get

Dα K̃ j = Dα K̂ j . (53)

where K j is a constant parameter.
In view of Eqs. (41) and (53), we obtain

3∑
j=1

1

γ j
K̃ j D

α K̃ j =
3∑
j=1

K̃ j (|s j (t)| − K̂ j )

=
3∑
j=1

K̃ j |s j (t)| −
3∑
j=1

K̃ j (K̃ j + K j )

=
3∑
j=1

K̃ j |s j (t)| − 1

2

3∑
j=1

K̃ 2
j

− 1

2

3∑
j=1

K̃ 2
j −

3∑
j=1

K̃ j K j

≤
3∑
j=1

K̃ j |s j (t)| − 1

2

3∑
j=1

K̃ 2
j + 1

2

3∑
j=1

K j
2

(54)

After substituting the above inequality equation (54) in (52),
we obtain

DαV (t) ≤
3∑
j=1

s j (t)(−η j s j (t) + Φ̃1 j (t)

+ Φ̃2 j (t) − K̂ j sign(s j (t)))

+
3∑
j=1

0.5Dα(Φ̃1 j (t) + Φ̃2 j (t))
2

+
3∑
j=1

K̃ j |s j (t)| −
3∑
j=1

0.5K̃ j
2 +

3∑
j=1

0.5K j
2

(55)

We notice that Eq. (55) can be rewritten as:

DαV (t) ≤ −
3∑
j=1

η j s
2
j (t) +

3∑
j=1

|s j (t)||Φ̃1 j + Φ̃2 j |

−
3∑
j=1

K̂ j |s j (t)| −
3∑
j=1

0.5K̃ j
2 +

3∑
j=1

0.5K j
2

+
3∑
j=1

K̃ j |s j (t)|

+
3∑
j=1

0.5Dα(Φ̃1 j (t) + Φ̃2 j (t))
2 (56)

We observe that

3∑
j=1

K̃ j |s j (t)| −
3∑

i= j

K̂ j |s j (t)| = −
3∑
j=1

K j |s j (t)| (57)

Using Eq. (57) and inequality |Φ1 j (t) + Φ2 j (t)| ≤ K j in
Eq. (56), we obtain

DαV (t) ≤ −
3∑
j=1

η j s
2
j (t) −

3∑
j=1

0.5K̃ j
2 +

3∑
j=1

0.5K j
2

+
3∑
j=1

0.5Dα(Φ̃1 j (t) + Φ̃2 j (t))
2 (58)
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Considering Eq. (24) in last term of Eq. (58), we get

3∑
j=1

0.5Dα(Φ̃1 j (t) + Φ̃2 j (t))
2

=
3∑
j=1

−(σ j − 0.5)(Φ̃1 j (t) + Φ̃2 j (t))
2 +

3∑
j=1

0.5ξ2j (59)

Substituting Eq. (59) in (58), we have

DαV (t) ≤
3∑
j=1

−η j s
2
j (t) −

3∑
j=1

0.5K̃ j
2 +

3∑
j=1

0.5K 2
j

+
3∑
j=1

−(σ j − 0.5)(Φ̃1 j (t) + Φ̃2 j (t))
2 +

3∑
j=1

0.5ξ2j

≤ −C2V (t) + C3 (60)

where C2 = min(2η j , 1, 2η j − 1) and C3 = ∑3
j=1 0.5ξ

2
j +∑3

j=1 0.5K
2
j .

On selecting the parameters η j > 0 and σ j > 0.5, the
HPCCS error is bounded. Using Lemma 2 in Eq. (60), we
get

|V (t)| ≤ 2C3

C2

=
∑3

j=1 ξ2j + ∑3
j=1 K

2
j

C2
. (61)

This implies that

‖s(t)‖ ≤
√
2(

∑3
j=1 ξ2j + ∑3

j=1 K
2
j )

C2
(62)

From Eq. (62), when t → ∞ the error e(t) and SMS s(t) are
bounded. Thus, from Lemma 2, the error dynamics (36–37–
38) are bounded and stable. Hence, HPCCS between three
master systems (29–30–31) and two slave systems (32–33)
is attained successfully. This completes the proof. 
�

7 Numerical Simulations

The initial states of the master systems (29–30–31) and slave
systems (32–33) are, respectively, taken as (x11, x12, x13) =
(−0.3, 0.1,−0.2), (x21, x22, x23) = (−0.5, 0.4,−0.3),
(x31, x32, x33) = (−0.7, 0.7,−0.4), (y11, y12, y13) =
(−0.9, 1,−0.5), (y21, y22, y23) = (−1.1, 1.3,−0.6), and
parameter values are (b1, b2, b3, b4) = (1.0, 1.1, 0.4, 1.0)
and α = 0.99 with step size h=0.001.Therefore , the
initial states for the error systems are (e11, e12, e13) =
(3.9, 2.6,−0.6) and (Θ̂1(0), Θ̂2(0), Θ̂3(0)) = (.1, .1, .1)

and (K̂1(0), K̂2(0), K̂3(0)) = (.5, .5, .5), the designed
parameters (σ1, σ2, σ3) = (120, 120, 120), (γ1, γ2, γ3) =
(.1, .1, .1),(η1, η2, η3) = (90, 90, 90), α1 = 1, α2 =
−1, α3 = −1, disturbance assumed as Φ11 = sign(sin(t +
1)), Φ12 = 5 cos 6t , Φ13 = 5(sin 4t + cos 4t), Φ21 =
sign sin(2(t +1)), Φ22 = 6 cos 5t , Φ23 = 4(sin 5t + cos 5t).
Phase portrait of Genesio–Tesi FO systems for α = 0.99 in
2-D and 3-D is depicted in Fig 1. HPCCS between signals
(y11 + y21) and (x11)(x21 + x31) and signals (y12 + y22) and
x12(x22+x32) and (y13+ y23) and x13(x23+x33) is shown in
Fig 2(a), 2(b), and 2(c), respectively. Synchronization errors
e11(t), e12(t), e13(t) are converging to zero in Fig. 2d. Time
trajectories of the BD Φ1 j +Φ2 j and disturbance estimation
Φ̂1 j + Φ̂2 j are illustrated in Fig. 3a–c. Disturbance estima-
tion errors converging to zero as shown in Fig. 4a–c. Control
inputs are displayed in Fig. 5a–c. Hence, simulation results
display that the suggested HPCCS scheme is suitable for
considered FO chaotic systems disturbances.

7.1 Comparison of Given HPCCS Schemewith
Previous Published Literature

Khan and Tyagi (2017a) studied FODO-based adaptive SMC
synchronization in the Genesio–Tesi system. They attained
error synchronization in approximately the minimum time
t = 0.04 when parameters (b1, b2, b3, b4)=(1.0, 1.1,
−0.232, 1.0) and order α = 0.8 are taken is illustrated
in Fig. 6b, whereas in the present scheme, we had consid-
ered HPCCS by a FODO-based adaptive SMC in which we
have taken five identical Genesio–Tesi systems (3 masters,
two slaves). In our studies, the error has been synchronized
approx at t = 0.025, as shown inFig. 6awith the sameparam-
eters and order as given above. Comparatively, the present
scheme takes less time to synchronize error trajectories. Till
date, the above-discussed approach is not considered by any
other researchers. This shows the novelty of our results.

8 A Secure Communication Scheme Based
on HPCCS

(Xiangjun et al. 2012; Khan and Nigar 2019) An essential
application of HPCCS is secure communication. The secure
communication system includes the evolution of a signal
that carries the information that is to endure undetectable
by interceptors within a transmitter signal. We can guaran-
tee the protection of this information by injecting it into a
chaotic signal that is transmitted to a designated receiver that
would be able to recognize and collect the data from the
chaotic message signal. In a masking method, the message
information signal I (t) = I1(t)(I2(t) + I3(t)) is added to
the chaotic master information signals and transmitted sig-
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Fig. 1 Phase portrait of Genesio–Tesi system. a x11(t)–x12(t) plane, b x12(t)–x13(t) plane, c x11(t)–x13(t) plane, d x11(t)–x12(t)–x13(t) space

nal P(t) = I (t)+ x12 ∗ (x22+ x32) is added to a slave signal.
The recovered signal Î (t) is obtained when the chaotic sig-
nal y12 + y22 is subtracted from the transmitted signal, i.e.,
Î (t) = P(t)−α2 ∗ (y12 + y22). We select the message infor-
mation signals in the form of I1(t) = sin 2t , I2(t) = 2 sin 2t
and I3(t) = 4 sin 2t . The message signal I (t) = 6 sin 2t2

and transmitted signal P(t) are demonstrated in Fig. 7a, b,
respectively. Figure 7c illustrates the recovered signal Ĩ (t).
The error among the initial message signal and the recovered
message one is displayed in Fig. 7d. From Fig. 7d, it is sim-
ple to see that the message signal I (t) is recovered correctly
after a little transient.

9 Conclusion

In this paper, we use the Caputo fractional-order derivative
because it has the significant benefits that it allows the initial
and boundary conditions in the formulation of the problem,
which is the essential requirement of applied problems. So
HPCCS has been achieved in five identical FO chaotic sys-
tems using Caputo FO, wherein three master systems and
two slave systems are considered. In this research work, a
nonlinear FODO-based adaptive SMC HPCCS scheme has
been investigated with unknown external BD of identical FO
Genesio–Tesi system. The considered adaptive SMC tech-
nique verifies that the states of three master systems and two
slave systems with unknown BD are synchronized rapidly by
using the Lyapunov stability criterion. As the upper bound of
disturbance is unknown, an adaptiveSMC technique has been
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Fig. 2 Hybrid projective compound combination synchronized as
under FO adaptive sliding mode control. a Between y11(t)+ y21(t) and
x11(t)(x21(t)+ x31(t)). b Between y12(t)+ y22(t) and x12(t)(x22(t)+

x32(t)). c Between y13(t) + y23(t) and x13(t)(x23(t) + x33(t)). d The
error state curve between systems(3 master, 1 slave ) tends to 0
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Fig. 3 Time trajectories of BD and disturbance estimation synchronization results. a Φ11(t) + Φ21(t) and Φ̂11(t) + Φ̂21(t), b Φ12(t) + Φ22(t) and
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Fig. 4 Observer errors. a Φ̃11(t) + Φ̃21(t), b Φ̃12(t) + Φ̃22(t), c Φ̃13(t) + Φ̃23(t)
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Fig. 5 Control inputs signals. a u11 + u21, b u12 + u22, c u13 + u23
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Fig. 6 a HPCCS error using adaptive SMC, b synchronization between two identical Genesio–Tesi system using adaptive SMC
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Fig. 7 a The information message signal I (t); b transmitted signal P(t); c recovered signal Î (t); d error message signal I (t) − Î (t)

proposed to estimate them. The designed nonlinear FODO
realizes disturbance approximation error. In our studies, the
time taken by the synchronization error converging to zero
is less in comparison with earlier published results. We have
considered five identical systems (3 masters, 2 slaves). It is
noticed that our technique is efficient and effective. Also,
with the growing requirement for security of transmission,
we design a proper application in the area of secure com-
munication. Further, in the future direction, we can study on
systems interrupted by model uncertainties and disturbance
in FO complex chaotic systems with matched disturbance
and mismatched disturbance using the adaptive SMC. To the
author’s knowledge, the study of HPCCS using adaptive slid-
ing mode control with BD has not yet been explored.
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