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Abstract
In this paper, we analyze the problem of the stabilization for discrete-time Takagi–Sugeno fuzzy parametric uncertain systems.
The stabilization conditions of these systems are investigated with two observers and two different Lyapunov functions:
nonquadratic and delayed nonquadratic. The stabilization conditions are analyzed between k and k + t sample variations in
the Lyapunov function. The obtained stabilization results represent an extension of previous works with one-sample variation
in discrete time. All the results are obtained in the form of linear matrix inequalities which are solved by using various convex
optimization algorithms. Two theorems are proposed, and comparison via simulation is given to demonstrate the robustness of
the proposed approaches. Nevertheless, this paper shows that the second proposed observer gives the less conservative results
(less restrictive). These reduced conservative results are demonstrated by a larger feasible area of stabilization (stabilization
domain) and a fast convergence of estimation errors compared to the first.

Keywords Linear matrix inequalities · Observers · Robust control · Stability analysis · Takagi–Sugeno model · Convex
optimization algorithms

1 Introduction

Takagi–Sugeno (T–S) fuzzy systems, called sector nonlinear-
ity approach (Takagi and Sugeno 1985), allow us to describe
a nonlinear model as collection of linear time-invariant mod-
els that are blended togetherwith nonlinear positive functions
sharing the convex sum property. The obtained T–S model
is not unique for a given nonlinear model, and the number
of linear models exponentially increases with the number of
nonlinearities involved in the model (Taniguchi et al. 2001).

One of themost important issues in the study of T–S fuzzy
systems is the analysis of the stability/stabilization of these
systems in both continuous and discrete time with or without
uncertainties, with state feedback or outputs feedback con-
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trollers and Lyapunov functions (Chadli and Guerra 2012;
Wang et al. 2015; Guerra andVermeiren 2004; Jia et al. 2015;
Jo et al. 2015; Guerra et al. 2012; Cao and Frank 2001). Via
various approaches, a great number of stability/stabilization
results for T–S fuzzy systems have been reported in the liter-
ature (Mozelli et al. 2009; Lee and Kim 2009; Latrach et al.
2015).

Many researches have been investigated with non-
quadratic Lyapunov functions with T–S nonlinear systems
(Lin et al. 2006; Tanaka et al. 2003; Manai and Benrejeb
2012a; Hui et al. 2015) to reduce the conservatism of the
quadratic Lyapunov function. Conservatism comes from dif-
ferent sources: the type of T–S fuzzy model, the way the
membership functions (MFs) are dropped off to obtain LMI
expressions (Lin et al. 2006; Tanaka et al. 2003), the integra-
tion of MFs information (Koo et al. 2011; Fang et al. 2006)
and the choice of Lyapunov function (Lee and Kim 2009;
Tanaka and Wang 2001; Kruszewski et al. 2008; Manai and
Benrejeb 2012b).

Several candidates of Lyapunov function have been pro-
posed in the literature attempting to obtain the less con-
servative results and have received increasing attention as
they attempt to relax the conservatism of stability and sta-
bilization results like the piecewise Lyapunov functions (Ke
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et al. 2011; Feng 2004, 2006; Zhang and Feng 2008; Qiu
et al. 2010; Johansson et al. 1999). Others introduce deci-
sion variables (slack variables) in order to provide additional
degrees of freedom to theLMIproblem (Sala andAriño2007;
Bouyahya et al. 2016, 2017). Some recent works investigate
a delayed nonquadratic Lyapunov function. They proved that
a little modification in the Lyapunov function gives a huge
feasible area of stabilization (Guerra et al. 2012; Kruszewski
et al. 2008;Daafouz andBernussou 2001; Lendek et al. 2015;
Xie et al. 2014). All these works have been investigated
with the asymptotic stability/stabilization problems which
represent the aim of this paper. Other works are recently
investigated with the pointwise-in-time eigenvalue condition
(Yueying et al. 2019) and novel time-dependent Lyapunov
functional (Jun and Huai-Ning 2018; Eksin 2004) for expo-
nential stability/stabilization analysis of T–S systems. Many
researchers investigate the problems of stability/stabilization
with controllers and observers.

In past decades, there have been many approaches inves-
tigating on observer synthesis for T–S fuzzy systems, such
as Ma et al. (1998), Xie et al. (2014) and Zhang et al. (2012).
An observer for fault estimation for discrete-time T–S fuzzy
systems was investigated in Dang andWang (2011) in which
fuzzy full-order and reduced-order fault estimation observers
were taken into account. In Boulkroune et al. (2014), an aug-
mented technique was used to design an observer for a T–S
fuzzy system in the presence of disturbances.With T–S fuzzy
uncertain systems, several approaches have been developed
also. Among of them, the observer-based controller was nec-
essary, where the observer and controller have been built
simultaneously (Gassara et al. 2010; Kchaou et al. 2010).
However, the uncertainties in these studies must be bounded
and satisfy some assumptions. Other work investigates the
sliding mode observer to estimate the state variables for a
T–S fuzzy system with uncertainties (Dang et al. 2012), but
their uncertainties must be bounded and the conditions of the
uncertaintiesmust be given from the beginning. Furthermore,
the influence of the uncertaintieswas handled by adding extra
parts to the conventional Luenberger observer in Dang et al.
(2012). Recently, a new approach for the observer synthesis
based on the unknown input method was developed in Yeh
et al. (2015) to estimate the state variables of an uncertainT–S
fuzzy system. Their method not only eliminates the influence
of the uncertainties but also guarantees that the estimation
error converges asymptotically to the equilibrium point zero.
The works presented in this paper is focused about the design
of two new fuzzy observers for the discrete-time parametric
T–S systems. In this work, these two observers are based
on the interpolation of classical Luenberger observer (1966)
with the addition of terms to overcome the uncertainties. The
additional terms in these observers represent the addition of
the uncertainties in the observers itself, and the gains are also
modified compared to the initial structure of Luenberger.

These two observers represent an extension of two exist-
ing observers in the literature (Guerra et al. 2012), and the
stabilization of this class of systems with these observers
is studied with two Lyapunov functions: nonquadratic and
delayed nonquadratic, each one is connected to one observer.
The study of the stability/stabilization with Lyapunov theory
in discrete time is done only by the study of the variation
of the Lyapunov function with one-sample variation or k-
samples variation if wewant our study to bemore precise. By
considering the variation with k-samples, we obtain a large
set of solutions in sense of LMI (feasible area of stabilization
or stabilization domain) and gives a better solutions and bet-
ter matrices controllers (fast convergence and decrease the
amplitude of signal control) than one-sample variation. The
stabilization with one-sample variation is done in Bouyahya
et al. (2015). This paper investigates the stabilization with
k-samples variation, and we consider the stabilization of the
estimation errors for uncertain parametric discrete-time Tak-
agi–Sugeno (T–S) models. The stabilization conditions by
the twoproposedobserverswere formulated as two theorems.
The comparison between the two conditions of stabilization
shows that the second is more effective than the first and
the second observer can be considered as a relaxed fuzzy
observer.

This paper is organized as follows. In the first section,
the problem formulation and the mathematical tools are pre-
sented. The second section is dedicated to the description of
a summary of the proposed observers and their stabilization
conditions with one-sample variation. In the third section, we
present the new stabilization conditions with k-samples vari-
ations. Fourth section is dedicated to the simulation results,
and comparison between the proposed theorems obtained
with each Lyapunov function is discussed. We finish by con-
clusion.

2 SystemDescription and Preliminaries

The discrete-time T–S fuzzy parametric uncertain model is
described by fuzzy «IF–THEN» rules, whose collection rep-
resents the approximation of the nonlinear system. The ith
rule of the T–S fuzzy model is of the following form.

If z1(t) isMi1 and . . . and z p(t) isMip then{
x(k + 1) � (A i + �A i )x(k) + (Bi + �Bi )u(k)
y(k) � (C i + �C i )x(k)

for i � { 1 . . . r} (1)

where Mi j (i � 1, 2 . . . r , j � 1, 2 . . . p) is a fuzzy set and r
is the number of model rules, x(k) ∈ �n is the states vector;
u(k) ∈ �m is the input vector; Ai ∈ �n×n represent the
state matrices; Bi ∈ �n×m represent the control matrices;
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Ci ∈ �n×m represent the output matrices; and z1(k), . . . ,
z p(k) are known premise variables. �Ai , �Bi , �Ci are
time-varying matrices representing parametric uncertainties
in the T–S model. These uncertainties are bounded in norm
and structured.

The final outputs of the fuzzy parametric uncertain T–S
system are
⎧⎪⎪⎨
⎪⎪⎩
x(k + 1) �

r∑
i�1

hi (z(k)){(Ai + �Ai )x(k) + (Bi + �Bi )u(k)}

y(k) �
r∑

i�1
hi (z(k))(C i + �C i )x(k)

(2)

where

z(k) � [
z1(k) z2(k) . . . z p(k)

]
(3)

hi (z(k)) � wi (z(k))∑r
i�1 wi (z(k))

(4)

wi (z(k)) �
p∏

j�1

Mi j
(
z j (k)

)
(5)

For each sample k, the term Mi1
(
z j (k)

)
is defined as the

membership degree of z j (k) in Mi j .
Since

⎧⎨
⎩

r∑
i�1

wi (z(k)) � 0

wi (z(k)) ≥ 0 i � 1 . . . r
, (6)

we have
⎧⎨
⎩

r∑
i�1

hi (z(k)) � 1

hi (z(k)) ≥ 0 i � 1, 2 . . . r

for all k (7)

Lemmas 1–5 present the techniques and tools used through
the development of the next theorems. Each of these tech-
niques is important in the development of the stabilization
condition.

Lemmas 1 and2 represent a simplification technique of the
quadratic form for somematrix representations, and Lemmas
3–5 represent some techniques of relaxation (complexity’s
reduction) for the stability and stabilization form.

The uncertainties can be replaced to matrices under the
following form.
{

�A � Ha�az Ea

‖�az‖2 ≤ 1
,

{
�B � Hb�bz Eb

‖�bz‖2 ≤ 1
,

{
�C � Hc�cz Ec

‖�cz‖2 ≤ 1

Lemma 1 (Schur Complement) (Boyd et al. 1994) If P ∈
�m×m definite positive matrix, X ∈ �m×n full rank matrix

in line, and Q ∈ �n×n anymatrix both following inequalities
are equivalent.

1. Q(s) − XT (s)P−1(s)X(s) > 0, P(s) > 0 (8)

2.

[
Q(s) (∗)

X(s) P(s)

]
> 0. (9)

Lemma 2 (Wang and Mendel 1992) Let us consider X and
Y , Q � QT > 0matrices with appropriate dimensions, the
following inequality holds.

XY T + Y XT ≤ XQXT + Y Q−1Y T . (10)

Relaxation Whatever the choice of the Lyapunov function,
the analysis of the stabilization leads us to the next inequality
(11).

r∑
k�1

r∑
i�1

r∑
i< j

vi hi h j x
TΥ k

i j x < 0 (11)

Lemma 3 (Tong et al. 2011) Equation (11) for discrete time
is fulfilled if the following conditions hold:

Υ k
ii ≺ 0 ∀ i , k ∈ {1 . . . r} (12)

2

r − 1
Υ k
ii + Υ k

i j
+ Υ k

ji
≺ 0 ∀ i , j , k ∈ {1 . . . r} , i �� j . (13)

Lemma 4 (Guerra et al. 2012)Consider the symmetricmatri-
ces Υi1...ik , j1... jk hold true if the next conditions are true for
each (i1 . . . ik) ∈ {1 . . . r}k and ( j1 . . . jk) ∈ {1 . . . r}k , such
that in ≤ jn , n ∈ {1 . . . r}.
∑
l1∈I1

∑
l1∈I1
m1 ��l1

. . .
∑
lk∈Ik

∑
lk∈Ik
mk ��lk

Υl 1,...l k ,m 1,...m k < 0

with In � {in , jn}, n ∈ {1 . . . k}. (14)

Note: define the following expression

Yz(k−1),z(k),...z(k+t−1),z(k),....z(k+t−1)

�
r∑

ik−1�1

hi0 (z(k)) × (
r∑

i0�1

r∑
ik−1�1

. . .

r∑
i0�1

r∑
ik−1�1

hi1 (z(k))

× hik (z(k + t − 1)) × · · · × h jk (z(k + t − 1))Υ i 0
i 1,...i k , j 1,... jk

.

(15)

As usual, the stability conditions will be depending on the
definite negativity of the previous multiple sums. Then, Eq.
(14) can be written under the form below.

Yz(k−1),z(k),...z(k+t−1),z(k),...z(k+t−1) < 0 (16)
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Lemma 5 [Finsler’s lemma (Skelton et al. 1998)] Consider
two matrices Q � QT ∈ R

n×n , R ∈ R
m×n and the

vector x ∈ R
n such that rank (R) < n. The following two

expressions are equivalent:

1. xT Qx ≺ 0 ∀x ∈ {x ∈ R
n, x �� 0, Rx � 0}

2. ∃ M ∈ R
n×m such that Q + MR + RT MT < 0

These lemmas are required items for the stabilization anal-
ysis and the observer design. Next sections illustrate its use.

In the next, a brief presentation of the discrete T–S system
stabilization is necessary for the understanding of our con-
tribution. This presentation contains both the nonquadratic
and delayed nonquadratic delayed Lyapunov functions and
the two observers proposed by Guerra et al. (2012) in the
discrete-time without uncertainties. All the development
details can be found in Guerra et al. (2012).

Consider a class of discrete-time nonlinear system
described by the following T–S fuzzy model:

If z1(t) is Mi1 and z2(t) is M21 . . . and z p(t) isMip then{
x(k + 1) � Ai x(k) + Bi u(k)
y(k) � Ci x(k)

for i � {1 . . . r} (17)

The overall discrete-time T–S fuzzy model is represented
under the following form:

{
x(k + 1) � Az(k) x(k) + Bz(k) u(k)
y(k) � Cz(k) x(k)

(18)

with

Az �
r∑

i�1

hi (z(k))Ai , Bz �
r∑

i�1

hi (z(k))Bi , Cz �
r∑

i�1

hi (z(k))Ci

where hi (z(k)) denotes the ith normalized fuzzy weighting
function. Recently, two fuzzy observers given by Eqs. (19)
and (20) based on nonquadratic and delayed nonquadratic
Lyapunov functions are designed by (Guerra et al. 2012).

{
x̂(k + 1) � Az(k) x̂(k) + Bz(k) u(k) + G−1

z(k)Kz(k)(y(k) − ŷ(k))
ŷ(k) � Cz(k) x̂(k)

(19)

and

⎧⎨
⎩
x̂(k + 1) � Az(k) x̂(k) + Bz(k) u(k)
+G−1

z(k−1)z(k)Kz(k−1)z(k)(y(k) − ŷ(k))
ŷ(k) � Cz(k) x̂(k)

(20)

The less conservative results of estimated error are given by
observer in Eq. (20) than the first in Eq. (19). That means bet-
ter results in the sense of feasibility of the nonlinear model

and a fast convergence of the state’s variables to the equilib-
rium point zero are obtained.

In Eqs. (19) and (20), x̂(k) is the estimated state, and
G z(k) , K z(k) , G z(k−1)z(k) , K z(k−1)z(k) are the observer
matrices given by:

⎧⎪⎪⎨
⎪⎪⎩
Gz(k) �

r∑
i�1

r∑
j�1

h i (z(k − 1))h j (z(k))G j

Kz(k) �
r∑

i�1

r∑
j�1

h i (z(k))h j (z(k))K j

,

⎧⎪⎪⎨
⎪⎪⎩
Gz(k−1)z(k) �

r∑
i�1

r∑
j�1

h i (z(k − 1))h j (z(k))Gi j

Kz(k−1)z(k) �
r∑

i�1

r∑
j�1

h i (z(k − 1))h j (z(k))Ki j

G j , K j , Gi j , Ki j are the fuzzy observer’s matrices to be
determined by the LMI algorithm.

For consistency, with the relaxed observer (20) the esti-
mation error becomes:

e(k + 1) � (Az(k) − G−1
z(k−1)z(k)Kz(k−1)z(k)Cz(k))e(k) (21)

where e(k) � x(k) − x̂(k)
By the use of the delayed nonquadratic Lyapunov function

(Guerra et al. 2012),

V (e, z) � eT (k)

(
r∑

i�1

hi (z(k − 1))Pi

)
e(k) � eT (k)Pz(k−1)e(k) (22)

The condition of stabilization of discrete-time T–S with
observer in Eq. (20) is given by the next theorem:

Corollary (Guerra et al. 2012) The estimation error (21) is
globally asymptotically convergent if there exist matrices
Gi j , Ki j , Pi such that conditions (12) and (13) of Lemma
3 hold with Υ k

i j defined by:

Υ k
i j �

[−Pk (∗)
G jk Ai − K jkCi −G jk − GT

jk + Pj

]
< 0 (23)

In the next section, a brief presentation of the stabilization
analysis for discrete-time T–S parametric uncertain model
based on a nonquadratic and delayed nonquadratic Lya-
punov functions in the discrete case. The variation of the
Lyapunov function is considered for one-sample variation.
If the final equation of this variation is negative, we obtain
a sufficient condition of the T–S parametric uncertain stabi-
lization with the output feedback. Two theorems are proposed
(Bouyahya et al. 2015), and the two last observers are lit-
tle modified to facilitate the development of the stabilization
condition.
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3 Generalization for One-Sample Variation

3.1 Nonquadratic Lyapunov Function

Let us consider the following discrete-time Takagi–Sugeno
parametric uncertain system:

{
x(k + 1) � (Az(k) + �Az(k))x(k) + (Bz(k) + �Bz(k))u(k)
y(k) � (Cz(k) + �Cz(k))x(k)

(24)

With

Az(k) �
r∑

i�1

h i (z(k))A i , Bz(k) �
r∑

i�1

h i (z(k))Bi ,

Cz(k) �
r∑

i�1

h i (z(k))C i

�Az(k) �
r∑

i�1

h i (z(k))�A i , �Bz(k) �
r∑

i�1

h i (z(k))�Bi ,

�Cz(k) �
r∑

i�1

h i (z(k))�C i

The observer given by Eq. (25) represents an observer taking
in account uncertainties in order to reduce the number of
LMIs and the matrix size of the final condition of stability
Υ k
i j .

⎧⎨
⎩
x̂(k + 1) � (Az(k) + �Az(k))x̂(k) + (Bz(k) + �Bz(k))u(k)
+G−1

z(k)Kz(k)(y(k) − ŷ(k))
ŷ(k) � (Cz(k) + �Cz(k)) x̂(k)

(25)

The observers (19) and (20) with the T–S parametric uncer-
tain system give a very complex result in terms of LMI. So,
the estimation error with the use of the nonquadratic Lya-
punov function can be written in the following form:

e(k + 1) � ((Az(k) + �Az(k)) − G−1
z(k)Kz(k)(Cz(k) + �Cz(k)))e(k)

(26)

The nonquadratic Lyapunov function is written under the
following form in Eq. (27).

V (e, z) � eT (k)

(
r∑

i�1

hi (z(k))Pi

)
e(k) � eT (k)Pz(k)e(k)

(27)

Equation (28) represents the final LMI inequality satisfied
the stabilization of the considered uncertain systemwith non-

quadratic Lyapunov function. All the development details are
found in (Bouyahya et al. 2015).

Υ k
i j �

⎡
⎢⎢⎣

−Pi (∗) (∗) (∗)

G j Eai −λI 0 0
K j Eci 0 −τ I 0
G j Ai − K jCi 0 0 −GT

j − G j + Pk + λHaHT
a + τHcHT

c

⎤
⎥⎥⎦ ≤ 0

(28)

For this result, the next theorem was stated:

Theorem 1 (Bouyahya et al. 2015) The estimation error (26)
is globally asymptotically stable if there exist definite posi-
tive symmetric matrices Pi and matrices Gi , Ki {i �} and
scalars λ, τ such that conditions (12) and (13) of Lemma 3
hold with Υ k

i j defined in (28).
In the next part of this section, relaxed conditions are pro-

posed using a delayed nonquadratic Lyapunov function. In
order to design a new fuzzy observer, this Lyapunov function
is proposed.

Remark The delayed nonquadratic Lyapunov function is
obtained from the classic nonquadratic form (Eq. 27) by
replacing Pz(k) by Pz(k−1), and the relaxed observer is
obtained from thefirst observer (Eq. 25) by replacingGz(k) by
Gz(k−1)z(k) and Kz(k) by Kz(k−1)z(k). This little modification
reduces the conservatism of the first stabilization condition
represented in Theorem 1.

3.2 Delayed Nonquadratic Lyapunov Function

The observer design with the use of delayed nonquadratic
Lyapunov function is written under the following form.

⎧⎨
⎩
x̂(k + 1) � (Az(k) + �Az(k))x̂(k) + (Bz(k) + �Bz(k))u(k)
+G−1

z(k−1)z(k)Kz(k−1)z(k)(y(k) − ŷ(k))
ŷ(k) � (Cz(k) + �Cz(k))x̂(k)

(29)

In this case, the estimation error can be written in the form
given by Eq. (30).

e(k + 1) � ((Az(k) + �Az(k))

− G−1
z(k−1)z(k)Kz(k−1)z(k)(Cz(k) + �Cz(k)))e(k)

(30)

The delayed nonquadratic Lyapunov function is written
under the following form

V (e, z) � eT (k)

(
r∑

i�1

hi (z(k − 1))Pi

)
e(k) � eT (k)Pz(k−1)e(k)

(31)
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The estimation error (30) converges if the following inequal-
ity is satisfied.

Υ k
i j �

⎡
⎢⎢⎣

−Pk (∗) (∗) (∗)

G jk Eai −λI 0 0
K jk Eci 0 −τ I 0
G jk Ai − K jkCi 0 0 −GT

jk − G jk + Pj + λHaHT
a + τHc H T

c

⎤
⎥⎥⎦ ≤ 0 (32)

Therefore, the following theorem was stated:

Theorem 2 (Bouyahya et al. 2015) The estimation error (30)
is globally asymptotically stable if there exist symmetric
definite positive matrices Pi and matrices Gi j , Ki j and
scalars λ, τ such that conditions (12) and (13) of Lemma 3
hold with Υ k

i j defined in (32).
The proposed Theorems 1 and 2 represent two sufficient

conditions for the stabilization of the estimation error with
one-sample variation. These results can be extended more
by considering the variation of the Lyapunov function with
k-samples. So in the next section, the stabilization condition
of k-samples variations will be discussed.

4 Generalization for k-Samples Variations

In discrete-time case, when more samples are considered,
the results become less conservative in both controllers and
observers. The main idea of the k-samples variation form is
to replace the one-sample variation of the Lyapunov function
by its variation over k-samples. Considering the k-samples
variation with a nonquadratic and delayed nonquadratic Lya-
punov functions represent the aim of this section. It is based
on a one-sample variation using an extended state vector with
the use of the past values of the state vector. It is written under
the Finsler’s lemma form (Skelton et al. 1998). The idea, in
this case, is to use the higher-order variation in the state vec-
tor. The advantage of Finsler’s lemma representation is to
present a natural extension of the conditions of stabilization
with observer. It provides a unified framework to solve stabi-
lization problems. So, the state vector in this case of observer
design is replaced by the estimation error vector.

For k-samples variations, the estimation error vector
becomes

ET
0...t (k) �

[
eT (k) eT (k + 1) . . . eT (k + t)

]
(33)

By replacing the estimation error by its estimation error vec-
tor (33), the Lyapunov function becomes

V (E0...t−1, z) � ET
0...t−1(k)Ξz(k−1)...z(t+k−2)E0...t−1(k) (34)

With the symmetric matrix, Ξz(k−1)...z(t+k−2) > 0 and
Ξz(k−1)...z(t+k−2) � diag(Pz(k−1) Pz(k) . . . Pz(k+t−2)).

The variation of the Lyapunov function for each k-samples
is given in the following equation:

�V (E0...k−1, z) � ET
0...t−1(k) Qz(k−1)...z(k+t−1) E0...t−1(k)

� ET
0...t−1(k)

⎛
⎜⎜⎝

[
0n×n 0n×kn

0kn×n Ξz(k)...z(t+k−1)

]

−
[

Ξz(k−1)...z(t+k−2) 0kn×n

0n×kn 0n×n

]
⎞
⎟⎟⎠E0...t−1(k)

(35)

with Qz(k−1)...z(k+t−1) �
[
0n×n 0n×kn

0kn×n Ξz(k)...z(t+k−1)

]
−[

Ξz(k−1)...z(t+k−2) 0kn×n

0n×kn 0n×n

]
.

The dynamic of the estimation error at different samples
is written under the following form.

⎡
⎢⎢⎢⎢⎣

Āz(k−1)z(k) −I 0 . . . 0

0 Āz(k)z(k+1)
. . .

. . .
...

... 0
. . .

. . . 0
0 · · · 0 Āz(k+1)z(k+2) −I

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

e(k)
e(k + 1)

...
e(k + t)

⎤
⎥⎥⎥⎦ � 0

(36)

such as Āz(k−1)z(k) � (Az(k) + �Az(k)) − G−1
z(k)Kz(k)(Cz(k) +

�Cz(k)).

In order to use Lemma 5 (Finsler’s lemma), the k-samples
variation of Lyapunov function is written as follows:

Qz(k−1)...z(k+t−1) + M

⎡
⎢⎢⎢⎢⎢⎣

Āz(k−1)z(k) −I 0 . . . 0

0 Āz(k)z(k+1)

. . .
. . .

...
... 0

. . .
. . . 0

0 · · · 0 Āz(k+1)z(k+2) −I

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
R

+(∗) < 0

(37)
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where (*) represents RT MT , withM being an appropriate
matrix written in the following form:

Mz(k)...z(k+t−1) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0

Gz(k)
. . .

...

0 Gz(k)
. . .

...
...

. . .
. . . 0

0 · · · 0 Gz(k+t−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

This equation can be written with the use of Lemma 2 in the
form (38):

⎡
⎢⎢⎢⎢⎢⎣

−Pz(k) + Ω 1
0 (∗)

G z(k)A z(k) − K z(k)C z(k) −G z(k) − G T
z(k) + Ω 2

0

. . .
. . .

0
. . .

. . . 0

. . .
. . .

. . . (∗)

G z(k+t−1)A z(k+t−1) − K z(k+t−1)C z(k+t−1) −G z(k+t−1) − GT
z(k+t−1) + P z(k+t−1) + Ω 2

k−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(38)

where Ω2
i � τ i H aHT

a + μi HcHT
c Ω1

i �
τ−1
i GT

z(k+i)E
T
a z(k+i)Ea z(k+i)Gz(k+i) + μ−1

i K T
z(k+i)E

T
cz(k+i) Ecz(k+i)Kz(k+i).

Using Lemma 1 (Schur complement), the final condition
of observer stabilization is written in the following form.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Pz(k) (∗) (∗) (∗) 0
Kz(k)Ecz(k) −μ0 I 0 0
Gz(k)Eaz(k) 0 −τ0 I 0

Gz(k)Az(k) − Kz(k)Cz(k) 0 0 −GT
z(k) − Gz(k) + Ω2

0

. . .

0
. . .

. . .
...

. . .
. . .

... 0

... 0
0 · · · · · · 0

· · · · · · · · · 0
...

. . .
...
...

0 0 0
−GT

z(k) − Gz(k) + Ω2
k−2 (∗) (∗) (∗)

Kz(k)Ebz(k) −μk−1 I 0 0
Gz(k)Eaz(k) 0 −τk−1 I 0
Gz(k)Az(k) − Kz(k)Cz(k) 0 0 −GT

z(k) − Gz(k) + Ω2
k−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(39)

The use of Lemma 4 leads us to the following inequality

Υi1,...ik , j1,... jk �⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Pi1 (∗) (∗) (∗) 0
K j1Eci1 −μi1 I 0 0
G j1Eai1 0 −τi1 I 0

G j1 Ai1 − K j1Ci1 0 0 −GT
j1

− G j1 + Ω2
j1

. . .

0
. . .

. . .
...

. . .
. . .

... 0

... 0
0 · · · · · · 0

. . . . . . . . . 0
...

. . .
...
...

0 0 0
−GT

jk−1
− G jk−1 + Ω2

jk−1
(∗) (∗) (∗)

K jk Ecik −μik I 0 0
G jk Eaik 0 −τik I 0
G jk Aik − K jkCik 0 0 −GT

jk
− G jk + Pjk + Ω2

jk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (40)

This inequality represents a sufficient condition of stabiliza-
tion of the estimation error with observer design (25) for
k-samples variations with (k ≥ 2). Therefore, we state the
following theorem.

Theorem 3 The estimation error (26) is globally asymptoti-
cally stable with k-samples variation if there exist symmetric
definite positivematrices Pi andmatrices Gi , Ki and scalars
λi , τi such that conditions (12) and (13) of Lemma 3 hold
with Υi1, ...ik , j1, ... jk defined in (40).
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The relaxed observer design (29) leads us to relaxed con-
ditions of estimation errors stabilization by using a delayed
Lyapunov function, which its parameters depend on k-
samples variations (k ≥ 2) with normalized fuzzy weighting
functions.

For the second observer, the dynamic of the estimation
error at different samples is written under the following form.
⎡
⎢⎢⎢⎢⎢⎣

Āz(k−1)z(k) −I 0 . . . 0

0 Āz(k)z(k+1)
. . .

. . .
...

... 0
. . .

. . . 0
0 . . . 0 Āz(k+1)z(k+2) −I

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

e(k)
e(k + 1)

...
e(k + t)

⎤
⎥⎥⎥⎦ � 0

(41)

such as Āz(k−1)z(k) � (Az(k) + �Az(k)) −
G−1

z(k−1), z(k)Kz(k−1), z(k)(Cz(k) + �Cz(k)).

In order to use Lemma 5 (Finsler’s lemma), the k-samples
variation of Lyapunov function is written as follows:

Qz(k−1)...z(k+t−1) + M

⎡
⎢⎢⎢⎢⎢⎢⎣

Āz(k−1)z(k) −I 0 . . . 0

0 Āz(k)z(k+1)

. . .
. . .

...
... 0

. . .
. . . 0

0 . . . 0 Āz(k+1)z(k+2) −I

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
R

+(∗) < 0

(42)

where (*) represents RT MT , with M being an appropriate
matrix written in the following form:

Mz(k)...z(k+t−1) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0

Gz(k−1)z(k)
. . .

...

0 Gz(k)z(k+1)
. . .

...
...

. . .
. . . 0

0 . . . 0 Gz(k+t−2)z(k+t−1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

This equation can be written with the use of Lemma 2 in the
form (43):

⎡
⎢⎢⎢⎢⎣

−Pz(k) + �1
0 (∗)

Gz(k−1) z(k)Az(k) − K z(k−1)z(k)Cz(k) −Gz(k−1) z(k) − GT
z(k−1)z(k) + �2

0
. . .

. . .

0
. . .

. . . 0

. . .
. . .

. . . (∗)

Gz(k−t−2)z(k+t−1)Az(k+t−1) − Kz(k−t−2)z(k+t−1)Cz(k+t−1) −Gz(k−t−2)z(k+t−1) − GT
z(k−t−2)z(k+t−1) + Pz(k+t−1) + �2

k−1

⎤
⎥⎥⎥⎥⎥⎦

< 0

(43)

where Ω2
i � τi HaHT

a + μi HcHT
c and Ω1

i �
τ −1
i GT

z(k+i−1)z(k+i)E
T
a z(k+i)Ea z(k+i)Gz(k+i−1)z(k+i) +

μ−1
i K T

z(k+i−1)z(k+i)E
T
cz(k+i)Ecz(k+i)K z(k+i−1)z(k+i).

Using Lemma 1 (Schur complement), the final condition
of observer stabilization is written in the following form.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Pz(k) (∗) (∗) (∗)

Kz(k−1)z(k)Ecz(k) −μ0 I 0 0
Gz(k−1)z(k)Eaz(k) 0 −τ0 I 0
Gz(k−1)z(k)Az(k) − Kz(k−1)z(k)Cz(k) 0 0 −GT

z(k−1)z(k) − Gz(k−1)z(k) + Ω2
0

0
. . .

. . .

.

.

.
. . .

. . .

.

.

.

.

.

.
0 · · · · · · 0

0 . . . . . . . . .

. . .
. . .

. . .
. . .

. . .

−GT
z(k−1)z(k) − Gz(k−1)z(k) + Ω2

k−2 (∗) (∗) (∗)

Kz(k−1)z(k)Ebz(k) 0 0
Gz(k−1)z(k)Eaz(k) 0 0
Gz(k−1)z(k)Az(k) − Kz(k−1)z(k)Cz(k) 0 0 −GT

z(k−1)z(k) − Gz(k−1)z(k) + Ω2
k−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(44)

123



582 Journal of Control, Automation and Electrical Systems (2020) 31:574–587

The use of Lemma 4 leads us to the following inequality

Υi1,...ik , j1,.... jk−1, jk �
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Pi1 (∗) (∗) (∗)

K j0 , j1 Eci1 −μi1 I 0 0
G j0 , j1 Eai1 0 −τi1 I 0
G j0 , j1 Ai1 − K j1Ci1 0 0 −GT

j0 , j1
− G j0 , j1 + Pi1 + Ω2

j0 , j1

0
. . .

.

.

.

.

.

. 0

.

.

. 0
0 0

0 . . . . . . . . . 0
.
.
.
.
.
.

. . .
.
.
.

0 0 0
−GT

jk−2 , jk−1
− G jk−2 , jk−1 + Pjk−1 + Ω2

jk−1
(∗) (∗) (∗)

K jk−1, jk Ecik −μik I 0 0
G jk−1, jk Eaik 0 −τik I 0
G jk−1, jk Aik − K jk−1, jk Cik 0 0 −GT

jk−1, jk
− G jk−1, jk + Pjk + Ω2

jk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0

(45)

This inequality represents a sufficient condition of stabiliza-
tion of the estimation error with observer design (30) for
k-samples variations with (k ≥ 2). Therefore, we state the
following theorem.

Theorem 4 The estimation error (30) is globally asymptoti-
cally stable with k-samples variation if there exist symmetric
definite positive matrices Pi and matrices Gi j , Ki j and
scalars λi , τ i such that conditions (12) and (13) of Lemma
3 hold with Υi1, ...ik , j1, .... jk−1, jk defined in (45).

Theorem 4 develops relaxation of new fuzzy observer
design (29), which permits a reduction in the conservatism
of observer (25) and to significantly increase the solution
sets for nonlinear models. Under the framework of multi-
ple matrices, a relaxed fuzzy observer and a nonquadratic
delayed Lyapunov function have been proposed to obtain the
less conservative results. In the next section, a comparative
study illustrates these results.

5 Numerical Application and Validation
of Results

Consider the T–S discrete-time uncertain system with two
rules

A1 �
(

1 −a
0.2 1.5

)
A2 �

(
0.5 −2
0.2 0.1

)

Ha1 �
(
0.1 0.2
0 −0.2

)
Ha2 �

(−0.9 1
0.3 0.33

)

C1 � (−b 0.5
)

C2 � (
1 1

)
, Ea1 � (

1 0.3
)

Ec1 � (
1 −2

)
, Ec2 � (

1 0.23
)

Hc1 � (−1 0.4
)
, Hc2 � (−1.2 0.3

)
, Ea2 � (

0.6 1
)

The matrices Ha1 , Ha2 , Ea1 , Ea2 , Ec2 , Hc1 and Hc2 repre-
sent the uncertainties, and a, b are two scalars such that a �
[0, 6], b � [0, 3].

For the simulation purpose, we choose

h1(y) � 1 − h2(y) � 1

2
(1 + cos(y))

Figure 1 represents the sets of solutions with the use of
theorem 1with circlemark (°) and theorem 2with point mark
(·).

We conclude that the stabilization condition with relaxed
observer [Eq. (29)] with one-sample variation gives a larger
set of solution than the classical observer for T–S uncertain
system given in Eq. (25).

All the simulation results for stability condition with k-
samples variations are realized with k � 2. Consider another
uncertain T–S fuzzy model represented by two linear fuzzy
models r � 2:

A1 �
(
0.31 −0.96
−0.2 0.5

)
A2 �

(
0.5 −2
0.2 0.1

)

Ha1 �
(
0.1 0.2
0 −0.2

)
Ha2 �

(
0.3 0.33

−0.9 1

)

Ea1 �
(

1 0.3
0.1 1

)
Ea2 �

(
0.6 1
0.1 1

)
C1 � (−1 1

)

C2 � (
1 1

)
Ec1 � (

1 −2
)

Ec2 � (
1 0.23

)
Hc1 � (−1 0.4

)
, Hc2 � (−1.2 0.3

)

The application of Theorem 3 with the previous example
gives the following results:

P1 � 10−10 ×
(−0.0717 −0.0333

−0.0333 0.2961

)

P2 � 10−10 ×
(−0.0921 −0.0551

−0.0551 0.1830

)

G1 � 10−10 ×
(
0.1413 −0.0852
0.0576 0.4042

)

G2 � 10−10 ×
(

0.1791 −0.0729
−0.1269 0.6689

)
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Fig. 1 Set of solutions

Fig. 2 Evolution of estimation
error sub-model 1

K1 � 10−11 ×
(−0.0650

0.5407

)
K2 � 10−11 ×

(−0.4363
0.6037

)

τ2 � −1.2603 × 10−12 λ1 � 4.4316 × 10−11

τ2 � 5.4789 × 10−12 λ2 � 5.2112 × 10−11

The application of Theorem 4 with the previous example
gives the following results:

P1 � 10−9 ×
(
0.0469 0.0040
0.0040 0.1089

)

P2 � 10−11 ×
(
0.5480 0.1911
0.1911 0.6204

)

G11 � 10−9 ×
(

0.0411 −0.0007
−0.0254 0.2312

)

G12 � 10−9 ×
(

0.0319 −0.0127
−0.0465 0.1805

)

G21 � 10−10 ×
(
0.5920 −0.3800
0.1652 0.9015

)

G22 � 10−9 ×
(

0.0342 −0.0087
−0.0227 0.1455

)

K11 � 10−10 ×
(−0.0826

0.1421

)
K12 � 10−10 ×

(−0.1069
0.2097

)

K21 � 10−10 ×
(−0.2136

−0.0675

)
K22 � 10−11 ×

(−0.5709
0.8883

)
,

τ1 � −1.1344 × 10−11, λ1 � 4.5873 × 10−11,

τ2 � −8.2571 × 10−12, λ 2 � 2.7114 × 10−11
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Fig. 3 Evolution of estimation
error sub-model 2

Fig. 4 Evolution of estimation
error of global system

Figures 2, 3 and 4 represent the evolution of the estima-
tion error for all sub-systems and the global system, with
the observer design (25) and stabilization conditions with
k-samples variations (Theorem 3).

Figures 5, 6 and 7 represent the evolution of the estima-
tion error for all sub-systems and the global system, with
the relaxed observer design (29) and stabilization conditions
with k-samples variations (Theorem 4).

Remark 1 Comparing Figs. 5, 6 and 7 with Figs. 2, 3 and 4,
the relaxed observer in Eq. (29) reduced the amplitudes and
gives a fast convergence of the estimation errors.

Remark 2 The variation of the Lyapunov function is negative
means that all the estimation errors should be convergent to
the equilibrium point of systems. These figures demonstrate
the estimation errors convergence to the equilibrium point
zero.
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Fig. 5 Evolution of estimation
error sub-model 1

Fig. 6 Evolution of estimation
error sub-model 2

The use of the delayed nonquadratic Lyapunov function
gives the less conservatism results, such as a larger set of
solution with one-sample variation and a fast convergence of
estimation error with k-samples variation.

6 Conclusion

This paper developed relaxations of new fuzzy observer
designs with the use of nonquadratic and delayed non-
quadratic Lyapunov functions, where the second allowed us

to reduce the conservatism of the first approach and to signif-
icantly increase the solution sets for nonlinearmodels. Under
the framework of linear matrix inequality, a new relaxed
fuzzy observer has been proposed with k-samples variations;
the relaxation quality has been significantly improved. The
effectiveness of the proposed approaches has been illustrated
through numerical examples. Future research includes the
development of design methods using delayed nonquadratic
Lyapunov functions, with new fuzzy observer and fuzzy con-
troller with discrete-time nonparametric, mixed uncertain
and periodic T–S systems.
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Fig. 7 Evolution of estimation
error of global system
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