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Abstract
Grid-connected inverters play an important role in renewable energy system nowadays, serving as an interface between the
renewable energy source and the grid. However, the PWM modulation used to control the converters produces harmonic
content that must be filtered properly. In this paper, an active damping strategy is used with a three-phase power converter
with an LCL filter to achieve harmonic rejection. The control strategy which will be used is a continuous control set model
predictive control (CCS-MPC) based on a state-space model of the system. This controller must ensure that the injected grid
currents track sinusoidal references and reject harmonic disturbances from the grid voltage. This is achieved by using an
augmented model of the system that contains resonant controllers. Following the unconstrained CCS-MPC methodology, a
fixed gain controller that can be implemented similarly to a classical state-space feedback controller is obtained. An analysis
of the impact of the CCS-MPC tuning parameters on the closed-loop response is made. Also, an a posteriori linear matrix
inequality approach is used to show that the resulting closed-loop system is robust in regard to grid inductance uncertainties
and variations. Simulation and experimental test results show that the proposed controller yields good results, complying with
the IEEE 1547 Standard grid currents harmonic limits.

Keywords Model predictive control · LCL filter · Grid-connected converters · Current control · LMI robust analysis

1 Introduction

An important engineering problem with renewable energy
systems is the connection with the electric grid. The interface
between the primary renewable energy source and the grid is
usually carried out by a power converter which is responsi-
ble for the power control of the system. Generally, low-pass
filters are used in order to reduce the harmonic content of the
currents injected into the grid, which are caused by the PWM
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modulation. The limits for this harmonic content are deter-
mined by international standards such as IEEE 1547, IEC
61727 or IEC 61000-3-2 standards (IEEE 2011; IEC 2004,
2018).

The most used filter topology is the LCL filter. It is cho-
sen for its attenuation (−60dB/decade) and size of reactive
elements, which are smaller than an L filter for the same
power (Teodorescu et al. 2011). The main drawback of LCL
filters is the presence of a resonance peak that can lead the
system to a poor performance or even to instability. Many
solutions were studied to cope with this resonance peak, and
they can be divided in passive and active damping strategies.
Passive damping strategies deal with the addition of passive
elements, usually resistances, to the filter. However, this can
increase the power losses and reduce the system efficiency
(Peña-Alzola et al. 2013). On the other hand, active damp-
ing strategies can cope with the resonance peak without the
addition of new elements only by adding a suitable control
strategy, thus being preferred because they do not need any
hardware modifications and do not increase the conduction
losses.
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The main control objectives for grid-connected invert-
ers are: reference tracking of sinusoidal references, which
is responsible for the control of active and reactive power;
disturbance rejection of grid voltages, which is necessary to
complywith grid standards; robustness against uncertain grid
impedances, since the grid characteristics are not the same
for different connection points; and resonance peak damping.
To achieve these objectives, many strategies can be used; the
main ones are the proportional plus resonant (PR) controller
and the synchronous reference frame proportional integral
(SRFPI) controller. PR controllers are designed on the sta-
tionary reference frame and usemultiple resonant controllers
to ensure the reference tracking and disturbance rejection of
a specific harmonic content. To deal with the active damp-
ing, they use an auxiliary filter, commonly a notch filter. The
main problem with these approaches is the difficulty associ-
ated with tuning multiple resonant controllers because of the
narrow stability margins (Twining and Holmes 2003).

The most used control technique is the SRFPI controller,
which is designed in a synchronous reference frame using
the dq-transformation, changing the problem of tracking a
sinusoidal reference for a regulation one. Its major draw-
back is that, unlike the case of L filters, the d and q
coordinates for LCL filters are not completely decoupled
which can reduce the performance during transients. Another
important issue to be addressed is that when multiple har-
monics have to be rejected, it has to use multiple reference
frames,which increases the implementation complexity (Lis-
erre et al. 2006).

Another alternative which achieved good results are time-
domain strategies. Control systems with gains designed by
the linear quadratic regulator (LQR) method are presented
in Wu and Lehn (2006), Huerta et al. (2012), Kukkola and
Hinkkanen (2013) and Busada et al. (2015). This technique
has as the main characteristic the avoidance of the prob-
lem of selecting specific pole locations with a procedure that
always ensures stable control gains and good stability mar-
gins (Safonov and Athans 1977).

Another important characteristic of grid-connected appli-
cations is the uncertainty on the grid impedance which leads
to the study of control techniques that ensures stability and
performance for systems with parametric uncertainties and
variations. For example, the works (Maccari et al. 2014,
2015, 2017) and Koch et al. (2019) deal with linear matrix
inequalities (LMI) control techniques to design control gains
which provide good results even under parametric uncer-
tainties and variations. The approach used in these papers
includes resonant controllers in the filter model providing an
unified control design method able to track sinusoidal refer-
ences and reject harmonic disturbances.

Among time-domain techniques, the model predictive
control (MPC) is one of the most known, being largely
used for many practical applications. This type of controller

became very popular in several industrial applications since
the late 1970s (Qin and Badgwell 2003; Camacho and Bor-
dons 2004). However, their use for power electronics is
relatively recent (Sultana et al. 2017; Rodriguez et al. 2013)
being an important topic for researchers in recent years (Pan-
ten et al. 2016; Nauman and Hasan 2016; Young et al. 2016).
The use of MPC controllers for power converters can be
divided in two sections: finite control set controllers (FCS-
MPC) and continuous control set controllers (CCS-MPC)
(Falkowski and Sikorski 2018b; Vazquez et al. 2017).

The FCS-MPC consists in the use of an MPC algorithm
with a control law which assumes only a specified set of
values (Kouro et al. 2009). This type of controller leads to
a nonlinear control law calculated at every sample period.
The control law gives the state signals to the switches of
the inverter directly, substituting the traditional space vector
modulation (SVM), resulting in a variable switching fre-
quency pattern. This technique allows to obtain controllers
with good transient responses, low switching frequencies and
good reference tracking. It has been used recently in power
electronics systems, for example, in active power filters (Fer-
reira et al. 2018), in grid-connected inverters (Falkowski
and Sikorski 2018a, b), and in the power control of grid-
connected photovoltaic panels (Lekouaghet et al. 2018). In
spite of the good results, the main drawback of the FCS-
MPC is the nonlinearity of the controller, which does not
allow the use of any linear analysis technique to study the
robustness of the system. Moreover, when constraints are
inserted to achieve robust performance and stability against
parametric uncertainties and variations, the MPC has a high
computational burden, which may be a restriction consid-
ering the limitations imposed by the sampling frequency
(Camacho and Bordons 2004). Another important drawback
is the fact of that the variable switching frequency can cause
some problems such as acoustic noise, vibration and electri-
cal resonances (Kouro et al. 2009).

Taking into account the limitations of the FCS-MPC con-
troller, this paper has as main contribution the use of an
unconstrained robust CCS-MPC controller for the current
control of three-phase grid-connected inverters with LCL
filters under uncertainties of the grid inductances. The CCS-
MPC provides an MPC controller with fixed gains, which
can be implemented as a traditional full state-feedback con-
trol law using a classical SVM. This approach is easier to
implement than an FCS-MPC controller as it uses the same
control structure of other state-space controllers, with low
computational costs, and the fixed switching frequency does
not spread the harmonic content along the frequency spec-
trum (Kouro et al. 2009).

Moreover, since the resulting controller is linear, classical
linear analysis tools canbeused, such as, for example, closed-
loop frequency responses. Here, to study and to ensure the
robustness of the closed-loop system under grid inductance
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variations, an a posteriori LMI robust stability analysis is
carried out. This strategy results in a robust MPC controller
without using constraints in the optimization algorithm,
reducing the control burden andproviding a linear state-space
controller (Rodriguez et al. 2013).

The main control objectives accomplished by the con-
troller proposed here are: (1) robust performance under
parametric uncertainties; (2) stability against parametric vari-
ations; (3) grid disturbance rejection of specific harmonic
content; (4) tracking of sinusoidal references and (5) com-
pliance with the limits for current harmonics injected into the
grid presented in the IEEE 1547 standard, the most impor-
tant grid regulation code. All these control objectives can
be achieved by an unconstrained MPC controller with fixed
gains using the same control structure as other state-space
approaches. The results presented in this paper expand the
ones inMaccari et al. (2016) by applying theMPC controller
to a three-phase system, instead of a single-phase one, by
doing the study of the impact of different control parameters
on the system performance, by adding a robustness analysis
using LMIs and by adding experimental results which com-
plies with harmonic limits described in IEEE 1547 Standard.

The paper is organized as follows: the model of the plant
is presented in Sect. 2; the MPC controller is described in
Sect. 3; inSect. 4, a robust stability analysis of the closed-loop
system based on LMIs is performed; in Sect. 5, simulation
and experimental results are shown, and, finally, in Sect. 6
the conclusions are presented.

2 SystemModel

Consider the circuit depicted in Fig. 1. The LCL filter rep-
resents the plant, whose control inputs are given by the
voltages of the three-phase inverter, the outputs are the cur-

rents injected into the grid, and the disturbance inputs are
given by the grid voltages, which can also include harmonics.
The states considered here are the currents of the converter-
side inductors, ica , icb, icc, the currents of the grid-side
inductors, igc, igb, igc and the capacitor voltages, vca , vcb, vcc.
The control signals which command the inverter switches are
generated by a digital signal processor (DSP) by means of a
full state-feedback control law. The grid is assumed to be pre-
dominantly inductive, beingmodeled, per phase, by a voltage
source in series with an inductance Lg2. It is known that the
DC bus voltage control and the synchronization with the grid
voltage are important issues for grid-connected applications
(Bianchi et al. 2012; Umbrí et al. 2014). However, in the cur-
rent paper it is assumed that the DC input voltage is constant
and that the synchronization with the voltages at the point
of common coupling (PCC) is already given (Cardoso et al.
2008).

In order to obtain a model for the system described in
Fig. 1, it is also assumed that the converter uses ideal switches
and the switching frequency ismuch higher than the grid fun-
damental frequency, allowing, for control design purposes,
to neglect the effect of PWM harmonics in the voltages gen-
erated by the converter (Teodorescu et al. 2011).

Thus, a state-space representation of the LCL filter can
be obtained, generating a model with 9 variables, 3 control
inputs and 3 disturbance inputs, represented by

dxabc
dt

= Aabcxabc + Buabcuabc + Bdabcvdabc (1)

with

Aabc =
⎡
⎣
03×3 Ap1 03×3

Ap2 03×3 −Ap2

03×3 Ap3 03×3

⎤
⎦ ,

icaa
b

c
VCC

iga Lg1 Lg2PCC

DSP

Cf

icb
icc

igb
igc

vca vcb vcc

vga

vgb

vgc

Lc1

Grid

Fig. 1 Three-phase inverter connected to the grid with of an LCL filter (Maccari et al. 2017)
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Buabc =
⎡
⎣

−Ap1

03×3

03×3

⎤
⎦ ,Bdabc =

⎡
⎣

03×3

03×3

−Ap3

⎤
⎦ (2)

and with

Ap1 =
⎡
⎢⎣

− 2
3Lc1

1
3Lc1

1
3Lc1

1
3Lc1

− 2
3Lc1

1
3Lc1

1
3Lc1

1
3Lc1

− 2
3Lc1

⎤
⎥⎦ ,

Ap2 =
⎡
⎢⎣

1
C f

0 0

0 1
C f

0

0 0 1
C f

⎤
⎥⎦ ,

Ap3 =
⎡
⎢⎣

2
3Lg

− 1
3Lg

− 1
3Lg

− 1
3Lg

2
3Lg

− 1
3Lg

− 1
3Lg

− 1
3Lg

2
3Lg

⎤
⎥⎦ (3)

where Lc1, C f , and Lg1 are, respectively, the converter-side
inductance, the filter capacitance, and the grid-side induc-
tance. Also,

Lg = Lg1 + Lg2 (4)

The state vector xabc, the input vector uabc and the distur-
bances vector vdabc are given as follows:

xabc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ica
icb
icc
vca
vcb
vcc
iga
igb
igc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

uabc =
⎡
⎣
ua
ub
uc

⎤
⎦

vdabc =
⎡
⎣

vga
vgb
vgc

⎤
⎦

(5)

To avoid the problem of coupling between phases, the
three-phase system can be reduced to a decoupled two-phase
system by means of the well known transformation of abc
coordinates toαβ0 coordinates,whose transformationmatrix
is given by Duesterhoeft et al. (1951)

Tαβ0 = 2

3

⎡
⎢⎣
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

1
2

1
2

1
2

⎤
⎥⎦ (6)

The change of coordinates is addressed by the multiplica-
tion of the vectors uabc and vdabc by the matrix Tαβ0 and by
the multiplication of the vector xabc by the matrix

Ta =
⎡
⎣
Tαβ0 03×3 03×3

03×3 Tαβ0 03×3

03×3 03×3 Tαβ0

⎤
⎦ (7)

Then, the vectors in αβ0 coordinates are given by

xαβ0 = Taxabc
uαβ0 = Tαβ0uabc
vdαβ0 = Tαβ0vdabc (8)

Using the same reasoning, the system matrices in αβ0 coor-
dinates can be written as

Aαβ0 = T−1
a AabcTa

Buαβ0 = T−1
a BuabcTαβ0

Bdαβ0 = T−1
a BdabcTαβ0

Cαβ0 = CabcTa (9)

and the transformed system is described by

ẋαβ0 = Aαβ0xαβ0 + Buαβ0uαβ0 + Bdαβ0vdαβ0

yαβ0 = Cαβ0xαβ0 (10)

with the following state, control and disturbance vectors:

x′
αβ0 = [icα icβ ic0 vcα vcβ vc0 igα igβ ig0]

u′
αβ0 = [uα uβ u0]

v′
dαβ0 = [vdα vdβ vd0] (11)

Considering that the system is three-wired, with no path to
the current axis ‘0,’ the state-space equations can be reorga-
nized as follows (Duesterhoeft et al. 1951; Teodorescu et al.
2011)

[
ẋα

ẋβ

]
=

[
A 0
0 A

] [
xα

xβ

]

+
[
Bu 0
0 Bu

] [
uα

uβ

]
+

[
Bd 0
0 Bd

] [
vdα

vdβ

] (12)

In (12), there are two decoupled systems: one in coordi-
nate α and the other in coordinate β. For controller design
purposes, it is possible to consider two decoupled and iden-
tical systems: one associated with α-coordinate and another
with β-coordinate. Since they are identical, there is need to
design only one controller, which is then replicated for the
other system. The difference between the control loops will
only be in the reference signals.

Omitting the subscripts α and β to simplify notation, the
state-space model for control design purposes is given by

ẋ = Ax + Buu + Bdvd (13)
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where

A =
⎡
⎢⎣

0 − 1
Lc1

0
1
C f 0 − 1

C f

0 1
Lg

0

⎤
⎥⎦ , Bu =

⎡
⎣

1
Lc1

0
0

⎤
⎦ ,

Bd =
⎡
⎢⎣

0
0

− 1
Lg

⎤
⎥⎦ , x =

⎡
⎣
ic
vc
ig

⎤
⎦ (14)

The equation of the output is given by

y = Ccx , Cc = [0 0 1] (15)

Since MPC algorithms are inherently discrete, the model
must be discretized. Considering a zero-order hold (ZOH)
discretization, the following discrete model is obtained from
(13)

x(k + 1) = Gx(k) + Hu(k) + Hdvd(k) (16)

where

G = eATs , H = Bu

∫ Ts

0
eAdt, Hd =

∫ Ts

0
eAdtBd (17)

Based on the internal model principle (Francis and Won-
ham 1976), to ensure tracking of a sinusoidal reference and
also to ensure rejection of sinusoidal harmonic disturbances,
it is necessary to have in the open-loop transfer function poles
at e± jwi Ts , where Ts is the sampling period and wi are the
frequencies to be tracked or rejected. Resonant controllers
can be used to ensure these properties (Zmood and Holmes
2003). One of these resonant controllers, written in discrete-
time state-space equations, can be given by the realization

ξ(k + 1) = Rξ(k) + Te(k) (18)

where

R =
[
a b
1 0

]
, T =

[
c
0

]

and where e(k) is the tracking error, given by

e(k) = iref(k) − y(k) (19)

Assuming the entire state vector ξ(k) as output for the
controller (18), the transfer matrix from e to ξ is given by

ξ(z) = ((zI − R)−1T)e(z) =
[

cz
z2−az−b

c
z2−az−b

]
(20)

Notice that the eigenvalues of R are also the poles of the
resonant controllers in (20), since there is no cancellation of
zeros and poles. Given a suitable choice of a and b, one has
ensured the assignment of the pair of poles of the resonant
controllers at e± jwi Ts .

A set of resonant controllers at the frequencies of the fun-
damental wo, third, fifth and seventh harmonics (3wo, 5wo,
7wo) can be written as in (18) with dynamic matrices R1,
R3, R5 and R7, respectively, and with input vectors T1, T3,
T5 andT7, respectively. These harmonics are common in the
grid and were chosen to compose the resonant controller in
order to ensure good harmonic attenuation (Teodorescu et al.
2011). Also, an additional state representing the one-step
delay in control action coming from the digital implementa-
tion can be inserted in the model. This leads to an augmented
state-space model which has the plant states, the delayed
control and the internal states of the resonant controllers,
described in detail by (21).
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k + 1)
φ(k + 1)
ξ1(k + 1)
ξ2(k + 1)
ξ3(k + 1)
ξ4(k + 1)
ξ5(k + 1)
ξ6(k + 1)
ξ7(k + 1)
ξ8(k + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G( p) H( p) 0 0 0 0 0 0 0 0
01×3 0 0 0 0 0 0 0 0 0

−T1(1,1)Cc 0 R1(1, 1) R1(1, 2) 0 0 0 0 0 0
01×3 0 1 0 0 0 0 0 0 0

−T3(1,1)Cc 0 0 0 R3(1, 1) R3(1, 2) 0 0 0 0
01×3 0 0 0 1 0 0 0 0 0

−T5(1,1)Cc 0 0 0 0 0 R5(1, 1) R5(1, 2) 0 0
01×3 0 0 0 0 0 1 0 0 0

−T7(1,1)Cc 0 0 0 0 0 0 0 R7(1, 1) R7(1, 2)
01×3 0 0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k)
φ(k)
ξ1(k)
ξ2(k)
ξ3(k)
ξ4(k)
ξ5(k)
ξ6(k)
ξ7(k)
ξ8(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×1

1
0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

u(k)+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Hd( p)
0
0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vd(k) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×1

0
T1(1, 1)

0
T3(1, 1)

0
T5(1, 1)

0
T7(1, 1)

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

iref(k), y(k)=[
Cc 0 0 0 0 0 0 0 0 0

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x(k)
φ(k)
ξ1(k)
ξ2(k)
ξ3(k)
ξ4(k)
ξ5(k)
ξ6(k)
ξ7(k)
ξ8(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

In a more compact form, (21) can be represented by

ρ(k + 1) = Hρ(k) + Huu(k)

+Hdvd(k) + Hr iref(k) (22a)

y(k) = Cρ(k) (22b)

where ρ ∈ R12, u ∈ R, y ∈ R, H ∈ R12×12, Hu ∈ R12×1,
Hr ∈ R12×1,Hd ∈ R12×1 and C ∈ R1×12.
This augmented model will be used to design the controller
in the next section.

3 Model Predictive Control

For the system shown in Fig. 1, the control objective is to
design a controller that ensures: (1) tracking of 60Hz sinu-
soidal references; (2) disturbance rejection of grid voltages
with frequencies of 60, 180, 300 and 420Hz; (3) compli-
ance with THD grid current limits presented in IEEE 1547
Standard; (4) robustness to grid uncertainties and variations.
These objectives can be achieved with an MPC controller.

The traditional state-space MPC cost function usually
takes into account only the future error and future control
action (Camacho and Bordons 2004). However, in this par-
ticular problem, the energy of the resonant states must also
be taken into account to avoid excessive values. Hence, the
following cost function is used:

J =
Ny∑
i=1

δ(y(k + i)−r(k + i))2+
4∑
j=1

Ny∑
i=1

δ jξ(2 j−1)(k + i)2

+
Nu−1∑
i=0

λu(k + i)2 (23)

where Ny , Nu , δ, δ j , λ are, respectively, the prediction and
control horizons, the weights of the future error, j th resonant
state and future control action. One important aspect of this
cost function is that only the output y has a reference, because
the resonant states ξ j are there to guarantee zero-error for
these harmonics and do not have a specific desired reference.

It is possible to write (23) in matrix form, which makes it
easier to organize the cost function. To do this, an auxiliary
output and reference vectors are defined as:

y′(k) =

⎡
⎢⎢⎢⎢⎣

ig(k)
ξ1(k)
ξ3(k)
ξ5(k)
ξ7(k)

⎤
⎥⎥⎥⎥⎦

= C′ρ(k) (24)

where

C′ =

⎡
⎢⎢⎢⎢⎣

0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

,
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and

r′(k) =

⎡
⎢⎢⎢⎢⎣

iref(k)
0
0
0
0

⎤
⎥⎥⎥⎥⎦

= Iiref(k), I =

⎡
⎢⎢⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎥⎥⎦

. (25)

The following weight matrices are also necessary: Qy =
diag(δ, δ1, δ2, δ3, δ4),where diag(.) defines a diagonalmatrix
whose elements are the parameters of the function. And Q′

y
is a block-diagonal matrix in which each element is Qy, Q′

y
has 5Ny elements:

Q′
y =

⎡
⎢⎢⎢⎢⎢⎣

Qy 0 0 0 0
0 Qy 0 0 0

0 0
. . . 0 0

0 0 0 Qy 0
0 0 0 0 Qy

⎤
⎥⎥⎥⎥⎥⎦

, (26)

also,Q′
u = λINu , where INu is an identity square-matrix with

dimension Nu . With these definitions, the cost function (23)
can be written as:

J = (Y′ − W)TQ′
y(Y

′ − W) + UQuU, (27)

with

Y′ =

⎡
⎢⎢⎢⎣

y′(k + 1)
y′(k + 2)

...

y′(k + Ny)

⎤
⎥⎥⎥⎦ , U′ =

⎡
⎢⎢⎢⎣

u(k)
u(k + 1)

...

u(k + Nu − 1)

⎤
⎥⎥⎥⎦

W =

⎡
⎢⎢⎢⎣

I

I

...

I

⎤
⎥⎥⎥⎦ iref(k) = 1iref(k).

The vector W takes this simplified form because future ref-
erences are unknown. It is worth noting that, usually, it is
interesting to use future reference values in the MPC con-
trollerwhen they are available, which is generally the case for
sinusoidal references. Since MPC uses the predicted future
response of the system to compute the control action, if future
references are taken into account, generally, the MPC is able
to obtain a better control action that takes into account these
future changes. However, in this particular application, the
improvementwasmarginal; hence, a fixed referencewas con-
sidered. This can be explained by the use of the resonant
controllers. Since they already take into account a sinusoidal
dynamic, future references are not necessary.

Now, the predictions vector Y′ needs to be computed.
From the auxiliary system equation (21), not considering
vd(k) because it is notmeasurable, the prediction of the states
at time k + 1 based on the information on time k is

ρ(k + 1|k) = Hρ(k) + Huu(k) + Hr iref(k). (28)

And the prediction at time k + 2 given the information at
time k is:

ρ(k + 2|k) = Hρ(k + 1|k) + Huu(k + 1) + Hr iref(k),

(29)

and notice that iref(k) is used because iref(k + 1) is not
known. Substituting (28) in (29):

ρ(k + 2|k) =H2ρ(k) + HHuu(k)

+ Huu(k + 1) + (H + I)Hr iref(k). (30)

Following this pattern, the following can be derived:

ρ(k + n|k) =Hnρ(k) +
n−1∑
i=0

Hn−1−iHuu(k + i)

+
(
n−1∑
i=0

Hi

)
Hr iref(k). (31)

Considering (24), Y′ can be written as

Y′ = GU + Hρρ(k) + Hriref(k) = GU + f, (32)

where f is the free response of the system, i.e., the response
if the input becomes zero. Also, G is a block lower trian-
gular matrix with its nonnull elements defined by Gij =
C′Hi− jHu, and

Hρ =

⎡
⎢⎢⎢⎣

C′H
C′H2

...

C′HNy

⎤
⎥⎥⎥⎦ , Hr =

⎡
⎢⎢⎢⎢⎣

C′Hr

C′(H + I)Hr
...

C′
(∑Ny−1

i=0 Hi
)
Hr

⎤
⎥⎥⎥⎥⎦

.

Using these definitions, the cost function (27) can be rear-
ranged in the standard quadratic programming (QP) form:

J = 1

2
UTHU + bTU + f0, (33)

where

H = 2(GTQ′
yG + Qu),

bT = 2(f − 1iref(k))
TQ′

yG,
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r

Fig. 2 Block diagram of the single-phase equivalent closed-loop system

f0 = (f − 1iref(k))
TQ′

y(f − 1iref(k)).

If no constraints are considered in the optimization problem,
the solution is given by

U = K(1iref(k) − f),

where K = (GTQ′
yG + Qu)

−1GTQ′
y. Since only the first

control input will be used, this last equation is reduced to:

u(k) = K1(1iref(k) − f), (34)

whereK1 is the first line ofK. In practice, this controller can
be implemented as seen in Fig. 2. Where the gains can be
obtained by rearranging (34)

u(k) = K1(1 − Hr)iref(k) − K1Hρρ(k) (35)

= Kriref(k) + Kρρ(k), (36)

where

Kρ = −K1Hρ = [
Kic | Kvc | Kig | Kφ |Kξ

]
.

4 Robust Stability Analysis

An important feature of the proposed MPC design described
in Sect. 3 is the fact that it leads to a linear controller with
fixed gains. This approach allows the use of linear techniques
to study the robustness of the closed-loop system such asLMI
analysis.

Assuming the system (22) in closed-loop with the feed-
back control gains Kρ and the feed-forward gain Kr, the
resulting system can be described by

ρ(k + 1) = Aclρ(k) + Bcl iref(k) + Hdvd(k)

y(k) = Cρ(k) (37a)

where Acl = (H − HuKρ) and Bcl = (HuKr + Hr )

Now, consider the grid inductance Lg2 as an uncer-
tain parameter, possibly time variant, bounded between grid
inductance limits. This type of uncertainty can be described
bymeans of a polytopicmodelwith twovertices. This closed-
loop polytopic system is given by

ρ(k + 1) = App(p(k))ρ(k)

+Bpp(p(k))iref(k) + Bdpp(p(k))vd(k) (38a)

y(k) = Cρ(k) (38b)

where

(App,Bpp,Bdpp)(p(k)) =
2∑

i=1

pi (k)(App,Bpp,Bdpp)i ,

2∑
i=1

pi = 1, pi ≥ 0, i = 1, 2 (39)

where the vertices of (38) are obtained for the closed-loop
systemusing the evaluation of the discrete augmented system
(22) for the maximum and the minimum value of Lg2 to be
considered in the analysis.

To ensure robustness for all values of the given uncertainty
interval, Theorem 1 must be satisfied.

Theorem 1 If symmetric positive definite matrices S i ∈
R
2n+4×2n+4, i = 1, 2, being n the number of resonant con-

trollers, and G ∈ R
2n+4×2n+4 exist such that

[
G + G′ − S i G′A′

pp j
App jG S j

]
> 0, i = 1, 2, j = 1, 2 (40)

then the following closed-loop properties are guaranteed:

(i) Closed-loop robust stability even for arbitrarily fast vari-
ations of Lg;

(ii) That the eigenvalues ofApp(p(k)) belong to the unit cir-
cle;

123



Journal of Control, Automation and Electrical Systems (2020) 31:447–460 455

The proof of Theorem 1 can be found in Daafouz and
Bernussou (2001).

5 Simulation and Experimental Results

Considering a grid-connected inverter as shown in Fig. 1,
with parameters given in Table 1, the MPC controller is
designed to guarantee tracking of 60 Hz sinusoidal refer-
ences and disturbance rejection of grid voltage harmonics in
third, fifth and seventh fundamental harmonics considering
thenominal inductancevalueof the grid.To achieve this spec-
ification, four resonant controllers were used at 60, 180, 300
and 420Hz, with a common damping factor of ζ = 0.00001.

Since the MPC has many tuning parameters, a study was
made to find the best controller configuration considering the
plant described earlier. In this study, three different perfor-
mance indexes were used: integral of squared error (ISE),
integral of squared derivative (ISD), and integral of time
squared error (ITSE). The equations for each one are given
below:

ISE =
∫ ∞

0
e(t)2dt (41)

ISD =
∫ ∞

0
ẏ2dt (42)

ITSE =
∫ ∞

0
te(t)2dt (43)

The ISE index is straightforward and relates to how well
the control system tracks the reference signal. The ISD
measures the oscillations present in the closed-loop system,
thus complementing the ISE index. This index is important
because it is possible for the controller to have fast tracking
capabilities with excessive oscillations, which is undesirable,
and this behavior is not reflected in the ISE index. Lastly, the

Table 1 System parameters

System description

Nominal values Power 5.4kW

Grid phase voltage 220Vrms

Grid phase current 14.14Arms

Grid frequency 60Hz

Switching frequency 10020Hz

Sampling period 1/20040s

Vcc 420V

LCL filter Lc1 1mH

Lg1 0.3mH

C f 62µF

Nominal grid inductance Lg2 0mH

ITSE index helps to detect whether the system is taking too
long to track the reference.

In the tuning study, the controller parameters were varied
and then the indexes were computed for a fixed simulation
scenario. There are basically two groups of parameters: cost
function weights and horizons. For each group, a set of 25
simulations were made.

For the first group, the future error weight δ and resonant
states δ j were varied and the control weight remained con-
stant (λ = 1). Since there is only one manipulated variable,
and the weights are relative in regard to each other, i.e., if
you multiply every weight by a constant factor the optimal
solution does not change, it is easier to maintain this partic-
ular weight fixed. Also, all δ j have the same value for each
simulation. In this simulation set, the control and prediction
horizon are constant and the weights are varied in the range
[0.4, 20]. The results are presented in Fig. 3, where each plot
shows the results for different indexes.

From what can be seen in Fig. 3, there is a clear opti-
mal region that minimizes the three indexes, which is around
δ = 20 and δ j = 1. One important characteristic to notice
is that if the resonant weights are greater than the future
error weight, there is a clear rise in the values of the indexes,
i.e., the closed-loop response deteriorates dramatically. This
behavior makes sense, because if the resonant weights are
relatively higher than the error one, this means that the min-
imization procedure will try to minimize the values of the
resonant signals; however, these signals are essential for the
controller to track the reference appropriately and hence the
worst closed-loop response.

For the second group of parameters, the horizons, the
weights were maintained constant and the control and pre-
diction horizons were varied from 1 to 333 and from 20 to
500, respectively. It is important to remember that it does
not make sense for the control horizon to be bigger than the
prediction horizon; hence, only the appropriate combinations
were tested. The results are shown in Fig. 4 where there is
a clear region around Ny = 100 and Nu = 20 where the
indexes are lower.

Hence, based on these results, the following tuning param-
eters were used for the MPC controller design:

– Prediction horizon Ny = 100: considering that the sam-
pling frequency is 20040 (Hz), the horizon is of 0.005 (s)
in the future, approximately a third of a 60Hz cycle;

– Control horizon of Nu = 20;
– Control weight λ = 1;
– States weight δ j = 1, j = 1, . . . , 4;
– Error weight δ = 20: this was chosen higher than the
states weight so that the error has a larger influence in the
computation of the control action.
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Fig. 4 Performance indexes for varying horizons

Following the steps in Sect. 3 and the block diagram in
Fig. 2 with the parameters presented in Table 1, the controller
gains, in the unconstrained case, are:

Kr = [
5.015699806

]
(44)

Kx =
⎡
⎣

−6.015976889
−0.536366141
1.000277083

⎤
⎦
T

=
⎡
⎣

Kic

Kvc

Kig

⎤
⎦
T

(45)

Kφ = [−0.286145288
]

(46)

Kξ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

24.81382376
−24.40335775
9.234246863

−9.039906238
4.265396784

−4.368170789
1.655606318

−1.817369436

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(47)

To ensure the robustness of the closed-loop system, an
LMI analysis was performed using Theorem 1. The con-

trol gains (44), (45), (46), (47), are used to evaluate the
polytopic model (38). The optimization problem was solved
using the Robust Control Toolbox from MATLAB. The
controller gains satisfied Theorem 1, ensuring robust stabil-
ity against grid inductance uncertainties and arbitrarily fast
variations inside the inductance limits used in the analysis
(Lg2 ∈ [0, 1] mH).

5.1 Closed-loop Frequency-Domain Analysis

The closed-loop frequency responses of the reference iref to
the output current ig for different values of Lg2 in the uncer-
tainty interval are shown in Fig. 5. The frequency responses
were carried out using increments of 0.1mH in the specified
interval, and the nominal frequency responsewas highlighted
with a different color. The same analysis was performed to
obtain the frequency responses of the voltage disturbance vd
to the output current ig . The results are shown in Fig. 6.

Notice that in Fig. 5 the frequency response has 0dB gain
and a phase of 0 degrees at 60Hz for all tested values of Lg2,
and this result certifies the reference tracking capabilities of
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Fig. 5 Bode diagram from the current reference iref to the system
output (ig)

Fig. 6 Bode diagram from the voltage disturbance vd to the system
output (ig)

the MPC controller for all inductance values in the uncer-
tainty interval. In Fig. 6, note the very low magnitude gains
for the frequencies specified for the resonant controllers. This
low-gain behavior ensures the disturbance rejection at the
first, third, fifth and seventh harmonics of the grid voltage
for all values of Lg2 included in uncertainty interval.

5.2 Simulation Results

To study the transient responses of the closed-loop system,
the MPC controller was tested for the minimum (nominal)
and the maximum values of the grid inductance. The tests
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Fig. 7 Simulation results: three-phase grid currents for minimum Lg2
(0mH)
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Fig. 8 Simulation results: three-phase grid currents for maximum Lg2
(1mH)

were implemented using PSIM software and space vector
modulation (POWERSIM 2011). To assess the reference
tracking capabilities, α and β references were varied, with
fast amplitude and phase variations representing different
conditions of active and reactive power injected in the grid.
The reference for the α current is given by

t ∈ [0, 2Tg) iref(t) = 0;
t ∈ [2Tg, 8Tg) iref(t) = 10 cos(2π60t + π/2);
t ∈ [8Tg, 14Tg) iref(t) = −10 cos(2π60t + π/2);
t ∈ [14Tg, 20Tg) iref(t) = 10 cos(2π60t);
t ∈ [20Tg, 24Tg] iref(t) = 20 cos(2π60t).

where Tg = 1/60 s. The reference for the β current has the
same pattern, but a phase of π/2 radians is added to the
signals.

The result for the minimum value of the grid inductance
is presented in Fig. 7, and the result for the maximum value
is shown in Fig. 8. One can see that for both values of the
impedance the controller can cope with the reference varia-
tions with fast settling times. The overshoot presented in the
simulations are inside the expected range and did not bring
any problem for the system.
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Fig. 9 Experimental result: grid currents injected to the grid
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Fig. 10 Experimental result: reference tracking for α coordinates, ire f α
represented by the dashed line

5.3 Experimental Results

In order to have an experimental validation of the sim-
ulation results the tests were repeated in practice. The
controller was implemented using a 32-bit floating-point
DSP TMS320F28335 from Texas Instruments. The exper-
imental results for the same reference pattern used in Figs. 7
and 8 are presented in Fig. 9, in which one can see the fast
settling times of the grid currents injected in the grid.

It is important to notice that in the experimental results
the grid inductance was uncertain once the inverter was con-
nected into a real grid.

To illustrate the good tracking capabilities, Figs. 10 and 11
show the α and β coordinates references and their respective
output grid currents. In these figures, one can see the fast
transient responses with low current peaks which are suitable
for the application.

To verify whether the grid currents comply with IEEE
1547 Standard, the harmonic content using 12 cycles in sinu-
soidal steady state with nominal values for the grid voltage
and impedance was studied. Figure 12 presents the harmonic
content for the grid current only for phase a. This pattern is
similar for other phases. The THD obtained was 2.7168 %,
and the harmonic limits presented in IEEE 1547 were not
violated.
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Fig. 11 Experimental result: reference tracking for β coordinates, ire f β
represented by the dashed line

Fig. 12 Harmonic content of phase a current and IEEE 1547 Standard
harmonic limits

Fig. 13 Experimental result: three-phase grid currents in the presence
of a variation of Lg2 from 0mH to 1mH

Finally, to confirm the results obtained for the LMI anal-
ysis, a test of parameter variation was carried out. For this
test, the system was disconnected from grid (vd = 0V) and
then the grid inductances (Lg2) were switched from 0mH to
1mH. The result is shown in Fig. 13, where it can be seen that
the system remains stable confirming the robustness certified
theoretically by the factibility of Theorem 1.
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6 Conclusion

This work presented a CCS-MPC controller applied to a
three-phase grid-connected inverter. The main control objec-
tives are to track sinusoidal current references, to reject
harmonic disturbances, and to obtain a closed-loop that is
robust in regard to uncertainties and variations of the grid
inductance. To do this, an augmented state-space model
of the process was used that included the harmonic char-
acteristics of importance to the problem. Then, the tradi-
tional unconstrained CCS-MPC approach was used to derive
the controller. An interesting point is that this augmented
model can easily be adapted to include other harmon-
ics.

The resulting controller has fixed gains and was imple-
mented using a structure similar to the traditional state-
feedback control law. To show that the resulting controller
is robust in regard to the specified parametric uncertainties
and variations, an a posteriori LMI approach was proposed.
Simulation and experimental results were provided which
confirmed that all control objectives were satisfied. Also,
the harmonic content of the results were studied, and they
were all within the limits specified in the IEEE 1547 Stan-
dard.

With these results, the authors believe that the pro-
posed approach can be used as an alternative to classical
controllers in this particular application. And, the method-
ology is general enough that it can be easily applied to
other systems for which state-feedback control laws lead
to suitable results. In relations to the classical controllers,
the following remarks are important about the proposed
approach:

– Since the dq-transform is not necessary, this approach
avoid the limitations of the SRFPI: (i) coupled dynam-
ics of the d and q coordinates of the LCL filter, which
impacts the transient response; (i) use of multiple refer-
ence frames, which makes the controller more complex.

– In relation to the FCS-MPC, it has a fixed switching fre-
quency and results in a linear controller, which enables
the use of linear analysis technique to, as explained ear-
lier, prove robustness and verify closed-loop properties
in the frequency domain.

– Contrary to the LQR method, the CCS-MPC does not
guarantee nominal closed-loop stability. However, the
proposed approach uses an a posteriori LMI analysis
of the system to prove nominal stability and robustness
against uncertain and possibly time-varying parameters.

As a future work, the constrained CCS-MPC will be con-
sidered. There are always limitations in the system such as
saturations, or rate limitation, that should be considered in
the computation of the control signal. However, in these cases

the optimization problem of MPC does not have a algebraic
solution, making the use of iterative optimization algorithms
a necessity. These algorithms can take some time to reach a
solution that might not be within the relatively small sam-
pling time. Hence, a research will be made to verify whether
there are simplified algorithms that can be embedded in a
DSP and can cope with this limitation.
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