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Abstract
This paper deals with the ultimate boundedness control of nonlinear impulsive switched systems, which ensures that the state 
trajectories ultimately converge to a sufficient small region containing the origin. Given a general model, we first propose 
novel stability criteria that do not need to be satisfied on the entire space and include a condition to guarantee the remaining 
of trajectories within the ultimate bound, even though the impulse size is not zero at the origin or is not vanishing near the 
origin. Applying these criteria to a closed-loop system leads to a set of matrix inequalities that may be infeasible when the 
subsystems are highly nonlinear. Therefore, we redevelop them for an impulsive switched system represented by Takagi–
Sugeno (T–S) fuzzy structure with nonlinear consequent parts. Since this structure has fewer rules than the traditional T–S 
models with linear consequent parts, the number of established stabilization matrix inequalities is sharply reduced. We then 
derive an optimization problem with linear and bilinear constraints to achieve a fuzzy controller that guarantees convergence 
to the smallest ultimate bound as well as practical control issues. Finally, a numerical example and a practical-motivated 
example are given to demonstrate the applicability of the proposed approach.

Keywords  Impulsive switched systems · Local sector nonlinearity · Nonlinear control · Parallel distributed compensation · 
Takagi–Sugeno fuzzy model

1  Introduction

Due to the presence of the switching effect and the impulsive 
behavior in most of the real-world processes (Haddad et al. 
2006; Posa et al. 2015; Wu et al. 2014), the stability and 
stabilization issues of impulsive switched systems have been 
extensively studied. These studies generally use the common 
Lyapunov function (CLF) approach or the multiple Lyapu-
nov functions (MLF) technique, which is less conservative 
than CLF (Branicky 1998; Gao and Wang 2016; Ghalehnoie 
et al. 2018; Goldar et al. 2017; Kermani and Sakly 2017; 
Zhang et al. 2017; Zhao et al. 2017).

Because of the natural complexity of impulsive switched 
systems along with the existence of inherent nonlinearity and 
uncertainty in real-world processes, it is difficult to design 

a stabilization control law for the general nonlinear impul-
sive switched systems. In the literature, there are two major 
approaches to overcome this. First, researchers consider some 
assumptions on nonlinear dynamics and then develop stability 
and/or stabilization criteria. For example, linear grows condi-
tion is assumed by the authors of Li et al. (2019b, c) where 
they intend to investigate the stability of nonlinear switched 
systems with particular forms. Li et al. (2019a) also assume 
a more advanced version of the grows condition to handle the 
stabilization problem for a class of switched nonlinear systems 
in the p-normal form. However, the most common and most 
complete assumption is the Lipschitz continuity, which also 
includes the grows condition. For example, see Feng and Cao 
(2015), Long (2018), Poznyak et al. (2014), Xu and Teo (2010). 
Although the nonlinear dynamics of systems usually satisfy 
these assumptions on their region of attraction, the related 
coefficients may be very large, and consequently, the proposed 
stability problem may become infeasible. Second, some other 
researchers represent the nonlinear system as a Takagi–Sugeno 
(T–S) fuzzy system where the consequent parts of the rules are 
linear models (Ai and Chen 2017; Ho and Sun 2007; Sun et al. 
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2016; Wang et al. 2012; Wang and Wu 2016; Wu et al. 2014; 
Xiu and Ren 2005; Zhang et al. 2010, 2011; Zhao et al. 2016; 
Zheng and Zhang 2017; Zhong and Xu 2011).

During the last decades, the topic of stability and control 
design for the T–S fuzzy systems has been extensively consid-
ered. In the most of them, the consequent part of the rules con-
tains time-invariant linear model for the both continuous- and 
discrete-time dynamics. For example, we may refer to Wang 
et al. (2012) where the impulsive control for nonlinear switched 
systems is considered, to Zhao et al. (2016) that investigates the 
control of nonlinear switched systems, or to Bouyahya et al. 
(2017) which consider uncertain T–S fuzzy model for non-
switched uncertain nonlinear systems. In Zheng and Zhang 
(2017), authors extend the conventional T–S fuzzy model by 
considering vanishing and boundedness nonlinear terms into 
the jump functions of the consequent parts. Another extension 
to the traditional impulsive T–S fuzzy systems is given in Ai 
and Chen (2017) where the continuous-time dynamics of the 
consequent parts are nonlinear. However, the impulse func-
tion is still linear and there is no uncertainty in the local mod-
els. Besides, Ai and Chen (2017) do not provide a systematic 
approach to find the decision variables. Besides, to represent the 
nonlinear impulsive switched systems with time delay, Zhong 
and Xu (2011) studied a delay T–S fuzzy system where the 
consequent parts are linear systems with time delay and then 
develop exponential stabilization criteria. Moreover, parametric 
uncertainties for both local linear models and jump functions 
are given in Sun et al. (2016), Wang and Wu (2016), Zhang 
et al. (2010, 2011). Note that, in recent years, the idea of using 
untraditional T–S fuzzy structures has been also considered in 
different control applications other than switched systems. For 
example, Wu et al. (2018) use this idea for synchronization of 
complex networks with partial coupling where each node in the 
network is modeled by a kind of nonlinear T–S fuzzy structure.

In fact, utilizing the local sector nonlinearity approach (Tan-
aka and Wang 2001), a nonlinear system can be represented by 
a T–S fuzzy model with local linear models in the consequent 
parts. In this approach that all nonlinearities of the nonlinear 
system are chosen as premise variables, as the number of non-
linearities (or equivalently the number of premise variables) 
increases, the number of rules increases exponentially. This 
leads to raised complexity for established stability criteria. On 
the other hand, by choosing a subset of nonlinearities as prem-
ise variables, a fuzzy model with fewer rules is generated in 
which some of the local models are nonlinear. During the pro-
cess of obtaining the local models from the original nonlinear 
system, since the selected nonlinearities are replaced by their 
minimum or maximum values, the complexity of the obtained 
models is less than the original system. For example, these local 
models may have lower Lipschitz coefficients. As a result, it is 
expected that for a system represented by the nonlinear T–S 
fuzzy structure, the number of stability conditions is far fewer 
than when it is modeled by the traditional T–S fuzzy structure. 

Also, the complexity of these stability conditions may be much 
lower than those can be derived for the original system.

These features, along with the inherent complexity of real-
world impulsive switched systems, motivate us to investigate 
the stabilization issue for the nonlinear T–S fuzzy structures 
in the field of impulsive switched systems. Here, if the real-
world system, which is modeled in the form of nonlinear T–S 
fuzzy, contains the parametric uncertainties and distributions, 
the sub-models obtained in the fuzzy structure also contain 
similar uncertainties and distributions. So, we introduce a more 
complete T–S fuzzy model where the continuous- and dis-
crete-time dynamics in the consequent part of the rules include 
nonlinear dynamics and have different types of nonvanishing 
uncertainties. According to the author’s knowledge, there is no 
work in this field that uses such complete T–S fuzzy structure.

Given a general model of nonlinear impulsive switched sys-
tem, we first employ the idea of multiple Lyapunov functions 
(MLFs) and develop stability criteria that ensure convergence 
to a sufficiently small ultimate bound instead of convergence 
to the origin. We consider this kind of convergence because of 
intrinsic nonvanishing uncertainties in real-world processes. 
The proposed criteria are different from those found in the lit-
erature. Actually, they do not need to be met on the entire state 
space and also include an additional condition to handle the 
impulse effect over the ultimate bound as well as to ensure the 
remaining of state trajectories within the ultimate bound. This 
additional condition is very useful, especially when the impact 
size is not zero at or is not vanishing near the origin. Secondly, 
utilizing the common quadratic Lyapunov functions and the 
idea of parallel-distribution compensation (PDC) scheme, we 
redevelop the stabilization criteria as matrix inequalities for an 
impulsive switched system represented by the introduced T–S 
fuzzy model. To achieve the gains of the control law along with 
the smallest ultimate bound, a constrained optimization problem 
is also proposed where the constraints are often linear. However, 
there are some bilinear constraints that make the proposed opti-
mization problem difficult to solve. It encourages us to propose a 
solving approach based on the genetic algorithm (GA) combined 
with the linear matrix inequality (LMI) techniques. The applica-
bility of our method is also illustrated through several examples.

Briefly, compared with the existing conclusions, the main 
contributions of this paper are as follows:

1.	 For a given general model of an impulsive switched 
systems, the existing methods take into account same 
stability conditions for the entire state space, whether the 
trajectories are far from the origin or near the origin. It 
forces the size of impulses to be decreased continually 
as trajectories approach the origin and be zero at the 
origin. In contrast, we propose novel stability criteria 
that include a condition to handle the impact effect when 
trajectories reach the ultimate bound. In this way, the 
size of impulses can be nonzero near/at the origin.
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2.	 We introduce a more complete T–S fuzzy structure that 
can represent a system with fewer rules than the traditional 
T–S models. It sharply reduces the number of stability 
conditions compared with the traditional T–S fuzzy based 
approaches. Also, this structure includes nonvanishing 
uncertainties and nonlinear impulses which is suitable to 
represent a wide range of impulsive switched systems.

3.	 We present an optimization problem to achieve the con-
trol law as well as the smallest ultimate bound. A GA-
LMI approach is also proposed to solve it.

The rest of this paper is as follows. Section 2 introduces 
the problem formulation. In Sect. 3, we describe the main 
results. Simulation results for several examples are given in 
Sect. 4. Finally, conclusions are drawn in Sect. 5.

Notations  The symmetric positive (or semi-positive) defi-
nite matrix A is indicated by A > 0 (or A ≥ 0). The ellipsoid 
E(P, r) which is associated with the matrix P > 0 and the 
scalar r > 0 is also given by 

{
x ∈ ℝ

n|xTPx ≤ r
}
 . Moreover, 

the symbol “*” in matrix inequalities denotes matrix’s sym-
metric parts. Note that if dimensions of some matrices are 
not explicitly stated, it is assumed that they have appropriate 
dimensions for algebraic operations.

2 � Problem Formulation

The following general model can represent a nonlinear 
impulsive switched system that includes a finite number of 
subsystems,

in which continuous- and discrete-time dynamics of the 
subsystem i are represented by fi and gi, respectively. At the 
instant t, the active subsystem is determined using the switch-
ing signal �(t) ∶ ℝ

+
→ {1, 2,… ,m} , where m is the num-

ber of subsystems. This switching signal composes a strictly 
increasing sequence of switching instants 

{
t1, t2,… , tk,…

}
 . 

Here, we assume that the average dwell time �av is known, and 
the state x(t) is left continuous at impulse instant tk,

Using the local sector nonlinearity approach and choos-
ing a subset of nonlinearities (not all of them) as premise 
variables, the general model (1) can be expressed as follows:

(1)

{
ẋ(t) = fi(x(t), u(t)), t ≠ tk, k ∈ ℕ

+

x
(
t+
)
= gi(x(t), t), t = tk, k ∈ ℕ

+
,

x
(
tk
)
= x

(
t−
k

)
= lim

�→0+ x
(
tk − �

)
.

(2)
Rule l∶ IF 𝜃1i(t) is Z

l
1i
and … and 𝜃nii

(t) is Zl
nii

THEN

{
ẋ(t) = f l

i
(x, u, t), t ≠ tk

x(t+) = gl
i
(x, t), t = tk

,

in which

and l = 1, 2,… , ri , where ri denotes the number of rules. 
Moreover, �1i(t), �2i(t) , …, and �nii(t) are the premise varia-
bles and ni is the number of them. The membership function 
of the premise variable �ji(t) is specified by the fuzzy set Zl

ji
 . 

Also, Al
i
,Bl

i
 and Cl

i
 are known and constant matrices. 

ΔAl
i
,ΔBl

i
,ΔCl

i
,�l

ci
 and �l

di
 are unknown matrices that repre-

sent uncertainties in the local model l of the subsystem i. It 
is assumed that

where Dl
i
,El

ai
,El

bi
,El

�i
 and El

ci
 are known and Fl

i
 is an unknown 

time-varying matrix such that 
(
Fl
i

)T
Fl
i
≤ I . Also, we suppose 

the discrete uncertainty �l
di
(t) is norm-bounded such that

where �l
i
 is a real positive scalar. In addition, f l

ci
(x, u, t) and 

f l
di
(x, t) represent known nonlinear dynamics that satisfy the 

following Lipschitz conditions,

f l
i
=
(
Al
i
+ ΔAl

i

)
x +

(
Bl
i
+ ΔBl

i

)
u + f l

ci
(x, u, t) + �

l
ci
,

gl
i
=
(
Cl
i
+ ΔCl

i

)
x + f l

di
(x, t) + �

l
di
,

(3)
[
ΔAl

i
ΔBl

i
�
l
ci
ΔCl

i

]
= Dl

i
Fl
i

[
El
ai
El
bi
El
�i

El
ci

]
,

(4)
(
�
l
di

)T
�
l
di
=
‖‖‖�

l
di

‖‖‖
2

≤
(
�
l
i

)2
,

(5)
(
f l
ci

)T
f l
ci
≤ xT

(
Ml

ci

)T
Ml

ci
x + uT

(
Nl
i

)T
Nl
i
u,

(6)
(
f l
di

)T
f l
di
≤ xT

(
Ml

di

)T
Ml

di
x,

where Ml
ci
,Ml

di
 and Nl

i
 are known constant matrices.

The input/output mapping of (2) can be obtained using 
singleton fuzzifier, product inference, and weighted average 
defuzzification, as follows:

where

and we have for all t ≥ 0,

In system (7), we define the following mode-dependent con-
trol signal,

(7)

�
ẋ(t) =

∑ri
l=1

hl
i
(𝛩i(t))f

l
i
(x, u, t), t ≠ tk

x(t+) =
∑ri

l=1
hl
i
(𝛩i(tk))g

l
i
(x, t), t = tk

,

�i(t) =
[
�1i(t), �2i(t),… , �nii(t)

]T
,

�
l
i

(
�i(t)

)
=
∏ni

j=1
Zl
ji

(
�ji(t)

)
,

hl
i

(
�i(t)

)
= �

l
i

(
�i(t)

)
∕
∑ri

l=1
�
l
i

(
�i(t)

)
,

𝜇
l
i
≥ 0,

∑ri

l=1
𝜇
l
i
> 0, hl

i
≥ 0,

∑ri

l=1
hl
i
= 1.

(8)u(t) = u
�(t)(t),
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where ui(t), i ∈ {1, 2,… ,m} is the control input which is 
active when the subsystem i is active. Utilizing the idea of 
PDC scheme, we introduce the control input ui(t) as,

where Kl
i
(t) ∈ ℝ

m×n is a known constant matrix. We can also 
obtain the mapping of control input (9) as follows:

Substituting (10) in (7) yields the closed-loop of the sub-
system i,

where

Before developing the main results, we offer the following 
lemmas to improve the readability of the paper.

Lemma 1  (Poznyak et  al. 2014) Given real matrices 
S1, S2 ∈ ℝ

n×m. If Λ > 0, the following inequality holds,

Lemma 2  (de Souza and Li 1999) Let C, D, E and F be 
real matrices with appropriate dimensions and F satisfying 
∥F∥ ≤ 1. We have

(a)	 For any scalar >0,

(b)	 For any real matrix P > 0 and real scalar  𝛾 > 0 such 
that P − 𝛾DDT

> 0,

3 � Main Results

In this section, we develop an approach to design a stabiliz-
ing control input for the fuzzy impulsive switched system (2). 
Due to nonvanishing uncertainties �l

ci
 and �l

di
 , convergence to 

the origin is not possible (Khalil 2002). Therefore, this paper 
focuses on the convergence of state trajectories into a sufficient 

(9)
Rule l∶ IF �1i(t) is Z

l
1i
and … and �

l
nii
(t) is Zl

nii

THEN u(t) = Kl
i
x(t),

(10)ui(t) =
∑ri

l=1
hl
i

(
�i(t)

)
Kl
i
x(t).

(11)

�
ẋ(t) =

∑r
i

l,n=1
h
l

i
h
n

i
F

ln

i
x(t) +

∑r
i

l=1
h
l

i
H

l

i
, t ≠ t

k

x(t+
k
) =

∑r
i

l=1
h
l

i
G
l

i
, t = t

k

F
ln
i
=
(
Al
i
+ ΔAl

i

)
+
(
Bl
i
+ ΔBl

i

)
Kn
i
,

Hl
i
= f l

ci

(
x,

ri∑
n=1

hn
i
Kn
i
x

)
+ �

l
ci
(t),

G
l
i
=
(
Cl
i
+ ΔCl

i

)
x
(
tk
)
+ f l

di

(
x, tk

)
+ �

l
di

(
tk
)
.

ST
1
S2 + ST

2
S1 ≤ ST

1
�S1 + ST

2
�

−1S2.

DFE + ETFTDT ≤ �DDT + �
−1ETE.

(C + DFE)TP−1(C + DFE) ≤ CT
(
P − �DDT

)−1
C + �

−1ETE.

small ultimate bound. In this way, based on the MLFs approach, 
Theorem 1 provides stability criteria for the general model (1). 
These criteria are the enhanced version of the criterions pre-
sented in Poznyak et al. (2014), Yang et al. (2015), Zheng and 
Zhang (2017) and are useful to ensure the ultimate bounded-
ness stability when there are different resources of nonvanishing 
uncertainties within the continuous- and discrete-time dynam-
ics as well as when the jump functions are nonvanishing near 
the origin. Then, Theorem 2 uses these proposed conditions to 
develop fuzzy control signal (9) under the fuzzy system (2).

Theorem 1  Suppose there exist Lyapunov functions Vi, real 
positive scalars � ≥ 1, ρ, and � ≥ 1 such that the following 
conditions hold for all 1 ≤ i ≠ j ≤ m,

(12)V̇i ≤ −𝜌Vi, ∀x ∉ 𝜐
(
Vi, 1

)
,

(13)Vj

(
t+
k

)
≤ �Vi

(
tk
)
, ∀x ∉ �

(
Vi, 1

)
,

(14)Vj

(
t+
k

)
≤ �, ∀x ∈ �

(
Vi, 1

)
,

(15)� − ln�∕�av ≥ 0,

where �av is the average dwell time and �
(
Vi, 1

)
 is a closed 

set as �
(
Vi, 1

)
:=

{
x ∈ ℝ

n|Vi(x) ≤ 1
}

. Then the impul-
sive switched system (1) converges to the ultimate bound 
�u ∶= ∪m

i=1
�
(
Vi, �

)
.

Proof  Consider a situation where the subsystem i is active 
and the trajectory is within the �

(
Vi, 1

)
 . Since

the trajectory remains in �
(
Vi, 1

)
 until the next switching 

instant. According to (14), after the impulse instant, the state 
trajectory remains in Ωu.

Now suppose another situation, when the subsystem i is alive 
and the state trajectory x ∈ ℝ

n��
(
Vi, 1

)
 . The conditions (11), 

(12) and (14) ensure that the state trajectory exponentially 
converges toward the origin. For more details, we may refer 
to (Yang et al. 2015; Zheng and Zhang 2017). During this 
convergence, there is a moment that the trajectory reaches 
�
(
Vl, 1

)
 while the subsystem l is active (l indicates the index 

of first subsystem for which this condition occurs). As stated 
at the beginning of the proof, the state trajectory does not 
leave the ultimate bound Ωu. This completes the proof.� □

As you can see, on a subspace containing the origin, the 
fulfillment of the common conditions (12) and (13) is not 
necessary, and a complementary criterion is added to han-
dle the impulse effect on this subspace. Besides, Theorem 1 
proves sufficient stability conditions for a general system but 
does not provide an approach for how to find the Lyapunov 
functions as well as the appropriate control signal. Theorem 2 

V̇i ≤ 0, ∀x ∉ 𝜐
(
Vi, 1

)
,
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eliminates this issue for the closed-loop fuzzy system (11). To 
this, Theorem 2 uses the common quadratic Lyapunov func-
tions and then reformulates the general conditions proposed 
in Theorem 1 into the form of matrix inequalities.

Theorem 2  Consider the fuzzy nonlinear impulsive switched 
system (11). Suppose there exist real positive definite matri-
ces Li > 0, real matrices Wl

i
, real positive scalars δ ≥ 1, ρ, 

μ ≥ 1, βi, � li , �
l
ai
, � ln

bi
, � l

ci
, � l

di
, � l

�i
 where 1 ≤ i ≠ j ≤ m and 

1 ≤ l ≤ n ≤ ri indicates the index of subsystems and the index 
of local models, respectively. If the following conditions hold,

(16)
[
�iI I

∗ �iLi

]
≥ 0,

(17)

⎡⎢⎢⎢⎣

−� ln
i i

�
ln
12 i

�
ln
13 i

�
ln
14

∗
i
�

ln
22

0 0

∗ ∗
i
�

ln
33

0

∗ ∗ ∗
i
�

ln
44

⎤⎥⎥⎥⎦
≥ 0,

(18)

⎡⎢⎢⎢⎣

�Li

√
3Li

�
Cl
i

�T
i
�

l
13

∗ Lj − �
l
ci
Dl

i

�
Dl

i

�T
0

∗ ∗ diag
�
�
l
ci
I, I, I

�
⎤⎥⎥⎥⎦
≥ 0,

(19)

⎡⎢⎢⎢⎢⎣

�I
√
3�j�

l
i
I

√
3�iLi

�
Cl
i

�T
i
H

l
14

∗ I 0 0

∗ ∗ Lj − �
l
di
Dl

i

�
Dl

i

�T
0

∗ ∗ ∗
i
H

l
44

⎤
⎥⎥⎥⎥⎦
≥ 0,

(20)� − ln�∕�av ≥ 0,

�
l
i
 is defined in (3), and �av is the average dwell time; then, 

the fuzzy impulsive switched system (11) under the control 
law (9) converges to �u ∶= ∪m

i=1
E
(
Pi, �

)
 where Pi = L−1

i
 and 

Kl
i
= Wl

i
L−1
i

.

Proof  Let us choose a set of quadratic Lyapunov func-
tion candidates Vi = xTPix, i ∈ {1, 2,… ,m} . At first, we 
show that the upper bound of V̇i is less than −�Vi for all 
x ∉ �

(
Vi, 1

)
= E

(
Pi, 1

)
 . In this way, we prove that the condi-

tion (12) holds. The time derivative of Vi along the trajecto-
ries of the fuzzy system (11) is

where Fln
i

 and Hl
i
 are defined in (11). The above statement 

includes the uncertainties ΔAl
i
,ΔBl

i
 and Δ�l

ci
 which are intro-

duced in (3). To calculate the upper bound of V̇i , we consider 
the following inequalities that can be obtained using Lemma 
1,

where � l
ai
, � l

bi
 and � l

�i
 are positive real scalars. Besides, using 

Lemma 2 and then noticing (5) and (10), we have

where � l
i
 is a real positive scalar. Since

one can easily conclude

V̇i = ẋTPix + xTPiẋ

= xT
(∑ri

l,n=1
hl
i
hn
i

((
F

ln
i

)T
Pi + PiF

ln
i

))
x

+
∑ri

l=1
hl
i

((
Hl

i

)T
Pix + xTPiH

l
i

)
,

(
ΔAl

i

)T
Pi + PiΔA

l
i
=
(
Dl

i
Fl
i
El
ai

)T
Pi + PiD

l
i
Fl
i
El
ai

≤ �
l
ai
PiD

l
i

(
Dl

i

)T
Pi +

(
�
l
ai

)−1(
El
ai

)T
El
ai
,

(
ΔBl

i
Kn
i

)T
Pi + PiΔB

l
i
Kn
i
=
(
Dl

i
Fl
i
El
bi
Kn
i

)T
Pi + PiD

l
i
Fl
i
El
bi
Kn
i

≤ �
ln
bi
PiD

l
i

(
Dl

i

)T
Pi +

(
�
ln
bi

)−1(
El
bi
Kn
i

)T
El
bi
Kn
i
,

(
Δ�l

ci

)T
Pix + xTPiΔ�

l
ci
=
(
Dl

i
Fl
i
El
�i

)T

Pix + xTPiD
l
i
Fl
i
El
�i

≤ �
l
�i
xTPiD

l
i

(
Dl

i

)T
Pix +

(
�
l
�i

)−1(
El
�i

)T

El
�i
,

(
f l
ci
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(
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(
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(
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(
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where
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�
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+
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�
�
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�
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�√
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�
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�T √
3�jLi

�
Ml
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�T √
3�i�jLi�

l
i

�
,

i
H

l
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=
�√
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�
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�
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�T �
,

i
H

l
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�
�
l
di
I, I
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Therefore, we can achieve the upper bound of V̇i as 
follows:

in which

For all x ∉ E
(
Pi, 1

)
 where xTPix > 1 , considering the 

Rayleigh’s inequality, we can rewrite the upper bound as:

where βi is a real positive scalar such that �2
i
≥ �max

(
Pi

)
 . 

Note that applying the Schur complement lemma to (16) 
guarantees �2

i
≥ �max

(
Pi

)
 . Hence, the condition (12), i.e., 

V̇i ≤ −𝜌Vi , holds if the following matrix inequality holds,

where

On the other hand, as seen in Tuan et al. (2001), the ine-
quality (21) is fulfilled if the following condition holds

Noticing to the Schur complement of (17) and then pre- 
and post-multiplying Pi to it, we can conclude that the condi-
tion (22) is fulfilled, and as a result, (12) is held.

Now, we show that (13) is satisfied if (18) is met. Tak-
ing into account the jump function of the fuzzy impulsive 
subsystem i in (11), we have

(
f l
ci

)T
Pix + xTPif

l
ci

≤ xT
(
�
l
i
PiPi +

(
�
l
i

)−1(
Ml

ci

)T
Ml

ci

+
(
�
l
i

)−1 ∑ri

n=1

{
hn
i

(
Nl
i
Kn
i

)T
Nl
i
Kn
i

})
x.

V̇i ≤ xT
(∑ri

l,n=1
hl
i
hn
i
𝛶

ln
i

)
x

+
∑ri

l,n=1

{
hl
i
hn
i

(
𝛾
l
𝜙i

)−1(
El
𝜙i

)T

El
𝜙i

}
,

�
ln
i

=
(
Al
i

)T
Pi + PiA

l
i
+
(
Bl
i
Kn
i

)T
Pi + PiB

l
i
Kn
i

+
(
�
l
ai
+ �

ln
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+ �

l
�i

)
PiD

l
i

(
Dl

i

)T
Pi

+
(
�
l
ai

)−1(
El
ai

)T
El
ai
+
(
�
ln
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)−1(
El
bi
Kn
i

)T
El
bi
Kn
i

+ �
l
i
PiPi +

(
�
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)−1(
Ml

ci

)T
Ml

ci

+
(
�
l
i

)−1(
Nl
i
Kn
i

)T
Nl
i
Kn
i
.

V̇i ≤ xT
(∑ri

l,n=1
hl
i
hn
i

(
𝛶

ln
i
+
(
𝛾
l
𝜙i

)−1

Pi

(
El
𝜙i

)T

El
𝜙i

))
x

≤ xT
(∑ri

l,n=1
hl
i
hn
i

(
𝛶

ln
i
+
(
𝛾
l
𝜙i

)−1

𝛽
2
i
I
(
El
𝜙i

)T

El
𝜙i

))
x.

(21)
∑ri

l,n=1
hl
i
hn
i
M

ln
i
≥ 0,

M
ln
i
= −�Pi − �

ln
i
−
(
�
l
�i

)−1

�
2
i
I
(
El
�i

)T

El
�i
.

(22)M
ln
i
+M

nl
i
≥ 0, 1 ≤ l ≤ n ≤ ri,

where Gl
i
 is defined in (11). Using the distributive property,

in which

Besides, Lemma 1 yields the following inequalities that 
are used to develop the upper bound of (23),

In addition, we have

Vj

(
t+
k

)
= xT

(
t+
k

)
Pjx

(
t+
k

)
=
∑ri
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(
G
l
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Pj

∑ri
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i
G
l
i
,
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(
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=
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Using the above inequality, since 
∑ri

n=1
hn
i
= 1 , we can 

conclude

Therefore, we have the upper bound of Vj

(
t+
k

)
 as:

According to (4) and (6), we also have

Noticing to Lemma 2 and considering assumption (3) in 
which ΔCl

i
= Dl

i
Fl
i
El
ci

 , we can conclude

where �l
di
= 3�2

j

(
�
l
i

)2 and

Over the subspace ℝn∖E
(
Pi, 1

)
 where xTPix > 1 , consid-

ering the Rayleigh’s inequality, we can modify (24) as:

Hence, (13) is fulfilled if the following condition holds:

or equivalently,

which is satisfied when the condition (18) holds. To check, 
use the Schur complement of (18) and then pre- and post-
multiply it by P−1

i
.
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Finally, we show that (14) is fulfilled if (19) holds. 
According to the Schur complement of (19), we have

Then, pre- and post-multiplying it by �−1
i
Pi yields:

On the other hand, for all x ∈ E
(
Pi, 1

)
 where xTPix < 1,

Since � − 3�2
j

(
�
l
i

)2
≥ 0 , we have for all 1 ≤ l ≤ ri,

and as a result, we can conclude for all x ∈ E
(
Pi, 1

)
,

and thus, according to (24), it is verified that Vj

(
t+
k

)
≤ � for 

all x ∈ �
(
Vi, 1

)
 . This completes the proof.� □

Remark  This paper assumes that a nonlinear switched sys-
tem is presented using the introduced T–S fuzzy structure. 
However, choosing the right subset of nonlinearities as the 
premise variables plays a crucial role in the feasibility of the 
conditions stated in the above theorem and is application 
dependent. However, intelligent selection of this subset may 
be an open area in this research.

For practical issues, it is considered to achieve a control 
signal that ensures convergence to a desired ultimate bound. 
Suppose the desired bound E(Q, 1) where Q is a given sym-
metric positive definite matrix. It is enough to have

which is satisfied if the following condition holds (Poznyak 
et al. 2014),
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To achieve a practical control signal that guarantees con-
vergence to the smallest possible ultimate bound within the 
desired ellipsoid E(Q, 1) , we should minimize the size of 
ellipsoids E

(
L−1
i
, �
)
 for all i ∈ {1, 2,… ,m} which is equiva-

lent to minimizing the objective function 
∑m

i = 1
trace

�
Li
�
+ � 

subject to Theorem 2 and (25).

Remark  To reduce the size of the ellipsoid E
(
L−1
i
, �
)
 , it is 

convenient to minimize the sum of the squares of the ellip-
soid’s semiaxes. Length of the ellipsoid’s semiaxes also 
depends on the eigenvalues of L−1

i
 as well as to the value 

of δ. So, simultaneous minimization of trace
{
Li
}
 and δ is 

recommended that results in a convex problem. For more 
details, we may refer to Poznyak et al. (2014).

Remark  This optimization problem contains linear and bilin-
ear constraints that is solvable using an augmented Lagran-
gian solver such as PENBMI (Kocvara and Stingl 2012). 
However, the efficiency of PENBMI is critical to the selec-
tion of initial point.

Note that if the parameters ρ, μ and βi be known, the con-
straints of the proposed optimization problem are reduced to 
linear ones and can be solved by employing the LMI meth-
ods. However, selecting proper values for these parameters 
requires high computational cost by much iteration. For 
more details, we may refer to Poznyak et al. (2014), Wang 
and Wu (2016). So, we develop a GA-based approach that 
searches the validity space of the parameters ρ, μ and βi and 
finds a solution for this optimization problem. To find the 
validity spaces, according to (16), one can obtain Pi ≤ �

2
i
I . 

So,

Hence, the radius of the ball E
(
�
2
i
I, 1

)
 must be less than 

the smallest radius of the desired ellipsoid E(Q, 1),

where rQ
min

 is the length of the smallest axis of E(Q, 1) . Fur-
thermore, the decay rate between two sequential switching 
instants can be controlled by the parameter ρ. So,

where �des. is the desired decay rate. This can be easily veri-
fied in Poznyak et al. (2014), Tanaka and Wang (2001), Yang 
et al. (2015), Zheng and Zhang (2017). Also, according to 
(20),

(25)P−1
i

= Li ≤ Q−1, 1 ≤ i ≤ m.

E
(
𝛽
2
i
I, 1

)
⊆ E

(
Pi, 1

)
⊆ E(Q, 1).

�
2
i
≥ 1∕r

Q

min
, 1 ≤ i ≤ m,

� ≥ 2�des.,

� ≤ exp
(
��av

)
.

Considering the above validity spaces, the parameters ρ, 
μ and βi are chosen as genes in chromosomes and a random 
initial population is created. For any chromosome in a popu-
lation, the value of the selected parameters is known and we 
just solve the below linear optimization problem utilizing 
the LMI methods,

If (26) be feasible for the given chromosome, the value 
of the objective function and the other decision variables 
in Theorem 2 are given. It should be mentioned that the 
feasibility of (26) should be considered as nonlinear con-
straint during the progress of genetic algorithm. In the cur-
rent population, after all the chromosomes are evaluated, 
the next population will be generated using mutation and 
crossover operations. The evaluation of the current genera-
tion and creation of the next one continue until one of the 
stopping criteria met.

Remark  If the proposed constraints in (26) lead to a limited 
search space, the GA may fail to find the feasible initial 
population. In these cases, the author suggests to tune GA 
parameters more accurately, or to select another subset of 
nonlinearities as premise variables and develop a new T–S 
fuzzy model with less complex sub-models than the current 
T–S model.

4 � Illustrative Examples

In this section, a numerical example for impulsive switched 
systems and a practical-motivated impulsive system are 
given to illustrate the validity of the proposed approach.

Example 1  Consider the following nonlinear impulsive 
switched system that contains two subsystems,
Subsystem 1:

Subsystem 2:

with,

(26)
min:

∑m

i=1
trace

�
Li
�
+ �

s.t.: (16), (17), (18), (19), (25), Li ≥ 0

⎧⎪⎨⎪⎩

�
100ẋ1 = f 1

1
(x(t), u(t)) + 𝜙1(t)

100ẋ2 = f 1
2
(x(t), u(t)) + 𝜙2(t)

, t ≠ tk�
100x+

1
= g1

1
(x(t)) + 10𝜙1(t)

100x+
2
= g1

2
(x(t)) + 10𝜙2(t)

, t = tk

,

⎧⎪⎨⎪⎩

�
100ẋ1 = f 2

1
(x(t), u(t)) + 𝜙1(t)

100ẋ2 = f 2
2
(x(t), u(t)) + 𝜙2(t)

, t ≠ tk�
100x+

1
= g2

1
(x(t)) + 10𝜙1(t)

100x+
2
= g2

2
(x(t)) + 10𝜙2(t)

, t = tk

,
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where

Noticing the local sector nonlinearity approach, we can 
represent the above system as (2) where

f 1
1
=
(
a1
11
+ 3z1

)
x1 +

(
a1
12
+ 4z1

)
x2 +

(
b1
11
+ 9z1

)
u1

+
(
b1
12
− 2z1

)
u2 + z1x1x2,

f 1
2
=
(
a1
22
− 6z1

)
x2 +

(
b1
22
+ 3z1

)
u2 + z1x

2
2
,

g1
1
=
(
c1
11
+ z1

)
x1 + sin

(
x1
)
,

g1
2
=
(
c1
22
+ z1

)
x2 + sin

(
x2
)
,

f 2
1
=
(
a2
11
+ z2

)
x1 −

(
a2
12
− z2

)
x2 +

(
b2
11
− 10z2

)
u1

− u2 + z2x1x2,

f 2
2
= 2x1 +

(
5z2 + a2

22

)
x2 −

(
b2
22
+ 10z2

)
u2 + z2x

2
2
,

g2
1
=
(
c2
11
+ z2

)
x1 + sin

(
x1
)
,

g2
2
=
(
c2
22
+ z2

)
x2 + sin

(
x2
)
,

a1
11

= −20 ± 0.1, a1
12

= 1 ± 0.1, a1
22

= 16 ± 0.1,

b1
11

= −21 ± 0.1, b1
12

= 1 ± 0.1, b1
22

= 22 ± 0.1,

c1
11

= c1
22

= c2
11

= c2
22

= 130 ± 0.1,

a2
11

= +4 ± 0.1, a2
12

= 2 ± 0.1, a2
22

= −35 ± 0.1,

b2
11

= 30 ± 0.1, b2
22

= 30 ± 0.1,

�1 = 0.1 sin (t), �2 = 0.1 cos (t),

z1 =
sin2

(
x1 + 0.5

)
exp

(
sin2

(
x1 + 0.5

))
exp (1)

, z2 = cos2
(
x2 + 0.5

)
.

Z1
1
= 1 − z1, Z2

1
= z1, Z1

2
= 1 − z2, Z2

2
= z2,

A1
1
=

[
−0.2 0.01

0 0.16

]
, B1

1
=

[
−0.21 0.01

0 0.22

]
,

A2
1
=

[
−0.17 0.05

0 0.1

]
, B2

1
=

[
−0.12 −0.01

0 0.25

]
,

A1
2
=

[
0.04 −0.02

0.02 −0.35

]
, B1

2
=

[
0.3 −0.01

0 −0.3

]
,

A2
2
=

[
0.05 −0.01

0.02 −0.3

]
, B2

2
=

[
0.2 −0.01

0 −0.4

]
,

f 1
c1
= f 1

c2
=

[
0

0

]
, f 2

c1
= f 2

c2
= 0.01

[
x1x2
x2
2

]
,

�
1
c1
= �

2
c1
= �

1
c2
= �

2
c2
= 0.001

[
sin (t)

cos (t)

]
,

C1
1
= C2

1
= C1

2
= C2

2
=

[
1.3 0

0 1.3

]
,

f 1
d1

= f 2
d1

= f 1
d2

= f 2
d2

= 0.01

[
sin

(
x1
)

sin
(
x2
)
]
,

�
1
d1

= �
2
d1

= �
1
d2

= �
2
d2

= 0.01

[
sin (t)

cos (t)

]
.

Taking into account the region of validity ||x2|| ≤ 10 , we 
have

and also,

Besides, we suppose

Considering �av = 1 s and Q = 104diag(1, 1) , then apply-
ing (27), we have

and the control signal in the form of (9) where

The state response of this simulation is shown in Fig. 1 
where the states converge toward the origin. This conver-
gence as well as the guaranteed ultimate bound is also illus-
trated in Fig. 2.

M1
c1
= M1

c2
=

[
0 0

0 0

]
, M2

c1
= M2

c2
= 0.1

[
1 0

0 1

]
,

N1
1
= N2

1
= N1

2
= N2

2
= 0,

M1
d1

= M2
d1

= M1
d2

= M2
d2

= 0.01

[
1 0

0 1

]
,

�
1
1
= �

2
1
= �

1
2
= �

2
2
= 0.001.

D1
1
= D2

1
= D1

2
= D2

2
=

[
1 0

0 1

]
,

F1
1
= F2

1
= F1

2
= F2

2
=

[
sin (t) 0

0 cos (t)

]
,

E1
a1

= E2
a1

= E1
b1

= E2
b1

= 0.001

[
1 1

0 1

]
,

E1
a2

= E2
a2

= 0.001

[
1 1

1 1

]
,

E1
b2

= E2
b2

= 0.001

[
1 1

0 1

]
,

E1
c1
= E2

c1
= E1

c2
= E2

c2
= 0.001

[
1 0

0 1

]
,

L1 = 10−5
[

0.2610 −0.0000

−0.0000 0.2610

]
,

L2 = 10−5
[

0.2632 −0.0000

−0.0000 0.2632

]
,

� = 2.5601, � = 12.9369, � = 12.1642,

K1
1
=

[
19.6731 −0.0264

0.2456 −19.7375

]
,

K2
1
=

[
20.6003 0.4287

0.0889 −17.1902

]
,

K1
2
=

[
−19.6903 0.4350

0.2081 18.8977

]
,

K2
2
=

[
−20.0361 0.4842

0.3037 16.1091

]
.
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where the control signal u is the acceleration of θ and 
B = 0.7143, g = g0 + Δg = 9.8 ± 0.01m∕s2 are parameters. 
We also consider x1 ∈ [−1, 1], x3 ∈ [−1, 1], x4 ∈ [−1, 1] and 
x2 has no limit.

By choosing �
(
x3
)
= sin

(
x3
)
∕x3 as the premise variable, 

system (27) is exactly modeled using the T–S fuzzy system 
(2) where

in which f 1
c
 and f 2

c
 satisfy (5) with,

and N1 = N2 = 0. To represent uncertainties, we consider

Z1 =
𝜃
�
x3
�
− 𝜃̌

𝜃̂ − 𝜃̌

, Z2 =
𝜃̂ − 𝜃

�
x3
�

𝜃̂ − 𝜃̌

,

𝜃̂ = max
x3∈[−1,1]

𝜃
�
x3
�
, 𝜃̌ = min

x3∈[−1,1]
𝜃
�
x3
�
,

A1 =

⎡⎢⎢⎢⎣

0 1 0 0

0 0 −Bg0𝜃̂ 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎦
, B1 =

⎡⎢⎢⎢⎣

0

0

0

1

⎤⎥⎥⎥⎦
,

A2 =

⎡⎢⎢⎢⎣

0 1 0 0

0 0 −Bg0𝜃̌ 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎦
, B2 =

⎡⎢⎢⎢⎣

0

0

0

1

⎤⎥⎥⎥⎦
,

f 1
c
= f 2

c
= B

�
0 x1x

2
4
0 0

�T
, 𝜙

1
c
= 𝜙

2
c
= 0,

M1 = M2 = diag(B, 0, 0, 0),

D1 = D2 = I,

F1 = F2 = diag(sin (t), cos (t), sin (t), cos (t)),

E1
a
=

⎡⎢⎢⎢⎣

0 1 0 0

0 0 −BΔg𝜃̂ 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎦
,

E2
a
=

⎡⎢⎢⎢⎣

0 1 0 0

0 0 −BΔg𝜃̌ 0

0 0 0 1

0 0 0 0

⎤⎥⎥⎥⎦
,

E1
b
= E2

b
= E1

𝜙
= E2

𝜙
= 0.

Fig. 1   State response of the presented numerical example

Fig. 2   Trajectory converges to the guaranteed ultimate bound

Fig. 3   Ball-and-beam system

Example 2  Consider the ball-and-beam system in Fig. 3. Let 
x =

(
r, ṙ, 𝜃, 𝜃̇

)T be the state vector of the system. Then, the 
system can be represented by the following state-space model,

(27)
⎡⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

x2
B
�
x1x

2
4
− g sin x3

�
x4
0

⎤⎥⎥⎥⎦
+

⎡⎢⎢⎢⎣

0

0

0

1

⎤⎥⎥⎥⎦
u,
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As seen, (27) has no impulse effect. Hence, we also assume 
that the velocity of the ball and the velocity of θ are mutated 
due to collision with an obstacle. So, we also consider,

where M1
d
= M2

d
= 0.01diag(0, 1, 0, 1), �

1 = �
2 = 0.

Considering the impulse sequence {1, 2, 3,…} and 
Q = 103 × I , then solving the optimization problem (26), 
the gains of the fuzzy controller (9) and other obtained data 
are as follows:

Figure 4 shows the state response of the impulsive ball-
and-beam system (27) under the fuzzy control signal (9) for 
a period of 4 s with impulse instances.

C1 = C2 = diag(1, 1.2, 1, 1.2),

E1
c
= E2

c
= 0.05 × diag(0, 1, 0, 1),

f 1
d
= f 2

d
= 0.01

⎡
⎢⎢⎢⎣

0

sin
�
x2
�

0

sin
�
x4
�

⎤
⎥⎥⎥⎦
, �

1
d
= �

2
d
= 0,

K1 =
�
165.109 99.078 −163.040 −18.480

�
,

K2 =
�
161.991 97.901 −156.747 −18.801

�
,

L = 10−3

⎡⎢⎢⎢⎣

0.0142 −0.0319 −0.0025 −0.0241

∗ 0.1188 0.0368 0.0636

∗ ∗ 0.0309 −0.0559

∗ ∗ ∗ 0.9016

⎤⎥⎥⎥⎦
,

� = 2.6100, � = 13.5960, � = 2.9727.

5 � Conclusion

This paper investigates the ultimate boundedness stabiliza-
tion of nonlinear impulsive switched systems. At first, we 
propose the sufficient stability conditions for the general 
model of the nonlinear impulsive switched systems with 
uncertainties. Due to different resources of uncertainties 
in continuous- and discrete-time dynamics for real-world 
processes, convergence to the origin is difficult. Therefore, 
contrary to the most of the existing literature, we modify 
the stability criteria, such that they ensure convergence to 
an ultimate bound rather than to the origin. Secondly, to 
design a fuzzy control law for a general nonlinear impulsive 
switched system which is described using a novel T–S fuzzy 
model, the proposed novel criteria are then reformulated as 
matrix inequalities. Besides, we introduce an optimization 
problem to find gains of the controller along with the small-
est ultimate bound. Since some of these matrix inequali-
ties are not linear, we also introduce a GA-LMI approach to 
solve the optimization problem.

In addition, introducing a T–S fuzzy system that includes 
uncertain nonlinear local models is another contribution of 
this paper. Unlike the traditional T–S fuzzy systems where 
all local models are linear, the introduced model needs a 
fewer number of rules to describe a nonlinear system, and as 
a result, it severely reduces the number and the complexity 
of stabilization criteria. Furthermore, this model can also be 
applied to nonlinear impulsive system without any switching 
effect or to switched systems without impulsive behaviors. 
As the next step in this research, we hope to study delay in 
the states and the asynchronous control signal.
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