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Abstract

Significant progress was made in the 1980s and 1990s in the development and application of direct methods in power
system transient stability analysis. However, there is still certain mistrust because most of them have been built on heuristics,
simplifications and simulations. To build confidence in direct energy methods, a first version of a Hamiltonian energy balance
method based on perturbation theory and wave energy function was recently proposed. In this method, the kinetic and
potential Hamiltonian energies of the dynamical system are computed in the prefault, fault-on and postfault periods, using the
time-independent Schrodinger equation, canonical transformation and calculus of variations. One major disadvantage of the
method is that it still does not compute the critical clearing angle (CCA) and the critical clearing time (CCT). In the present
paper, earlier and current theoretical concepts built on a preliminary topological characterization of the stable equilibrium
energy boundary (also referred to as energy barrier) are used to address this deficiency, resulting in a new version of the
Hamiltonian energy balance method that is tested for computing CCA and CCT, providing more accurate results than other

methods available in the literature.
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1 Introduction

Energy-based (Kakimoto et al. 1978; Pai 1982) direct meth-
ods can determine transient stability of power systems
without the effort of indirect methods (time-domain simu-
lations), providing a quantitative measure of the degree of
system stability. This additional information makes direct
methods very attractive when the relative stability of dif-
ferent network configuration plans must be compared or
when operating limits constrained by transient stability must
be calculated quickly. From an analytical viewpoint, these
methods were originally developed for power systems with
autonomous postfault systems. Essentially, there are several
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challenges and limitations involved in the practical applica-
tions of direct methods for power system transient stability
analysis, some of which are inherent to these methods and
some of which are related to their applicability to power sys-
tem models (Chiang 2011; Pillco and Alberto 2015).
Regardless of the substantial progress over the last
decades, direct methods are still considered not viable by
many researches and engineers for power system applica-
tions. Recently, an energy balance method for direct analysis
of transient stability, known as Hamiltonian energy balance
function for power systems (HEBFPS) (Machado and Pes-
sanha 2019), was proposed based on classical Hamiltonian
formalism. The method has proven to be accurate and reli-
able based on preliminary results, mainly because it is free of
heuristics, limitations and approximations, as normally seen
in conventional methods (Chiang et al. 1987; Chiang 2011).
Besides, a new concept of energy variables to the problem
has been introduced, known as holonomic constraints (Meyer
et al. 2009), which are the only variables that are actually
used in the solution, reducing computational effort as fewer
variables are required. It will be recalled that the transient
stability problem had never been formulated through Hamil-
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tonian formalism as shown in this paper, except in control
(Liu et al. 2003, 2012; Sun et al. 2002).

The HEBFPS method (Machado and Pessanha 2019) com-
putes stable, unstable and controlling unstable operating
points. However, the only version available until now does
not calculate the critical clearing angle (CCA) and the critical
clearing time (CCT), two major concerns in transient stability
problems. Based on that, the method had to be expanded to
compute these quantities, as described in this paper. The pro-
posalis tested and compared to other methods with two power
systems. The results obtained with the proposed approach are
promising and stimulating to implement new features and to
conduct further investigations.

2 Computation of the Critical Clearing Time
and Critical Clearing Angle

Earlier concepts of the HEBFPS method are very important to
understand and to support the current work. Since important
steps had to be summarized in (Machado and Pessanha 2019)
for sake of space, some of them are expanded and clarified
in the present paper. Let us first recall some aspects of the
method that are useful to calculate the CCT and CCA, as seen
next.

The final equilibrium (stable/unstable) of a power system
has been determined based on a Hamiltonian energy bal-
ance approach (dimensionless) and on stability criteria, as
given in (1) and (2), respectively. It will be recalled that sta-
bility criteria are built on exergy rate equations (Robinett
and Wilson 2011), perturbation theory, wave energy func-
tion and dissipation-induced instabilities (Krechetnikov and
Marsden 2007). The superscripts “0” and “PF” correspond to
the prefault and postfault periods and “7" to the total energy
balance.

dH” = dH® + dH"F (1)
dHT < 0, postfault stable

dHT >0, postfault unstable

dHT =0, at the boundary 2)

To calculate CCT and CCA, the fault-on Hamiltonian
energies (dH F ) must be determined at each time interval
(to <t < tg). First, it is necessary to calculate the fault-on
holonomic constraints (6 Foof ) of the generator (classical
model), which amount will depend on the number of inte-
gration intervals (i= 1, 2,..., n), as shown in Fig. 1. The
fault-on holonomic constraints are used for the computation
of the fault-on Hamiltonian energies, which in turn are used
to calculate the CCA and the CCT.
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Fig. 1 Holonomic constraints’ dynamics

There is a major difference between the first version of the
method and the current one. Originally, the fault-on Hamil-
tonians have been intended only to the computation of the
postfault Hamiltonian, as shown in (1). Since we want to
calculate the CCT and the CCA, we just need to know the
fault-on Hamiltonians, from the moment that the fault is
applied (zp) to the moment that is cleared (¢¢). This change
may be easily understood based on the explanation given
below.

If a fault is applied at to, and as long as it lasts, the Hamil-
tonian energy of the generator will change because of the
variations of the holonomic constraints and of its output elec-
tric power. The equilibrium now is computed as shown in (3),
i.e., the energy balance uses the Hamiltonian energy calcu-
lated at the instant that the fault is cleared.
dHT (t) = dH (t) + dHT (101) )

It is easily noticed that both CCT and CCA must be
computed when (3) equals zero, the third stability crite-
rion of (2). Such a situation occurs when dHF = dH°
with opposite signs (%), recalling that stable energy regions
are always characterized by (dH(#;) < 0), while unstable
regions by (dH (t;) > 0). Based on that, there are two ways
to compute CCA and CCT: (i) monitoring the fault-on Hamil-
tonians until it equals prefault or (ii) monitoring the fault-on
Hamiltonian energy balance (computed at each time interval)
until it equals zero. The first results in less computational
cost, and it is therefore considered here. Besides, it should
be avoided that the total Hamiltonian energy balance (3)
becomes positive, which would be probably too late to pre-
vent the generator from operating unstable, and consequently,
the computation of CCT and CCA under this condition is not
justified.

Algorithm Computation of the critical clearing angle and
critical clearing time via HEBFPS method.

First step: Compute P,g and Pe0 through power flow anal-
ysis. The holonomic constraints 8° and »° are computed
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in the same way as in time-domain analysis for the initial
conditions.

Second step: Construct the prefault Hamiltonian energy
function (4) using the values computed in step 1.

2
(i) = (i) [
—_—
HY (w0) HY: (50)

The prefault conjugate momentum (pg) of the generator is
given in (5), and therefore, the kinetic energy is expressed

by (6).
po=03H/ds =ué; 6=po/n )
Hie = p [ 21 ©)

Third step: Compute the prefault Hamiltonian energy
(7)—(9) using function (4).

dH’ = (_aHo/arSo)d80 + <8H0/8p0>dp0 )

2 0
—Hof 50 = = a0 P 210+ [PS — ] = =P/ s,
(3)

TN ) B

Fourth step: Construct the fault-on Hamiltonian energy
function (10). It will be recalled that i is the number of
fault-on integration intervals (i= 1, 2,..., n).

HP(sF ) = (i[5, ) +[P, — PF(5F (10)
n i
Hig (@) His (57)

Fifth step: Simultaneous computation of the fault-on holo-
nomic constraints of the generator and its output electric
power (Bf , a)lF , Pef ) in the time domain and of the fault-
on “F” Hamiltonians for each interval #; according to
(11)—(13), using function (10).

dHiF _ /:l <8HiF/3;)dt (11)
ML [op=ap] P [2u+ [P = PL(SE)]] =7/

(12)
=001 oy = =(3s) [P [ 2L 61)]
_ _aPef/a(S (13)
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Sixth step: Compute the total “7”” Hamiltonian energy bal-
ance at the instant that the fault is cleared —¢,, = 7.1 (14).

dHT = dH° +dH¢! (14)

Seventh step: Determine the postfault equilibrium state of
the power system according to the criteria described in (2).
Eighth step: Compute CCT and CCA with (15)—(18).

4t
TF JoH;
tcrzf/<8Hi o) (W’—dHi) ds
———— !
dHiF .

0 4 —_—
AHF
- f[(dHf)AHf]d(A(S) (15)

0

3i

cl

1)
[ (05 far) (aai - dH,.) as

e ——’
0 51. F ﬁ,—/
dH; AHF

i

1
Scr =
§

Scl
- [ (a7 )asf |acas) (16)
3o

A =]

= (MS'.F) _ M (17)

5~ tim (A6f)~ lim (m) (18)

wo— Aw; wo—> Aw; At

Some steps must be taken to improve accuracy and reli-
ability of the proposed method, as shown in (15) and (16),
in which the dynamic trajectory of the fault-on Hamiltonian
energy from prefault (¢g), up to the instant that the fault is
cleared (#;), is approximated by very small pieces, using
the partition path integral over a chosen interval [Ad, At]
technique (Gonzalez 2000). It must be recalled that the fault-
on Hamiltonian is monitored until dHiF = dHY, exactly
when the balance is zero (dH (1) = dH" + dH = 0). The-
oretically, both CCA and CCT are computed under such
conditions. Computationally, we might have to assume the
closest values because of the approximate integration tech-
nique

The previous algorithm has been described for the classi-
cal generator model only, but it can be easily extended for any
machine model just adding new holonomic constraints to the
energy functions. Besides, if only the total energy balance is
of interest, step 8 is skipped.
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Fig.2 Single-machine infinite bus

3 Application of the Method

Let us illustrate the application of the method considering
the single-machine infinite-bus test system (SMIB) shown in
Fig. 2. A three-phase short circuit is applied at the generator’s
terminals (Bus 1). The system’s data have been taken from
Padiyar (2008): jX'y = 0.3 pu, jX; = 0.1 pu, jX; = 0.4 pu,
jX12 =0.1pu, P = 1.0 pu, H = 4 and f= 50 Hz. It will be
recalled that the method normally does not use the moment of
inertia (M) of the generator, but its inertia tensor (1) instead.
Here, since the system comprises just one generator, it is
correct to assume y = H = 4. A fault-on period of 0.1105 s
has been chosen to compute CCT and CCA. Some steps of
the algorithm were put together in the analysis as follows:

(a) Initial conditions (step 1).

Py =1.0pu P? =1.0pus’ =51.17° 0" = 314.16 rd/s

(b) Computation of the prefault Hamiltonian energy (steps
2 and 3).

dH® = (=9Ho/ys Ydso + (VHo/,0 Ydpo = ~2.083

(c) Computation of the fault-on Hamiltonian energy (steps
4 and 5). The time interval must be chosen in such a way
that dH = dH" can be computed.

0.1103 F
dHF :/ (PH [50) ar =+2397
0

(d) Computation of the energy balance at the instant that
the fault is cleared (z;] = 0.1103s) (step 6).

dHT = —2.083 +2.507 = +0.424

(e) Since dHT = +0.424 > 0, the system is unstable
according to the criteria presented in (2) (step 7). The
analysis would end here if no further computations had
been required.

(f) Due to the fact that the total balance is positive, it means
that the clearing time 0.1103 s is above critical time.
The angle at this instant has been computed as 64.63°
(1.1280 rds). It is clear that both CCT and CCA are less
than these computed values.

Table 1 Fault-on Hamiltonians and corresponding time interval

dHF Time interval Angle interval
[0, 0.1105] [0.8931, 1.1280]
+ 1.094 0.1096 1.1259
+ 1.391 0.1097 1.1266
+ 1.558 0.1098 1.1270
+ 1.736 0.1099 1.1275
+2.083 0.1100 1.1277
+2.149 0.1101 1.1279
+2.205 0.1102 1.1280
+2.397 0.1103 1.1259

(g) Integrals (15) and (16) are solved using the partition
path integral technique over the intervals [0, 0.1103]
and [0.8931, 1.1280], respectively (step 8).

0.1103

fer = f [(a") At e
1?1280

o = / [(dHf)AHf]d(Aa)
0.8931

It is exactly at dH” = dH" that the critical clearing time
and the critical clearing angle must be taken. The results
are given in Table 1 using four-digit decimal arithmetic,
where the critical clearing time and critical clearing angle
are 0.1100 s and 1.1277 rds, respectively. The results are in
good agreement with those obtained by (Padiyar 2008).

Figure 3 shows the 3D Hamiltonian energy balance stor-
age surfaces of the previous example. In the prefault period,
the Hamiltonian balance is inside a basin of attraction, as
shown in Fig. 3a, and therefore, the system is stable. In the
fault-on period and until the fault is cleared, the energy of
the system is deformed because of the degenerative nature
of the fault energy. When the fault is cleared at the critical
time, the Hamiltonian is still inside the basin of attraction,
as shown in Fig. 3b, and the system remains stable. For a
clearing time greater than the critical time, the Hamiltonian
leaves the basin of attraction and lies in an unstable region,
as shown in Fig. 3c. The previous computation of the critical
clearing time and critical clearing angle has been corrobo-
rated through the 3D Hamiltonian energy balance storage
surfaces.

The above examples have just illustrated the proposed
approach step by step. In real simulations, as seen next,
the method computes the final energy balance, the critical
clearing time and the critical clearing angle without forced
interruptions.
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Fig.3 3D energy storage surface of the generator

4 Computer Simulations

The proposal is now evaluated with two power systems and
compared to other methods available in the literature. The
code has been designed in MATLAB—version 2016a, and
runs on a Desktop PC—Intel Core™ 17, 4790 3.60 GHz CPU
16.0 GB RAM, 64 bits. The simulations data can be found
in the respective references.

(a) Test System [—WSCC 9-bus 3-machine
The method is first tested with the WSCC 3G 9-bus
power system, taken from (Chiang 2011), where the

@ Springer

author applies the network-reduction BCU method. On
the other hand, there are no reductions nor simplifica-
tions of any kind in the proposed method, without com-
promising computational efficiency (low CPU time) and
accuracy of results. The classical model with a uniform
damping factor represents all generators, and the loads
are of constant impedance type. The results presented
in Table 2 are in good agreement with BCU method,
which version is the one used in (Chiang 2011).
(b) Test 50G—145-bus power system model

The critical clearing time is now computed for the
50G—145-bus power system (Vittal 1992; Chiang
2011). The main objective is to verify the accuracy of the
method through comparative analysis. Table 3 provides
the computed CCTs in ms by five different methods and
for different faults (Chiang 2011). As can be seen, the
results are very accurate, being the closest ones to time
domain in six simulations out of eight (except for a fault
at buses 91 and 33).

The Hamiltonian energy balances have been computed for
the first fault (bus#7), as given in Table 4. For sake of space,
only the energy balances of the most critical generators to
the fault, G20 and G26, are presented. The system is prefault
stable, as well as postfault when the fault is cleared at 7] =
0.1080s, because dHy and dH7 are negative. In this case,
G20 and G26 present the lowest negative energy balances
(close to zero and to the energy boundary). On the other hand,
the system is postfault unstable when the fault is cleared at
t = 0.1085s, because all dHr are positive. In this case,
G20 and G26 present the highest positive energy balances.
(The energy boundary has already been crossed.) The results
in terms of equilibrium are in good agreement with those
presented in (Vittal 1992).

5 General Remarks

Current energy-based methods normally provide information
on transient stability problems via specific energy indexes,
where the most common are: stable equilibrium points
(SEPs), closest unstable equilibrium points (UEPs) and con-
trolling unstable equilibrium points (CUEPs), besides the
critical fault clearing time and the critical generator’s angle
(Owusu-Mireku and Chiang 2018; Tang et al. 2018). It was
not found it necessary to perform in the present paper the
computations of SEPs, UEPs and CUEPs, since they can be
found in Machado and Pessanha (2019). Here, most of the
results obtained with the proposed method for calculating
CCT and CCA (Sect. 4) were closer to those obtained in the
time domain.

The current approach is still built on the original Hamil-
tonian energy balance method, in a manner not seen so far.
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Table 2 Critical clearing time

and critical clearing (contingency #) CCT (s) CCA (in radians) 81 /8> /83
angle—WSCC power system Fault at t?us#/
opened line
HEBFPS BCU Time domain HEBFPS BCU
(1)4 4-6 0.32 0.31 0.32 —0.0317 —0.0319
0.0951 0.0949
0.0501 0.0492
2)5 5-7 0.33 0.33 0.33 —0.1202 —0.1204
0.3390 0.3394
0.2236 0.2239
3)6 6-9 0.33 0.34 0.34 —0.0966 —0.0967
0.2180 0.2180
0.2957 0.2958
47 7-8 0.36 0.35 0.36 —0.0655 —0.0655
0.2429 0.2430
—0.0023 —0.0024
5)8 8-9 0.27 0.26 0.27 —0.0461 —0.0462
0.0725 0.0728
0.2080 0.2082
Table 3 CCTs (ms) computed with different methods 6 Conclusions
Fault at bus#/  Method . ) )
opened line A reformulated version of the Hamiltonian energy balance
method including th m ion of the critical clearin
HEBFPS  Time BCU MOD Exit point ! ethod inc ud. g the co' putation of t jc.c tical clearing
domain time and the critical clearing angle, quantities that were not
computed in the original version, is presented and described
7 7-6 107.5 108.2 1020 1125 1125 in this paper. Due to the fact that the main foundations of
73 73-84 2111 2155 1942 =* o the method have been kept, the new version is also free of
91  91-75 1877 188.0 187.7 1875 1875 the limitations, heuristics and challengers normally found
66 6667 170.6 171.0 163.5  ** o in conventional energy-based methods. Besides, for achiev-
33 3339 3847 386.0 385.0 347.5 ing high accuracy, the partition path integral technique has
69  69-32 2034 205.3 186.2 ok been applied for solving the critical clearing time and critical
59 59-103 220.2 222.6 220.0 ** 242.5 clearing angle integrals. The proposal has been validated and
105 105-73 2128 213.5 206.5 ok compared to other methods available in the literature. Prelim-
#*Unsolved inary tests indicate that the proposal gives the most accurate

Table 4 Hamiltonian energy balances

Gen dHO te; = 0.1080s teg = 0.1085s

stable unstable

dHT dHT dHT dHT
G20 —3.094 +2.739 —0.355 +10.518 +7.424
G26 —3.094 +1.183 — 1911 +6.240 +3.146

It will be recalled that the Hamiltonian energy functions are
formulated based on the holonomic constraints (§, w) of the
generator (classical model). It means that information on the
angle of the generator, one of the main concerns of the prob-
lem, can be obtained from the related formulations, as shown
in Sects. 2 and 3.

results in the estimated CCTs and CCAs. The approach is
very sensitive to any change in the energy of the system, cap-
turing information on the degeneration of the prefault energy
caused by the destructive nature of the fault energy. It is very
likely that the method will be appropriate for online transient
stability assessment, after further investigations, improve-
ments and tests.
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