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Abstract
In this work, the development of a system for the automated inspection of mesh fabrics in real time through computer vision
techniques is described. Here, a processing pipeline that includes a distortion removal procedure, a texture-based detector, a
shape and an artificial neural network classifier is proposed. Different from other works found in the literature, the developed
system was evaluated under real inspection conditions. The obtained results show that the proposed system not only achieves
compatible defect detection and classification rates than the current state-of-the-art methods but also met functional and
non-functional requirements observed in industry.
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1 Introduction

Quality control at all stages of the textile production chain is
an important business strategy for companies in this segment,
enabling them to compete on the global market. The current
scenario calls for increased production efficiency, with more
agile production lines, reducedwaste creation and better final
product quality.

Specifically, in the fabric production stage, the prelimi-
nary inspection allows feedback in the production process,
preventing the reoccurrence of defects with known cause.
Therefore, it is possible to increase the yield of subsequent
steps, avoiding reprocessing and reducing the generation
of textile waste. Fabrics with faults or defects account for
approximately 85%of the defects found in the clothing indus-
try (Sengottuvelan et al. 2008). Thus, the pre-inspection
of the fabric is an important phase of the quality con-
trol.

Most of the nonconformities in fabrics in the production
stage are still identified byhumanoperators. The inspection is
performedwith the aid of rewindingmachines which unwind
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the fabric at a constant speed of 8 to 20 m/min on a table illu-
minated by a backlight (Kumar 2008). However, considering
the time required and level of precision, thesemanual inspec-
tions are not appropriate for satisfying the highly competitive
demands of the global market (Habib et al. 2014). The accu-
racy of manual inspection is estimated to be around 70%, and
it is strongly influenced by human operator fatigue (Li and
Zhang 2016; Ngan et al. 2011; Islam et al. 2008).

Due to the importance of prior inspection of the fabric to
ensure the quality of the final product, several researchers
are carrying out studies aimed at proposing systems or
techniques for the automated inspection of fabric based on
machine vision (Li and Zhang 2016; Li et al. 2013; Zhou
et al. 2016; Kumar 2008; Ngan et al. 2011; Mahajan et al.
2009). However, although advances have been achieved in
this area of research, few papers have addressed the chal-
lenges observed under real inspection conditions at industrial
plants, such as the high speed at which the fabric moves and
real-time constraints.

In this work, the development of an automated system
for online fabric inspection based on computer vision is
described. The main contributions of this paper are as fol-
lows:

1. The proposal of amultistep inspectionmethod for defects
detection and classification. In this method, a calibration
step is used, allowing the location of defects in metric
units. The segmentation and description of tissue defects
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are done based on statistical descriptors, and the classifi-
cation is done based onmorphological or texture analysis.

2. The evaluation of results under real inspection conditions
for both detection and classification steps.

3. The creation of an image dataset for fabric defects
acquired directly from a tissue rewinder and classified
by a specialist. This dataset was made available on the
Web.

The approaches used in automated fabric inspection in
the literature are described in Sect. 2. Section 3 details the
approach used in the development of the proposed system,
including the proposal of defect detection and classification
methods and a general description of the inspection system.
In Sect. 4, the experimental results obtained in the evaluation
of the system using images of the surface of the fabric taken
in real time are discussed. Finally, in Sect. 5 the conclusions
and perspectives for future work are presented.

2 Automated Fabric Inspection: A Review

The methods used in automated fabric inspection systems
described in the literature vary according to the characteris-
tics of the fabric and are classified according to the approach
used to analyze the texture (Kumar 2008; Ngan et al. 2011;
Mahajan et al. 2009). The adopted approaches are commonly
classified into three categories: statistical, spectral andmodel
based.

Considering that regions of non-defective fabric are some-
how stationary, statistical approaches detect defects as being
the regions with statistically different behavior. The spatial
distribution of intensity levels in this approach is defined
by representations such as co-occurrence matrices, fractal
dimension, cross-correlation and mathematical morphology.

Images of fabric with uniform texture, composed of stan-
dardized repetitions of texture primitives, are more easily
evaluated in the frequency domain. In this spectral approach,
primitive texture features can be described using Fourier
transform, Gabor filter or wavelet transform techniques. The
occurrence of spectral changes can then be interpreted as
the presence of a defect in the region of the fabric being
inspected.

Model-based approaches are particularly suited to images
of random-textured fabric. In this case, the textures are
modeled by stochastic processes using, for instance, autore-
gressivemodels orMarkov randomfields. Thus, the detection
of defects corresponds to the problem of testing the statistical
hypothesis of the model.

According to the taxonomy of methods for the automated
detection of fabric defects organized by Ngan et al. (Ngan
et al. 2011), the hit rates range from 54.13 to 98.30% for the
statistical approach methods and from 82.86 to 98% for the

spectral approach methods, with values up to 100% for the
methods that fall within the model-based approach.

In addition to detection, classification of the defect accord-
ing to its nature or categories of defects, instead of binary
classification (whether or not defective), is a primary task
in fabric quality control. This information can be used to
prevent the recurrence of defects from known causes and
can be applied to classify the fabric roll based on its qual-
ity grade. For the automated execution of this task, neural
network classifiers (Habib et al. 2014), fuzzy logic (Kumar
and Ragupathy 2012) and support vector machines (Dongli
et al. 2013) are used. Most approaches are based on neural
networks, according to Habib et al. (2014).

The selection of the descriptors used in the characteris-
tic vectors that represent the different types or categories of
defects has a great influence on the performance of the classi-
fier (Gonzalez and Woods 2008). Different descriptors have
been used as inputs for classifiers of fabric defects. Geomet-
ric descriptors, such as the centroid, height, width and area
of the defective region, and histogram-based texture descrip-
tors, such as homogeneity, entropy and contrast, based on
co-occurrence matrices, are examples of descriptors used as
components of the feature vector.

Several types of defects can arise in fabric production.
However, the type of artifact generated by certain groups of
defects in images of defective regions has led researchers
to define categories of defects (Stivanello et al. 2016). The
categories of defined defects include: hole, oil stain, yarn
color, missing vertical thread, missing horizontal thread and
other type of defect. In addition, there is the category without
defects, defined in systems that do not perform a previous
stage of defect detection and where the classifier evaluates
all inspected images.

The criterion most commonly used to evaluate the perfor-
mance of the classifiers is the overall classification accuracy,
which corresponds to the probability that any image (or
defect) is correctly classified among the output categories.
According to the comparative study of classifiers based on
neural networks, organized by Habib et al. (2014), the values
for the overall precision of these classifiers range from 76.5
to 100%. The global accuracy for the fuzzy-based classifier
was 96.55%, and for the SVM-based classifier it was 94%
(Dongli et al. 2013).

Despite the extensive literature available on the subject, it
is important to note that the existing methods are often evalu-
ated under operating conditionswhich are very different from
those found in industrial practice. It is common, for example,
to use a small number of samples or images acquired from
static fabric (Kumar 2008; Habib et al. 2014; Ngan et al.
2011; Mahajan et al. 2009). The few works that evaluate the
automated inspection considering real-time issues are lim-
ited to the task of defect detection (Zhou et al. 2016; Li et al.
2013).
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3 Description of the Proposed Automated
Fabric Inspection System

Observing the application domain, we have that the main
functional requirements to be met by the automated inspec-
tion system are:

– Detection and classification of the defects present in rolls
of mesh fabric according to the categorization of defects
employed by industry;

– Calculation of the number of defects and the total defec-
tive area in each inspected roll.

Moreover, the most important non-functional require-
ments to be observed are:

– The accuracy must be equal to or greater than that
achieved in manual inspection: 70% (Ngan et al. 2011;
Islam et al. 2008);

– The inspection speed must be compatible with the oper-
ating conditions found in the industry: up to 20 m/min
(Kumar 2008).

The details of the automated image-based inspection sys-
tem proposed to meet these requirements are followed in
sequence.

3.1 Inspection System Architecture

In Fig. 1, a simplified architecture of the proposed system
is shown. Here, the inspection is performed from images of
the surface of the fabric, obtained from an acquisition and
processing system coupled to a reviewing machine, similar
to those used in the textile industry for manual inspection.

An incremental encoder is installed in the reviewing
machine to control the speed and synchronize the images
acquisition and inspection. It is also used to calculate the
length of inspected roll. A camera is used to capture images
from the surface of the fabric. In turn, a computer is used to
process each of the images and record the inspection infor-
mation of the roll.

3.2 Detection and Classification of Defects Through
Computer Vision Techniques

The presence of defects in a fabric surface sample causes
visual changes that can be described through an analysis
of the intensity levels of the image. Therefore, a statis-
tical approach was used for the automated inspection of
defects. Figure 2 shows a flowchart of the adopted processing
pipeline.

Initially, a configuration step is performed to obtain cali-
bration parameters used in the correction of images and in the

Fig. 1 Simplified architecture of the proposed system

conversion ofmeasurements necessary to calculate the defec-
tive area information and length of the fabric roll. During the
inspection, an image of each region of the fabric surface is
acquired. Each image is preprocessed in an Image correc-
tion step in order to remove projective distortions. Then, the
image is processed in a Defect detection step to verify if it
reveals any defective region. If the result is positive, these
regions are processed in a Texture descriptors calculation
step. Texture descriptors are used in a Defect classification
step to determinewhich category the regionfits.A report con-
taining information relevant to the industrial process, such as
the defective area and amount of defects per fabric roll, is gen-
erated, based on the records of detection and classification
of defects of the roll.

The main steps of the described pipeline are followed in
sequence.

3.2.1 Camera Calibration and Image correction

Imperfections in the optical system cause distortions in the
geometric characteristics of the captured image. Light rays
farther from the center of lens are bent too much compared
to rays that pass closer to the center. Thus, straight lines can
appear to bow out on the image plane. Some of the defects to
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Fig. 2 Flowchart of the processing steps

be detected and classified in the proposed system are charac-
terized by vertical and horizontal straight lines. Thus, such
distortions must be removed, considering that the detectors
employed to detect lines only work on undistorted images.

In order to estimate the radial coefficients and the perspec-
tive transformation that describes such distortions, a camera
calibration method is applied (Zhang 2000). The perspec-

Fig. 3 Subwindows located in defective regions

tive transformation matrix and the distortion coefficients can
be used to compute the joint undistortion and rectification
transformation in the form of maps or lookup tables (LUT).
These maps can be used to recover the original geometric
characteristics of the fabric image.

In turn, in order to obtain information such as the position
and length of the detected defect, it is necessary to convert
the coordinates in pixels in the plane of the image to metric
coordinates, according to a coordinate system of the plane of
the observed fabric. The conversion of coordinates between
the systems involved is performed through the estimation of
projective transformation, or homography, which relates the
two planes (Trucco and Verri 2003).

3.2.2 Defect Detection

For the detection of defects, amethod based on local statistics
is applied (Stivanello et al. 2016). The method consists of
dividing the image to be inspected into small square regions
or subwindowsandevaluating the texture in eachoneof them.
This method is based on the premise that the pixels around
the border of defective regions have very different levels of
intensity. In fabric images where there are defects that result
in greater passage of light in the defective region, such as
holes and tears, the subwindow contains pixels with levels
of intensity close to the ends of the gray scale, in addition to
pixels with the same intensity levels as the regions without
defects, as shown in Fig. 3a. In caseswhere the defects are not
evidenced by the “greater passage of light” because they are
more closed, as is the case of Fig. 3b, the subwindow contains
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Fig. 4 Defective region identification

pixels with intensity levels that vary from the darkest level
to the levels present in regions without defects.

It is possible to observe that the texture in the areas sur-
rounding the border of defective regions is not very smooth,
indicating a high variability of the intensity levels. In regions
without defects, the opposite is observed, that is there is
less variability and the texture is smoother. Based on these
observations, to describe the texture of the subwindows of
the image a softness descriptor standard deviation is used.
This is calculated employing the second statistical moment
of the intensity histogramof each subwindow.The limit value
for the standard deviation which indicates the presence of a
defect is automatically determined for each type of mesh and
subwindow size from the mean value of the subwindow stan-
dard deviations of a user-defined non-defective image range.

3.2.3 Texture Descriptor Calculation

As shown in Fig. 4, the defective regions have different tex-
tures for each defect category. The region bounded by the
smallest rectangle that circumscribes all defects of a cap-
tured image was defined as a defective region.

The combinations of the different intensity levels of each
defective region are mapped on a co-occurrence matrix,
allowing the description of the texture through statistical
gray-level occurrences, such as contrast, uniformity, homo-
geneity, entropy and correlation (Gonzalez andWoods 2008).

3.2.4 Defect Classification

The automated classification of visible defects is not a simple
task as some groups of defects produce similar artifacts in

Fig. 5 Categories of defects

fabric images of defective regions. This fact, coupledwith the
absence in the literature of a categorization of fabric defects
that considers the topological characteristics of the defect, led
us to use a previously defined simplified and comprehensive
categorization built together with professionals of the textile
industry (Stivanello et al. 2016).

Due to the similarity of the artifacts generated by certain
groups of defects observable in defective region images, four
categories of defects were defined, contiguous region (CR),
vertical lines (VL), horizontal lines (HL) and mixed. These
categories encompass the most relevant defects observed in
the industry according to experts, and the proposed catego-
rization has enough granularity to aid in diagnostics based
on the history of occurrence of the defects. The defect cate-
gories were designed in such a way to be mutually exclusive,
that is, no defect can be classified in more than one cate-
gory. In addition, each defect must be classified in one of the
proposed categories.

Figure 5 shows samples of the four defect categories. The
category Contiguous region is associated with defects such
as holes and dye marks or spots. As shown in Fig. 5 a, it is
characterized by artifacts formed by clusters of pixels in the
shape of spot or blob with intensities different from that of
the background of the image. The categories Vertical lines
andHorizontal lines, shown in Fig. 5b, c, are associated with
defects such as ladder, missing Plush Loop, spirality, wrong
end, among others. These categories are characterized by
artifacts in the form of vertical or horizontal lines, respec-
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tively. In turn, in Fig. 5d is shown the category Mixed that
differs from the others because it containsmore than one type
of artifact in the same image.

For the automated classification of the defects detected,
two methods of classification are selected: one based on the
morphological analysis of the artifacts shapes and the other
based on the texture analysis using an artificial neural net-
work.

In the method based on the shape of the artifact, the clas-
sification is performed as a function of the characteristics of
the shape of the artifact observed on the inspected image, as
described in (Stivanello et al. 2016). To identify and describe
the artifacts, image processing techniques, such as thresh-
olding and labeling of connected components for contiguous
regions and edge detectors and theHough transform for lines,
are used (Gonzalez and Woods 2008; Molina et al. 2013).
The identified contiguous region artifacts will be classified
as Contiguous Region defects. For the artifacts identified as
lines, the classification will be based on the length of each
segment and its angulation, those with a value outside the
acceptable range being disregarded. Linear artifacts with an
angle of around 90◦ are classified as Vertical Line defects
and with an angulation around 0◦ asHorizontal Line defects.
Classification in the Mixed defect category occurs when at
least two of the three previous artifacts are identified in the
same image, or none of these artifacts is identified.

In the secondmethod of classification, the texture descrip-
tors based on the co-occurrence matrix of the defective
region, described in Sect. 3.2.3, are used as input for a multi-
layer perceptron artificial neural network (MLP) (Gonzalez
and Woods 2008; Haykin 1998; Moreira et al. 2018). In
Fig. 6, a simplified architecture of the proposedMLP defects
classifier is shown.

For each defective image, four co-occurrence matrices of
the defective region were obtained, with a distance between
pixels of 1 pixel and orientations of 0◦, 45◦, 90◦ and 135◦. For
eachmatrix, we calculated the descriptors of the texture, such
as the contrast, uniformity, homogeneity, entropy and corre-
lation, as described in (Gonzalez andWoods 2008), resulting
in 20 descriptors. An input layer and a hidden layer with 20
neurons each and a four-neuron output layer are used, repre-
senting each category of defect. A sigmoid function is used
for neurons activation function, and the supervised learning
based on back-propagation is used for training.

4 Experimental Results

4.1 Developed System

Themachine implementing the system described in Sect. 3 is
shown in Fig. 7. The specifications of the components used

Fig. 6 MLP-based defects classifier architecture

Fig. 7 Inspection machine

in the acquisition and processing are given in Table 1. The
software of the system was implemented in C++.

The systemmust be calibrated at a preliminary stage prior
to use in tissue inspection. Table 2 shows the distortion coeffi-
cients k1, k2, k3, k4 andk5 estimated for the described optical
system in the calibration process by using a planar pattern
(Bradski and Kaehler 2013; Drap and Lefèvre 2016). Such
coefficients are used in the rectification of the images so that
the distortions caused by imperfections of the optical system
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Table 1 Components specifications

Component Characteristics

Camera acA1300-60gm, Sensor: CMOS, Res.: 1282 x 1026
pixels, Interface: GigE

Lens TAMRON 12VM412ASIR, Focal dist.: 4-12 mm,
Sensor size: 1/2" Manual iris

Encoder AUTONICS ENC-1-2-T-24, Res. 1 cm/pulse, Max.
speed: 5000 rpm, 100 pulses per revolution

Computer DELL Latitude 3440, Processor: INTEL Core i7-4500U
1.80 GHz, RAM: 8GB

Table 2 Radial distortion coefficients

Coefficients Estimated value

k1 − 4.035 × 10−1

k2 4.453 × 10−1

k3 − 5.604 × 10−3

k4 − 2.428 × 10−3

k5 − 1.102 × 100

are removed, as described in Sect. 3.2. Recent works have
demonstrated the numerical effectiveness of the correction
of optical distortions by means of such digital technique Gao
et al. (2017). Its application in the present work was shown
to be effective due to the accuracy achieved in the detection
of straight lines, as discussed in the following sections.

4.2 Creation and Usage of an Image Dataset for
Fabric Defects

The evaluation of the proposed inspection system was per-
formedbased on the image acquisition andprocessing system
described in Sect. 4.1. A roll of raw knitted fabric, produced
with a 24/1 Ne thread on an industrial loom, with a length of
23.30m and a width of 0.90m, was used for the evaluation of
the system. The camera was adjusted at a working distance
of 35 cm from the plane of the fabric, which resulted in a
field of view of 0.40 m width by 0.30 cm height.

Images were captured from this roll of mesh fabric being
unwound in the prototype of rewinding machine at a roll
speed of 20 m/min, reproducing the operating conditions
found in the industry. In order to obtain a ground truth, each
image obtained by the system was manually inspected in
detail by a textile specialist to create a reference for com-
parison with the automated inspection result. Seventy-five
samples of fabric surface were available, of which 48 are
defect-free regions and 27 contain some artifacts correspond-
ing to a defect generated by some type of defect.

The manual inspection report for one face of the fabric
roll used is shown in Table 3. The area of each defect was

Table 3 Manual inspection report

Characteristics Value

Length 23.30 m

Width 0.40 m

Inspected area 9.32 mm2

Number of defects 17

Defective area 1.46 m2

Defective area percentage 15.66%

Table 4 Defects found in the
manual inspection

Defect Category Quantity

Contiguous region 7

Horizontal line 3

Vertical line 4

Mixed 3

Table 5 Detection report

Subwindow Hits (%) Misses (%) False pos-
itives (%)

False neg-
atives (%)

8× 8 93.33 6.67 0 18.52

calculated by multiplying the defect length by the width con-
sidered of the inspected fabric (0.40 m).

Table 4 shows the types of defects present in the inspected
fabric roll, as categorized in Sect. 3.2.4, as well as the respec-
tive quantities.

In order to support futureworks in automatic fabric inspec-
tion, the described image dataset is freely available to the
scientific community 1

4.3 Detection Results

Table 5 shows the real-time defect detection results obtained
with the systemwhen using subwindows of size 8. It is known
that large subwindows do not circumscribe small defect
boundaries, but rather the whole defect. Also, that small sub-
windows consume more processing time (Stivanello et al.
2016). Hence, the chosen size was determined empirically to
give a trade-off between improved accuracy and processing
speed and was set to cover the entire area of the inspected
image. For the 48 frames without defects, the system did not
generate false positives, that is, no frame without defects was
falsely classified as defective. For the 27 frames with defects,
the system generated 5 false negatives, that is, 5 frames with
defects were falsely classified as being without defects.

The detectionmethod used showed a higher precision than
traditional manual inspection, which is approximately 70%

1 Knitted Fabric Dataset: http://fabricdataset.gaspar.ifsc.edu.br.
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Fig. 8 Examples of horizontal line-type defects

Fig. 9 Examples of vertical line-type defects

(Ngan et al. 2011; Islam et al. 2008). This result is consistent
with the results for detection systems reported in the litera-
ture, according to the taxonomyofmethods for the automated
detection of fabric defects organized by (Ngan et al. 2011),
and with the results presented in (Stivanello et al. 2016), in
which the same detection approach was used, but where the
evaluation was not carried out in real time.

The 22 true positive frames detected by the inspection
system correspond to 15 defects of those detected by the
specialist. This is due to the fact that some defects were cap-
tured by more than one frame due to its size. The 2 defects
not detected by the method correspond to defects of the hor-
izontal line type.

The proposed detection method did not prove to be robust
in the detection of horizontal line-type defects, as illustrated
in Fig. 8. In cases where this type of defect was detected, the
detected region corresponds to a small part of the defect.

All defects of the vertical line-type were detected by
the proposed method, but for some images of this type of
defect, as shown in Fig. 9, the defect was also not completely
detected. Due to the texture of the inspected mesh fabric, the
image intensities of some horizontal and vertical line-type
defects are similar to the intensities of non-defect regions.

Fig. 10 Example of contiguous region-type defect

This is due to the grammage of the yarn, which originated a
thinner fabric with a more open weave.

A reduction or increase in the subwindow size did not
influence the efficiency of the detection method for these
two types of defects. In addition to not contributing to the
detection, the reduction slows down the system. Increasing
the size of the subwindows reduces the number of subwin-
dowswith a standard deviation greater than the threshold and
impairs the detection of small defects.

If the threshold value is reduced to detect these two
defects, the number of subwindows that result in false posi-
tives will be increased due to the fabric texture and this will
impair the performance of the detection method.

For defects that generate in the inspected image, an artifact
with gray levels which differ from the background of the
image, the method detected all defects present in the roll
used, the smallest defect being 5 mm long by 3 mm wide, as
shown in Fig. 10.

4.4 Results for the Calculation of Defective Area and
Defect Marking

To meet the requirement to calculate the total defective area,
the distance between the lines limiting the detected defect
was used to determine the individual defective length, as
shown in Fig. 11.

Considering only true positive frames, the total defec-
tive length determined by the inspection system was 1.64
m, which results in a total defective area of 0.66 m2 (1.64 ×
0.4). On comparing this value with the total area of the 15
corresponding defects detected by the specialist (1.38 m2),
we find that the system calculated only 48% of the defective
area generated by these defects.

If horizontal and vertical line defects are disregarded,
since the systemdid not detect all of these defects completely,
it is observed that the defective area detected by the system
is 94% of the defective area detected by the specialist. This
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Fig. 11 Calculating the length of the defect

Table 6 Confusion matrix—shape-based method

Category HL VL CR Mixed Precision (%)

HL 2 0 0 0 100

VL 0 8 0 1 89

CR 0 0 6 1 86

Mixed 0 0 1 3 75

number did not approach 100% because a mixed-type defect
has a vertical line that was not completely detected.

To highlight the defect with some type of marking, the
system returns the coordinates of the defect boundaries in the
margin of the plane of the fabric, from the position of the lines
that delimit it in the plane of the image. These coordinates
can be used by an actuator to make markings located at the
edge of the fabric roll, similar to the procedure followed by
a human inspector.

4.5 Classification Results

The results obtained by the shape-based and RNA-based
classification methods were compared with the classification
made by the specialist from the textile industry. These results
were organized through a confusion matrix, from which the
accuracy by category, overall precision andKappa coefficient
are calculated.

Tables 6 and 7 present the confusion matrix with the
accuracy of the classifiers by category in the last column.
The overall precision and Kappa coefficient are shown in
Table 8.

The shape-based method presented good accuracy rates
within each category. The mixed defect, wrongly classi-
fied as a contiguous region, is formed by a contiguous
region and a horizontal line. The error occurred because

Table 7 Confusion matrix—RNA

Category HL VL CR Mixed Precision (%)

HL 2 0 0 0 100

VL 1 7 1 0 78

CR 0 0 7 0 100

Mixed 1 0 1 2 50

Table 8 Global precision and Kappa coefficient

Shape-based
method (%)

RNA-based
method (%)

Global precision 86 82

Kappa coefficient 80 74

the artifact generated by the line was not identified by the
proposed method. The vertical line and contiguous region
defects, erroneously classified as mixed, were generated in
the captured images artifacts with intensities close to the
bottom of the image and therefore were not identified, caus-
ing the system to classify them as mixed. A refinement
of the method parameters used to identify these artifacts
would reduce the efficiency of the shape-based classification
method.

The method based on RNA presented good accuracy rates
for the categories horizontal line, vertical line and contiguous
region, but the method was not efficient in the classification
for the mixed category.

Classification methods evaluated in real time presented
similar overall accuracy rates, with a small advantage for the
form-basedmethod. Based on these rates, it can be stated that
the probability of the correct classification of these methods
for a new image is around 80%.

When comparing the results for these classification meth-
ods with those found in the literature, it can be observed
that the global accuracy rates were within the precision
range of studies based on neural networks (76.5% to 100%)
(Habib et al. 2014). However, they were slightly below
the results of methods based on fuzzy logic (96.55%)
(Kumar and Ragupathy 2012), SVM (94%) (Dongli et al.
2013) and form-based techniques (100%) (Stivanello et al.
2016).

Considering the results for the inspection system, the pro-
posed detection and classification approaches prove to be
satisfactory, with the advantage that the evaluation was car-
ried out in real time and in an inspection scenario similar
to that in an industrial textile plant. In addition, if we con-
sider that manual inspection reaches rates estimated at about
70%, we can consider that the use of the proposed system is
advantageous.
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Table 9 Average processing times (ms)

Method Detection Classification Total

Detector + RNA classifier 0.13 0.08 0.21

Detector + Shape classifier 0.13 0.06 0.19

4.6 Computing Time

The computer described in Table 1 was used to measure the
computing time. No SIMD (single instruction, multiple data)
technologywas used for this execution,which ran on a single-
threadprocesswithoutGPUsupport. Images from the created
dataset were used for the quantitative analysis of the results.

Table 9 shows the processing times obtained with inspec-
tion pipelines employing the defect detector combined with
the shape-based and the RNA-based classifiers.

It is important to evaluate the frequency of the inspection
task cycle facing the problem scope. Considering the use of
a camera configuration in which the field of view is 30cm in
the longitudinal direction of the fabric roll being inspected,
acting on a inspection machine at a speed of 8 to 20 m/min,
which is the same range of speed applied in a traditional
inspection system (Kumar 2008), it is possible to define a
constraint that determines that the frequency of a complete
inspection cycle should be at least 0.91 Hz. Thus, the fre-
quencies obtained with both pipelines meet the application
requirement of inspection speed by exceeding the frequency
reached with the manual inspection, even without possible
optimizations.

5 Conclusions and FutureWork

In this paper, the development of a system for the automated
inspection of plain rawmesh is described.Different computer
vision techniques were combined to achieve defect detection
and classification.

In contrast to other studies reported in the literature, the
described system was evaluated under real conditions of use,
inspecting in real-time images of the surface of the mesh
fabric captured from a roll of fabric being unwound by a
reviewing machine used in the textile industry. The detection
rate was 93.33% for subwindows of size 8x8, and the overall
accuracy rate of the classification was 86% for the shape-
based method and 82% for the method based on artificial
neural networks.

Despite the occurrence of detection failures, the success
rates obtained are higher than those achieved by human
inspectors and the classification rate is consistent with the
results found in the literature. The detection of defects that
form a line-type artifact in the image proved to be the great-

est challenge. The adoption of the statistical-based detection
method was not robust enough to detect all occurrences of
this type of defect, especially for horizontal lines. However,
the method proved to be robust in detecting defects which
form on the image an artifact of the contiguous region type,
due to the contrast between this type of defect and the rest of
the image.

The type of mesh used in the evaluation of the system was
found to be an important variable in relation to the efficiency
of an automated vision inspection system. The weight of the
yarn used in the production of the mesh fabric influences the
texture of the fabric produced and, consequently, the texture
of the captured images. Thus, the parameters of the detection
and classification methods must be defined according to the
type of fabric.

In future work, the proposed system will be evaluated
using a larger base of knitted fabric rolls of the same type
and for different types of raw and smooth knitted fabrics.
In addition, possible optimizations by using technologies
like CUDA (Compute Unified Device Architecture) or even
FPGA (field-programmable gate array), for instance, will be
considered in order to obtain higher inspection rates and fre-
quencies.
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