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Abstract
This paper proposes a blood-glucose regulation approach employing a fractional-order proportional-integral-derivative
(FOPID) controller, whose parameters are tuned using a numerical optimization methodology. The proposed technique
is tested on 100 virtual patients using the Dalla Man model, an in silico type-1 diabetic patient model from the literature. The
results are favorably compared with the ones obtained with a standard PID control. In a series of simulated tests, the FOPID
approach leads to better results in terms of regulating the blood glucose levels between the specified limits, at the expense
of requiring a higher, yet reasonable amount of insulin injected to the patient. Simulations were run for one day, and two
different diets were considered. The quality of the regulation was measured in terms of the integral of blood glucose beyond
the specified limits of 70 and 180mg/dl. The values obtainedwith the PID controller were 17.5±18.9 and 13.1±16.8ming/dl,
while the FOPID controller leads to values of 7.3 ± 9.3 and 7.0 ± 8.0ming/dl, respectively. On the other hand, the FOPID
increased the request amount of insulin, from 1.9± 1.6 and 1.7± 1.5nmol/kg to 3.0± 2.2 and 2.7± 2.0nmol/kg (still within
the expected daily range of 3–6nmol/kg of insulin).

Keywords Automatic control · Fractional control · FOPID · Blood-glucose regulation

1 Introduction

Designing an automatic glucose controller for a diabetic
patient is a classic bioengineering problem which has been
studied for almost six decades, since the seminal work of
Arnold (Kadish 1963). This problem has gained attention in
the last years, and much effort has been made toward the
design of an artificial pancreas, which is the long-desired
goal of this research (Haidar 2016).

The reader is referred to the work of Cobelli et al. (2009)
for a comprehensive review of the research in blood-glucose
control until 2009, including a detailed description of the
patient models and of the involved signals. A shorter litera-
ture survey, updated until 2013, has been published by Lunze
et al. (2013).
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More recently, Boiroux et al. (2018) studied an overnight
glucose control problem employing a model predictive con-
trol (MPC) approach. An internal model control approach,
with both offline and online tuning, has been proposed by
Bhattacharjee et al. (2018). Saleem et al. (2018) have studied
the controllability and observability of the glucose–insulin–
glucagon system. Linear Matrix Inequalities (LMI) were
studied by Nath et al. (2019). Adaptive techniques have also
been studied Ahmad et al. (2019), Nath et al. (2018), as well
as sliding mode control algorithms (Ahmad et al. 2017).

This paper proposes a new approach employing a
fractional-order proportional-integral-derivative (FOPID) con-
troller (Dastjerdi et al. 2018; Lu et al. 2018). To the best of
the authors’ knowledge, this control methodology has never
been applied to this problem.

The controller is used to define the amount of insulin to be
injected to the patient, according to the bloodglucose concen-
tration levels. The main purpose is to keep the blood glucose
between established limits, avoiding both hypo- and hyper-
glycemia. The FOPID results are compared with the ones
obtained with a standard PID controller (Lunze et al. 2013)
andwith those of aMPC approach (Gondhalekar et al. 2018).

The FOPID is superior to the classical PID controller
due to the number of adjustment parameters—not only the
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three parameters related to the PID action, but also two
more indicating the derivator and integrator orders, which
are not necessarily integer. The FOPID approach is expected
to present more flexibility and better adaptability to the plant
dynamical properties. Furthermore, our previous studies have
shown that fractional-order systems of low order are capa-
ble to represent dynamical behaviors similar or better than
the ones of integer-order systems of high order. However, it
should be noted that the design is also more challenging, as
it requires more parameters to be adjusted (Kadu and Patil
2016; Podlubny 1994).

Tuning the parameters of a standard PID controller is
a well-known control problem, for which there are well-
established solutions available (Astrom andHagglund 1995).
However, the choice of FOPID parameters is still a matter
of research. To solve this problem, rule-of-thumb (Dastjerdi
et al. 2018) and analytical methodologies have been pro-
posed. On the other hand, recent papers have used numerical
optimization algorithms, which minimize cost functions to
find the parameters which lead to the desired controller per-
formance. This is the approach adopted by Ates and Yeroglu
(2016), who employed a Tabu Search-based algorithm; by
Bingul and Karahan (2018), who used particle swarm opti-
mization and artificial bee colony optimization; by Lu et al.
(2018), who adopted a quantumbacterial foraging algorithm;
by Ramezanian et al. (2013), who also used particle swarm
optimization; and by Verma et al. (2017), who employed
a gray wolf optimizer. Similarly, a numerical approach is
adopted in this paper, which uses theNelder–Mead algorithm
(Lagarias et al. 1998) to solve the optimization problem. In
order to perform a fair comparison, the same methodology
is used to tune the integer-order and fractional-order PID
controllers.

Since the classic minimal model of Bergman (1989),
several nonlinear physiological in silico models have been
developed to simulate the glucose–insulin interaction in vir-
tual patients (Colmegna et al. 2018; Hovorka et al. 2008;
Kanderian et al. 2009; Mansell et al. 2017. In this paper, the
Dalla Man model (Dalla Man et al. 2007a, b) was chosen to
simulate type-1 diabetic subjects because it is more complete
than other available models and represents credible real-life
patients.

This text is organized as follows. Section 2 briefly reviews
the adopted patient model. Section 3 describes the FOPID
controller structure and the adopted tuning methodology.
Section 4 presents the results. Finally, conclusions are dis-
cussed in Sect. 5.

2 Patient Model

Asmentioned in the introduction, this paper adopts the Dalla
Man model, whose subsystems are briefly described in this

Table 1 Variables and parameters of the glucose subsystem (DallaMan
et al. 2007b)

G Plasma glucose concentration (mg/dl)

Gp Glucose mass in the plasma and in rapidly equilibrating
tissues (mg/kg)

G t Glucose mass in slowly equilibrating tissues (mg/kg)

EGP Endogenous glucose production (produced by the liver)
(mg/kg/min)

Ra Appearance rate of glucose in plasma (from the
gastrointestinal tract subsystem) (mg/kg/min)

Uii, Uid Insulin-independent and insulin-dependent glucose
utilization by the muscle and adipose tissue subsystem
(mg/kg/min)

E Renal excretion (from the kidney subsystem)
(mg/kg/min)

VG Distribution volume of glucose (dl/kg)

k1, k2 Rate parameters (1/min)

section. For each subsystem, a short description, the govern-
ing equations, the initial conditions and a table explaining
the variables and parameters are presented .

This summarized model description is presented here to
allow the reader to understand the main characteristics of
the patient model adopted in this work. For a detailed model
description and an in-depth discussion of each variable and
parameter, please refer to the original works (Cobelli et al.
2009; Dalla Man et al. 2007a, b).

2.1 Glucose Subsystem

This subsystem, which describes the glucose dynamics, is
represented by the following set of equations (Dalla Man
et al. 2007b), whose variables and parameters are described
in Table 1.

In this and other subsystems, the suffix b used in the initial
conditions stands for basal state.

G(t) = Gp(t)

VG
Ġp(t) = E PG(t) + Ra(t) + Uii(t)−

−E(t) − k1 · Gp(t) + k2 · Gt (t)
Ġt (t) = −Uid(t) + k1 · Gp(t) − k2 · Gt (t)
G(0) = Gb, Gp(0) = Gpb, Gt (0) = G tb

(1)

2.2 Insulin Subsystem

This subsystem, which describes the insulin dynamics, is
represented by the following set of equations (Dalla Man
et al. 2007a, b), whose variables and parameters are described
in Table 2.
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Table 2 Variables and parameters of the insulin subsystem (Dalla Man
et al. 2007a, b)

I Plasma insulin concentration (pmol/dl)

Ip Insulin mass in the plasma (pmol/kg)

Il Insulin mass in the liver (pmol/kg)

Ri Rate of insulin appearance in plasma
(pmol/kg/min) (from the subcutaneous
insulin infusion subsystem)

VI Distribution volume of insulin (l/kg)

m1, m2, m3, m4 Rate parameters (1/min)

Table 3 Variables and parameters of the gastrointestinal tract subsys-
tem (Dalla Man et al. 2007b)

Qsto Total glucose mass in the stomach (mg)

Qsto1 Glucose mass in the stomach (solid) (mg)

Qsto2 Glucose mass in the stomach (liquid) (mg)

Qgut Glucose mass in the intestine (mg)

D Mass of ingested glucose (mg)

kgri, kempt, kabs Rate parameters (1/min)

f Fraction of absorbed intestinal glucose
which appears in plasma

BM Body mass (kg)

I (t) = Ip(t)

VI
İp(t) = −(m1 + m3(t)) · Il(t) + m2 · Ip(t)
İl(t) = −(m2 + m4) · Ip(t) + m1 · Il(t) + Ri(t)
I (0) = Ib, Ip(0) = Ipb, Il(0) = Ilb

(2)

2.3 Gastrointestinal Tract Subsystem

This subsystem, which models the transportation of glucose
through the stomach and intestine, is described by the follow-
ing set of equations (DallaMan et al. 2007b), whose variables
and parameters are described in Table 3 (Ra is described in
Table 1).

Qsto(t) = Qsto1(t) + Qsto2(t)
Q̇sto1(t) = d · D(t) − Kgri · Qsto1(t)
Q̇sto2(t) = kgri · Qsto1(t) − kempt(Qsto) · Qsto2(t)
Q̇gut(t) = kempt(Qsto) · Qsto2(t) − kabs · Qgut(t)

Ra(t) = f · kabs · Qgut(t)

B M
Qsto1(t) = 0, Qsto2(t) = 0, Qgut(t) = 0

(3)

2.4 Liver Subsystem

This subsystem, which models the relevant dynamics in
the liver, is described by the following set of equations

Table 4 Variables and parameters of the liver subsystem (Dalla Man
et al. 2007b)

Ipo Insulin in the portal vein (pmol/kg)

I1 Intermediate signal to generate Id

Id Delayed insulin signal (pmol/l)

kp1 Extrapolated EGP at zero glucose and insulin
(mg/kg/min)

kp2 Liver glucose effectiveness (1/min)

kp3, kp4 Parameters which define insulin action

ki Rate parameter (1/min)

Table 5 Variables and parameters of the muscle and adipose tissue
subsystem (Dalla Man et al. 2007b)

U Total glucose utilization

Uii Insulin-independent utilization (constant)

Uid Insulin-dependent utilization

Vm , Km Auxiliary variables, both linear functions of X(t)

X Insulin in the interstitial fluid

I Plasma insulin (from insulin subsystem)

p2u Constant representing insulin action (1/min)

(Dalla Man et al. 2007b), whose variables and parameters
are described in Table 4 (EGP is described in Table 1).

EGP(t) = kp1 − kp2 · Gp(t) − kp3 · Id(t)
−kp4 · Ipo(t),EGP ≥ 0

İ1(t) = −ki · (I1(t) − I (t))
İd(t) = −ki · (Id(t) − I1(t))
EGP(0) = EGPb, I1(0) = Ib, Id(0) = Ib

(4)

2.5 Muscle and Adipose Tissue Subsystem

Thedescription of themuscle andbody tissue (adipose tissue)
in thismodel is relatedwith glucose utilization. It is described
by the following set of equations (Dalla Man et al. 2007b),
whose variables and parameters are described in Table 5.

U (t) = Uii + Uid(t)

Uid(t) = Vm(X(t)) · Gt (t)

Km(X(t)) + Gt (t)
Ẋ(t) = −p2u · X(t) + p2u · (I (t) − Ib)
X(t) = 0

(5)

2.6 Kidney Subsystem

Renal excretion E(t) is proportional to the value of the
plasma glucose Gp that exceeds a certain threshold. It is rep-
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Table 6 Variables and parameters of the subcutaneous insulin infusion
subsystem (Dalla Man et al. 2007a)

Isc1, Isc2 Amount of nonmonomeric and monomeric
insulin in the subcutaneous space

IIR Exogenous insulin infusion rate (pmol/kg/min)

kd, ka1, ka2 Rate constants (1/min)

resented by the following equation (Dalla Man et al. 2007b).
Both variables are defined in Table 1.

E(t) = Ke1 · (Gp(t) − Ke2), E(t) ≥ 0 (6)

2.7 Subcutaneous Insulin Infusion Subsystem

This subsystem describes the subcutaneous insulin infusion
in a type-I diabetic patient. It is described by the following set
of equations (Dalla Man et al. 2007a), whose variables and
parameters are described in Table 6 (Ri is defined in Table 2).

İsc1(t) = −(kd + kai) · Isc1(t) + I I R(t)
İsc2(t) = kd · Isc1(t) − ka2 · Isc2(t)
Ṙi(t) = ka1 · Isc1(t) + ka2 · Isc2(t)

(7)

3 FOPID Controller

3.1 Controller Structure

In the adopted control strategy, the control variable is the
insulin infusion I I R [Eq. (7)] and the system output is the
plasma glucose concentration G [Eq. (1)], which ismeasured
by a sensor with a delay of 10min. As is customary, the error
signal is defined by the difference between the output and a
specified target value.

The FOPID controller has the following structure in the
Laplace domain:

C(s) = Kp + Kis−λ + Kdsμ =
= Kp

(
1 + 1

Ti
s−λ + Tdsμ

)
, λ, μ ≥ 0

(8)

where Kp, Ki and Kd are the proportional, integral and
derivative gains, Ti and Td are time constants, and λ and
μ are the fractional integral and derivative orders, respec-
tively. A standard PID controller has λ = μ = 1. Due to
these two additional parameters, the FOPID controller can
be more complex to be designed but also more accurate and
flexible that the PID controller.

In the time domain, the relationship between the error
signal e(t) and the control variable u(t) can be expressed as
Podlubny (1994):

u(t) = Kpe(t) + KiD
−λe(t) + KdDμe(t) (9)

The definition of the integro-differential operator aDq
t (which

can be used not only for integer-order equations, but also for
non-integer ones) is given by Eq. (10) (Dalau et al. 2017).

aDq
t =

⎧⎪⎪⎨
⎪⎪⎩

dq

dtq
, q > 0

1, q = 0∫ t
a (dτ)−q , q < 0

(10)

This is a generalization of the integral and differential oper-
ators, where q is the order of the derivative and can be a real
or a complex number, and a is a constant related to the initial
conditions.

There are several definitions for fractional integral and
derivatives. The Caputo definition is given in Eq. (11) (Dalau
et al. 2017; Podlubny 1994):

aDq
t f (t) =

⎧⎪⎨
⎪⎩

dm f (t)

dtm
, q = m ∈ N

1

�(m − q)

∫ t

0

f (m)τ

(t − τ)q+1−m
dτ, m = �q�

(11)

where �(x) = ∫ ∞
0 t x−1e−tdt is known as the Gamma Func-

tion. Taking the Laplace transform of the Caputo derivative,
the result is given in Eq. (12) (Dalau et al. 2017):

L{0Dq
t f (t)} = sα F(s) −

m−1∑
k=0

sα−1−k f (k)(t)|t=0 (12)

Assuming null initial conditions, Eq. (12) can be simplified
by sα F(s) (Dalau et al. 2017).

Since the fractional-order integro-differential equations
usually do not have an analytical solution, it is necessary
to use a numerical approximation to find one. In this paper,
the CRONE methodology (Lanusse et al. 2015) has been
used to implement the fractional terms of the controller
(CRONE, Commande Robuste d’Ordre Non Entier, is the
French acronym for robust fractional-order control).

This approach is based on a closed-loop system, which
can be implemented in a open-loop system using a fractional-
order integrator and differentiator.

Suppose we have P(s) = sα , with α > 0 and non-
integer, and we want to find an approximation for P(s). That
can be accomplished using the CRONE methodology. We
can assume that P(s) is equal (or at least approximate) to
a transfer function of a N th-order filter which has the same
number of poles and zeros in a frequency range [ωl , ωh] This
is shown in the second-order section (SOS), Eq. (13) (Dalau
et al. 2017; Valerio and Sa da Consta 2013).

123



Journal of Control, Automation and Electrical Systems (2020) 31:1–9 5

sα = C
N∏

m=1

1 + s
ωz,m

1 + s
ωp,m

(13)

with C being the gain of this system and ωp,m and ωz,m

being the poles and zeros, respectively. The poles and zeros
are described by Eqs. 14 and 15 (Valerio and Sa da Consta
2013):

ωz,m = wi

(
wh

wi

) 2m−1−α
2N

(14)

ωp,m = wi

(
wh

wi

) 2m−1+α
2N

(15)

Theorder of the transfer function inEq. (13) should be chosen
so that the error is minimal. For a perfect approximation,
the order should be infinite. However, we can stipulate the
minimal error to be less than some value E , to do sowe set the
order N of the filter used in the approximation as described
in Eq. (16).

N =

⎡
⎢⎢⎢⎢⎢

log

(
ωh

ωl

)

E

10

(
1

1 + q
+ 1

2 − q

)
⎤
⎥⎥⎥⎥⎥

(16)

Although this example has been all about a fractional-
order differentiator, the same approximation can be used for
a fractional-order integrator.

3.2 Parameter Tuning

The controller parameter tuning was performed using the
Nelder–Mead algorithm (Lagarias et al. 1998), which was
used to find the parameter set which minimizes a given cost
function J . The defined cost function is composed by two
additive terms: Je, to penalize the output error, and Ju , to
penalize the control effort.

A target is set at a plasma glucose of 125 mg/dl, and
a tolerance of ± 55 mg/dl is established. Therefore, the
minimum and maximum blood glucose concentrations are,
respectively:

Gmin = 70 mg/dl
Gmax = 180 mg/dl

(17)

The following metric Gerr(t) is defined to quantify, in mg/dl,
the amount of blood glucose beyond the specified limits at a
given instant t :

Gerr(t) = Gblw(t) + Gabv(t)
Gblw(t) = min(Gmin − G(t), 0)
Gabv(t) = min(G(t) − Gmax, 0)

(18)

where min(a, b) represents the minimum between the real
variables a and b.

For a simulated experiment with a duration of tf minutes,
the following cost function Je is defined to quantify the total
amount of blood glucose beyond the specified limits:

Je =
∫ tf

0
Gerr(t)dt (19)

The expression of Je is similar to the standard IAE (integral
of the absolute error)metric. The difference is that a tolerance
around the setpoint was adopted.

Similarly, the following cost function Ju is defined to
quantify the control effort, measured in terms of insulin infu-
sion:

Ju =
∫ tf

0
I I R(t)dt (20)

The overall cost function to be minimized is given by:

J = 100Je + Ju (21)

where the factor of 100 was chosen to weigh the cost func-
tion. It means that an eventual transgression in the glucose
concentration, represented by the cost Je, is more penalized
than the control effort represented by Ju .

In spite of being less penalized, it should be noted that Ju

is not negligible, that is, it shall not be removed fromEq. (21).
Otherwise, the probable result would be a controller which
would require an unreasonable amount of insulin to regulate
the blood glucose, which would not be feasible in practice.

4 Results and Discussion

The controller parameters were tuned by using the method-
ology described in Sect. 3, and the obtained values are
presented in Table 7.

It is particularly noteworthy the integrative order λ of
the FOPID controller, which is five orders of magnitude
lower than 1, indicating that the obtained fractional integra-
tor behaves almost as an additional proportional term. This
result means that the adopted optimization approach lead
to a FOPID controller with essentially no integral action,
only proportional and derivative ones. Such outcome could
be ascribed to the tolerance of± 55mg/dl established around
the setpoint; with such tolerance, a zero steady-state error
would not be required, and therefore the integral actionwould
arguably not be necessary.

Simulations were run for 100 different virtual adult
patients during a day. In order to reproduce real scenarios,
two diets were adopted:
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Table 7 PID and FOPID controller parameters

Parameter PID FOPID unit

Kp 9.034e−04 2.756e−03 pmol/kg/min per mg/dl

Td 1.227e+02 1.539e+02 (min)μ

Ti 1.699e−01 2.292e−01 (min)λ

μ 1 2.883e−01 –

λ 1 3.165e−05 –

– Each patient following diet 1 was fed three meals con-
taining 45 g, 70 g and 70 g of glucose, at 8, 12 and 20h,
respectively.

– Each patient following diet 2 was fed three meals con-
taining 60 g of glucose each, at 8, 13 and 21h.

The main simulation results, for both controllers and both
diets, are presented in Figs. 1, 2, 3 and 4. The results are then
summarized in Table 8.

A visual analysis of Figs. 1a and 3a indicates that the PID
controller, on average, already presents a good blood-glucose
regulation. This result was expected, for the PID controller
has been widely used in this context and its advantages are
known (Cobelli et al. 2009; Lunze et al. 2013). However,
these figures also show that there is room for improvement,

Fig. 1 Simulation results using the PID controller during one day, con-
sidering diet 1. The thick black line indicates the mean value for 100
different virtual patients. The dashed gray lines indicates themean value

plus andminus one standard deviation. The horizontal lines in a indicate
the established limits of 70 and 180mg/dl

Fig. 2 Simulation results using the FOPID controller during one day,
considering diet 1. The thick black line indicates the mean value for
100 different virtual patients. The dashed gray lines indicate the mean

value plus and minus one standard deviation. The horizontal lines in a
indicate the established limits of 70 and 180mg/dl
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Fig. 3 Simulation results using the PID controller during one day, con-
sidering diet 2. The thick black line indicates the mean value for 100
different virtual patients. The dashed gray lines indicates themean value

plus andminus one standard deviation. The horizontal lines in a indicate
the established limits of 70 and 180mg/dl

Fig. 4 Simulation results using the FOPID controller during one day,
considering diet 2. The thick black line indicates the mean value for
100 different virtual patients. The dashed gray lines indicate the mean

value plus and minus one standard deviation. The horizontal lines in a
indicate the established limits of 70 and 180mg/dl

Table 8 Summary of the results during a day, considering all 100 virtual
patients (mean ± standard deviation)

PID FOPID Unit

(a) Integral of the blood glucose beyond the specified limits [Eq. (19)]

Diet 1 17.5 ± 18.9 7.3 ± 9.3 min × g/dl

Diet 2 13.1 ± 16.8 7.0 ± 8.0 min × g/dl

(b) Total amount of injected insulin [Eq. (20)]

Diet 1 1.9 ± 1.6 3.0 ± 2.2 nmol/kg

Diet 2 1.7 ± 1.5 2.7 ± 2.0 nmol/kg

for there are violations (although not severe) of the desired
blood glucose limits. In fact, Figs. 2a and 4a show that the
FOPID controller is able to keep better the blood glucose
inside the specified limits.

The qualitative analysis presented in the previous para-
graph can be quantified by the integral along time of the blood
glucose values beyond the specified limits of 70 and 180
mg/dl. This value is presented in Table 8(a), which shows,
for both diets, a better mean result (smaller violations) when
the FOPID controller is used. It can be seen that the FOPID
controller reduces the cost quantified in Table 8(a) by 58%
(diet 1) and by 47% (diet 2)
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A visual comparison between Figs. 1f, 2f, 3f and 4f
shows that the FOPID controller requires a higher amount of
injected insulin along time. However, the amount of required
insulin at a given time is still acceptable, that is, no extremely
high peak was observed. The total amount of injected insulin
during a day is summarized in Table 8(b). This table indi-
cates that the FOPID controller indeed required more insulin
injected in a day than the PID controller. This increase, which
is reasonable (i.e., not excessive), may be seen as the cost
required by a better glucose regulation.

In fact, Hirsch (1999) states that the typical dosage of
insulin for a patient with type 1 diabetes lies between 0.5
and 1.0 unit per kg per day, while Qu (2018) states that most
insulin analogs have a formulation of 6 nmol per unit. There-
fore, the typical daily dosage of insulin would lie between 3
and 6 nmol/kg. Hence, the daily values of 3.0± 2.2 nmol/kg
and 2.7± 2.0 nmol/kg calculated by the controller proposed
here are within the expected range.

The figures show that, for the FOPID control, the peak of
insulin injection I I R (the control variable) does not exceed
20 pmol/(kg x min). This value is much lower than the
ones that can be achieved by commercial insulin pumps. For
instance, Regittnig et al. (2019) compared two pump mod-
els. The slowest one is able to deliver at most 0.025 units
of insulin per second; for a patient with 100 kg, this rate is
equivalent to 90 pmol/(kgmin). The fastest one, on the other
hand, can deliver insulin at a rate of 0.5 units/s, that is, 1800
pmol/(kgmin), considering again an 100-kg patient. There-
fore, the control effort required by the proposed controller is
far from reaching the actuation limits.

The plasma insulin concentration, indicated in Figs. 1,
2, 3 and 4b, is higher for the FOPID controller, which is a
natural consequence of the higher amount of insulin being
injected to the patient. It is interesting to note that peaks
in insulin injection (subfigures (f)) are usually followed by
peaks in glucose utilization (subfigures (d)). The other two
representative variables depicted in the figures, namely (c)
endogenous glucose production and (e) appearance rate of
glucose in plasma, present a similar behavior (considering
the same diet), regardless of the use of a PID or a FOPID
controller.

Gondhalekar et al. (2018) have proposed an improved
model predictive control approach for blood-glucose control
and have also used the Dalla Man model. Their simulation
results for unannounced meals (as in our case) are presented
in Figure 4 of Gondhalekar et al. (2018), left side. A com-
parison of this figure with our Figs. 2a and 4a shows that our
FOPID approach leads to similar blood-glucose regulation
results. The FOPID has the advantage of having a simpler
implementation than the MPC. On the other hand, the MPC
presents a priori guarantees that lack in the FOPID approach.
This drawback in our approach can be overcome in future

works by combining both methodologies, i.e., by including
fractional calculus in the MPC technique.

A limitation of the present study was the use of simulated
patients only.As the research progresses, clinical trialswould
be required, such as the ones described in Gondhalekar et al.
(2018).

5 Conclusions

This paper proposed a newblood-glucose regulationmethod-
ology employing a fractional-order proportional-integral-
derivative (FOPID) controller. The main contribution is the
use of the fractional-order approach in this context.

The results were validated using a highly nonlinear and
fairly complete in silico patient model, proposed earlier by
Dalla Man and associates.

The obtained FOPID controller presented relevant propor-
tional and derivative actions and negligible integral action.

A comparison between the results of a FOPID controller
and of a standard PID controller was presented. Better regu-
lation results were obtained with the FOPID controller. This
outcome was to be expected because the PID approach can
be seen as a particular instance of the FOPID methodology,
where the orders of the integrator and derivator are con-
strained to be 1. Therefore, if the same technique is adopted
to tune the parameters of both controllers, the one with a
more general structure is expected to lead to better results.

The FOPID controller leads to a smaller output error, but
also required a higher amount of insulin. This result can be
ascribed to the way cost function J was defined [Eq. (21)],
which penalized the output error significantly more than the
control effort.

Future works could exploit other techniques to tune the
FOPID controller parameters (Dastjerdi et al. 2018; Lu et al.
2018; Ramezanian et al. 2013; Verma et al. 2017). Further-
more, adaptive (Biswas et al. 2018) and robust (Zhang et al.
2019) FOPID approaches could be studied in the context of
blood-glucose regulation.
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