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Abstract
In this paper, a real-time synchronized harmonic phasor measurements-based fault location (RT-SHPM-FL) method for 
transmission lines is proposed. At transmission line protection center (TPC), the synchronized harmonic phasor measure-
ments are obtained from all phasor measurement units (PMU) deployed in a power system. At each bus, the PMU estimates 
time-tagged 100 and 150 Hz phasors of 3-ɸ current signals in addition to fundamental phasor (50 Hz). The proposed RT-
SHPM-FL method detects and locates a fault using the magnitude of 100 and 150 Hz phasors of 3-ɸ currents and equivalent 
harmonic phasors (EHPs), respectively. These EHPs are calculated from the magnitude of time-tagged 50, 100 and 150 Hz 
three-phase current phasors. For estimating the fault distance, the RT-SHPM-FL method has employed support vector regres-
sion (SVR), because of its mimicking nature, generalization and robustness. The functioning of the proposed fault location 
method has been validated in real-time on a scaled-down laboratory model of 400 kV extra high voltage (EHV) transmission 
line of 400 km long. The experimental results and discussions show that the proposed method locates transmission line faults 
accurately. Further, a comparative study of the proposed fault location method using SVR and adaptive neuro-fuzzy inference 
system has revealed that the former one is more reliable in fault location than the latter one since the error is within ± 1%.

Keywords  Synchrophasors · Phasor measurement unit (PMU) · Support vector regression (SVR) · Adaptive neuro-fuzzy 
inference system (ANFIS)

Abbreviation
RT-SHPM-FL	� Real-time synchronized harmonic phasor 

measurements-based fault location
LabVIEW	� Laboratory virtual instrument engineer-

ing workbench
NI cRIO	� National instruments compact reconfigur-

able input/output embedded controller
SVR-FL	� Support vector regression fault location
ANN	� Artificial neural network
ANFIS	� Adaptive neuro-fuzzy inference system
x(t)	� Analog voltage or current signal
x(nΔT)	� Sampled version of x(t)
ΔT 	� Sampling time in seconds
T	� Nominal time in seconds
fo	� Nominal frequency (Hz)
N	� Number of samples per cycle
n	� Sample number starting (0 to N − 1)
h = 1	� Fundamental frequency phasor of line 

current
h = 2	� Second-order harmonic phasor of line 

current
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h = 3	� Third-order harmonic phasor of line 
current

⟨, ⟩	� Dot product in Rn

C	� Pre-specified value
�i	� Loss functions
�i	� Slack variables

1  Introduction

Transmission lines are the veins of power system, which 
carry bulk amount of energy from generating stations to 
consumers through different terrains under various envi-
ronmental conditions. Hence, they are likely to be exposed 
to various power system disturbances, which can spread to 
a larger extent of the grid. These disturbances may render 
the power supply unreliable and unstable. In this regard, the 
perception of transmission line protection philosophy has 
been changing from local to wide area. Newer technologies 
are being incorporated into the existing power system to 
effectively protect the power grid from disturbances. One 
of the most important technologies in wide-area protection 
philosophy is synchrophasor measurements. Incorporation 
of such technology into the transmission line protection 
reduces the impact of catastrophic events on the perfor-
mance of power system infrastructure and also improves 
the situational awareness.

Some of the methodologies based on synchrophasor tech-
nology for transmission line protection have been discussed 
here. Jiang et al. (2012) have proposed an effective fault 
location method using the optimal measurements and dis-
tributed parameter line model. Mousavi-Seyedi et al. (2015) 
proposed a fault location algorithm for series-compensated 
transmission lines. Vallapu et al. (2017) have employed an 
event-driven communication strategy for data communica-
tion with the centralized controller to detect and locate a 
transmission line fault. Kang et al. (2017) have presented a 
novel fault location algorithm for two-end series-compen-
sated double-circuit transmission line. The fault location 
methodology has employed two unsynchronized terminal 
current and local voltage phasors for accurate fault loca-
tion. Further, Das et al. (2017) have designed a fault location 
method for transmission lines using only voltage phasors 
and admittance matrix. The algorithm is less sensitive to 
fault inception angles (FIA), fault types and fault resistances 
(FR). However, the accuracy of the proposed fault location 
algorithms (Jiang et al. 2012; Das et al. 2017; Kang et al. 
2017) depends on the distributed line parameters.

Further, Saber (2018) has proposed a novel algorithm for 
the location of a fault in two-terminal transmission lines. 
The method is less sensitive to FIA, fault types, FR, vari-
ation in soil resistivity, measurement and line parameters 
error, etc. Barman and Roy (2018) have employed phasor 

measurements obtained from optimally placed PMUs for 
fault detection and location. Location of the fault has been 
identified by linearizing nonlinear set of voltage and current 
equations using least square estimation problem. Meenak-
shi Devi et al. (2018) have proposed a novel fault location 
algorithm using the latitude and longitude by involving geo-
referenced data of the power system. Rajaraman et al. (2018) 
have proposed a robust fault analysis algorithm for transmis-
sion line protection. The methodology has determined the 
sequence components from voltage and current phasors to 
detect, classify and locate the fault. Mallikarjua et al. (2018) 
have proposed fault detection and classification methodology 
using time-tagged predominant harmonic phasors of current 
signals. It has been implemented in real time on the scaled-
down laboratory models. However, the proposed methodol-
ogy is limited to fault detection and classification only.

Furthermore, advancement in artificial intelligence has 
facilitated many applications in power system protection 
due to their mimicking nature, generalization and robust-
ness. Gao et al. (2015) have put forward a nonparametric 
technique-based fault classification method for transmission 
lines. The proposed technique has used voltage phasors. Roy 
and Bhattacharya (2015) have proposed multi-resolution 
S-transform-based methodology for transmission lines pro-
tection from all types of faults. It has employed probabilistic 
neural networks for fault detection and classification. The 
probabilistic neural networks have been trained with the 
features extracted from current signals. Manassero Junior 
et al. (2016) have proposed a fault location methodology for 
series-compensated transmission lines. In this context, it has 
utilized voltage and current phase components along with 
the heuristic method. The proposed method is developed on 
the assumption that no errors are present in the transmission 
line parameters estimation. Most of these methods (Jiang 
et al. 2012; Mousavi-Seyedi et al. 2015; Vallapu et al. 2017; 
Kang et al. 2017; Das et al. 2017; Saber 2018; Barman and 
Roy 2018; Meenakshi Devi et al. 2018; Rajaraman et al. 
2018) discussed above are confined to simulation based vali-
dations only.

In (Venkatesan and Balamurugan 2001), real-time fault 
detector based on artificial neural networks (ANNs) was 
developed for the protection of transmission lines. In this 
system, voltage and current signals before and after fault are 
employed for fault location. Pasand and Malik (1999) have 
realized ANN-based directional distance protection algo-
rithm using analog-to-digital (A/D) converter in conjunction 
with DSP processor (TMS320C30 DSP chip). However, the 
methodology is constrained to detection of fault direction 
only. For achieving precise fault location using synchropha-
sor measurements, support vector machine (SVM) has been 
employed (Gopakumar et al. 2015; Jaya Bharata Reddy et al. 
2016) since it is superior over ANFIS (Kumar et al. 2015) 
and ANN (Venkatesan and Balamurugan 2001; Pasand and 
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Malik 1999) in generalization and robust in handling multi-
dimensional data. Gopakumar et al. (2015) proposed an 
SVM-based fault detection and classification methodology. 
The methodology has employed harmonic components of 
equivalent voltage and current phasor angles. Jaya Bharata 
Reddy et al. (2016) have developed a smart methodology 
for detection, classification and location of transmission 
lines faults using discrete orthogonal Stockwell transform 
(DOST). The fault detection and classification functions are 
accomplished using synchronized current measurements 
obtained from remote terminal units (RTUs) at both ends 
of a transmission line, and faults are located using SVM.

The noteworthy contribution of the proposed RT-SHPM-
FL method is that it locates a fault accurately using SVR, 
and this information is useful to restore the faulted line at 
the earliest. It has been implemented on a scaled-down labo-
ratory model of the 400 kV transmission line using EHPs 
calculated from the magnitudes of time-tagged fundamen-
tal, second- and third-order harmonic phasors of three-phase 
currents. A PMU has been realized using NI cRIO-9063 
chassis, NI-9227 current sensor card, NI-9467 GPS mod-
ule and LabVIEW software. The experimental results show 
that the proposed fault location method locates the fault pre-
cisely. Furthermore, a comparative study reveals that the 
proposed method using SVR is more accurate than ANFIS 
because the error associated with the former is within ± 1%.

2 � Proposed RT‑SHPM‑FL Method

Accurate location of a fault in transmission lines is a neces-
sary task to guide the crew for restoring the power supply at 
the earliest. For such applications, the combination of syn-
chrophasor measurements and machine learning techniques 
such as ANN, ANFIS and SVR are promising technologies. 
In this paper, the proposed RT-SHPM-FL method employs 
synchronized current phasor data and SVR for fault loca-
tion. In order to understand the proposed method, the tech-
nical background of synchrophasor technology and SVR is 
essential.

2.1 � Synchrophasor Technology

The vanguard synchrophasor technology estimates the time-
tagged phasor measurements w.r.t the time reference of Global 
Positioning System (GPS). In a PMU as shown in Fig. 1, the 
phasor estimation process starts with a sampling of an analog 
signal at a sampling frequency (fs = Nfo). The time-tagged fo, 
2fo and 3fo harmonic phasors of each phase of three-phase 
current signals are estimated per cycle using a discrete Fourier 
transform (DFT) algorithm as given in Eq. (1). DFT requires N 

number of samples per cycle. The hth harmonic phasor estima-
tion of an original signal is given by

The synchronized measurements from PMUs are transmit-
ted over the TCP/IP protocol between the PMU and the phasor 
data concentrator (PDC) at transmission line protection center 
(TPC) as per the synchrophasor standard C37.118.2 [IEEE 
Standard for Synchrophasor Data Transfer for Power Systems].

2.2 � Support Vector Regression

The classical problem associated with statistical learning the-
ory and structural risk minimization can be solved using SVM 
Vapnik 1998). As stated by Vapnik et al. (1997), SVMs can 
also be employed for regression problems using an alternative 
loss function, though they have been used for fault type iden-
tification and estimation of transmission line parameters for 
fault locations. These SVMs are named as SVR. For real value 
inputs, SVR predicts a real value output. SVR is classified as 
either linear or nonlinear SVRs. The fault location function has 
been implemented in MATLAB environment with LIBSVM 
toolbox (Chang and Lin 2011) for SVR training and testing. 
Further, the estimated fault distance is displayed in LabVIEW 
front panel through LabVIEW and MATLAB interface.

Consider a set of data (xi, yi) to be trained, xi ∈ Rn, yi ∈ R, 
where i = 1, 2… l. xi represents the input data and yi implies 
the output data. Linear SVR is performed on the data, which is 
mapped into high-dimensional feature space where a nonlinear 
mapping Φ is sought.

Let us take a linear function with a mapping Φ:

The optimal regression function is obtained from the mini-
mum of Eq. (3):

(1)Xh =

√
2

N

N−1�

n=0

x(nΔT)e−j
2�hn

N

(2)f (x) = ⟨�,�(x)⟩ + b

Fig. 1   Block diagram of phasor measurement unit (PMU)
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The SVR problem can be redefined as finding an optimal 
solution to the following quadratic programming problem 
based on Eqs. (4) and (5):

Objective function:

The solution of quadratic programming problem is easily 
obtained by proposing a dual set of variables ai and ai*. A 
Lagrange-like function is formed using the objective func-
tion and the corresponding constraints with few mathemati-
cal manipulations as given below (Fei et al. 2018; Yusuff 
et al. 2014):

The mapping of input space with the output space is in 
general nonlinear. For achieving a better mapping in a high-
dimensional feature space, Kernel functions K

(
Xi,Xj

)
 are 

used in computing a dot product. Frequently used kernels 
in most of the applications are the linear kernel, polynomial 
kernel, radial basis kernel (RBK) and sigmoidal kernel. For 
realizing a nonlinear mapping, the quadratic loss function 
�(�) = �2 and RBK, as given by Eq. (6), are selected:

Thus, optimization problem for SVR is changed to

subject to 
∑l

i=1
(a∗

i
− ai) = 0 ; ai and a∗

i
 ∈ [0, C].

(3)R(�, b, � , �∗) =
1

2
‖�‖2 + C

l�

i=1

(�i
�
�i
�
+ �i

�
�∗
i

�

(4)

minR(�, b, � , �∗) =
1

2
‖�‖2 + C

l�

i=1

(�i
�
�i
�

+ �i
�
�∗
i

��
�,

⋅

�(x)

�
+ b − yi ≤ �i + �

Subject to yi −

⟨
�,

⋅

�(x)

⟩
− b ≤ �i + ��i,

�∗
i
≤ 0

(5)

maxW(a, a∗, � , �∗) =
1

2

l∑

i,j=1

(
ai − a∗

i

)(
aj − a∗

j

)⟨
�(xi),�(xj)

⟩

+

l∑

i=1

(
a∗
i
− ai

)
yi − �

l∑

i=1

(
ai − a∗

i

)

+ C

l∑

i=1

(�i(�i) + �i(�
∗
i
))

− �i
d

d�i
�i
(
�i
)
− �∗

i

d

d�∗
i

�i
(
�∗
i

)

(6)K
�
X,Xi

�
= e−(‖X−Xi‖2)∕2�2

(7)

maxW(a, a∗) =
1

2

l∑

i,j=1

(
ai − a∗

i

)(
aj − a∗

j

)
K
(
X,Xi

)

+

l∑

i=1

(
a∗
i
− ai

)
yi −

1

2C

l∑

i=1

(
a2
i
− a∗2

i

)

2.3 � Flowchart of the Proposed RT‑SHPM‑FL Method

Step 1	� Synchronized time-tagged harmonic phasors of 3-ɸ 
signals estimated by PMU are received at TPC and 
plot 3-ɸ and individual phase current signals as 
shown in Fig. 2

Step 2	� If second-order (Ip2 = 100  Hz) and third-order 
(Ip3 = 150 Hz) harmonic current phasors are greater 
than the respective threshold value (k1 & k2), a fault 
is detected. Else ‘No fault’, and hence, go to Step 1

Step 3	� The magnitude of EHPs (Ieq1, Ieq2 and Ieq3) is cal-
culated from the magnitude of 50, 100 and 150 Hz 
three-phase current phasors using Eqs. (8)–(10) 
(Mallikarjua et al. 2018)

Step 4	� A nonlinear SVR as given in Eq. (7) is trained with 
the magnitude of EHPs ( Ieq1, Ieq2&Ieq3 ) regarding 
different faults with various fault conditions as 
input data and fault distance (in km) as output data

Step 5	� Send |Ieq1|, |Ieq2| and |Ieq3| of new fault condition 
through the trained fault location function (SVR-
FL) of RT-SHPM-FL method to estimate the actual 
fault distance in ‘km’

A brief description of the experimental setup for imple-
menting the RT-SHPM-FL method in real-time is given in 
the succeeding section.

3 � Description of Experimental Setup

Details of the major components of the experimental setup 
are given in the subsequent sections.

3.1 � Three‑Phase Power Supply, EHV Transmission 
Line and Variable Load

As shown in Fig.  3, scaled-down laboratory prototype 
of 400 kV extra high voltage (EHV) transmission line of 
400 km is connected between a 3-Φ, 440 V (L–L), 50 Hz 
power supply and an autotransformer of 440 V to (0–110 V), 
50 Hz. The three-phase voltage and current signals can be 
measured from the tapping on the laboratory model. It has 
been divided into eight 50-km Π-sections. At every 50 km, 

(8)|Ieq1| =
√

|IA1|2 + ||IB1||
2
+ ||IC1||

2

(9)|Ieq2| =
√

||IA2||
2
+ ||IB2||

2
+ ||IC2||

2

(10)|Ieq3| =
√

||IA3||
2
+ ||IB3||

2
+ ||IC3||

2
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Fig. 2   Implementation of a gen-
eralized RT-SHPM-FL method 
using SVR at TPC

Fig. 3   Scaled-down laboratory model of EHV transmission system connected with PMU and execution of the proposed fault location method in 
LabVIEW at TPC
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ports have been provided to create an external disturbance. 
The resistance, inductance and capacitance of the transmis-
sion line are 0.036 Ω/km, 0.2014 mH/km and 0.044 μF/km, 
respectively. A 4-pole contactor acts as a circuit breaker. The 
three-phase variable load of 1.25 kW/phase is connected at 
the transmission line’s receiving end.

3.2 � Realization of PMU

Real-time implementation of PMU for harmonic phasor 
estimation has been done using a fast, efficient and reliable 
NI cRIO-9063 chassis embedded with data acquisition (NI 
9227 current) and time stamping (NI 9467 GPS) modules in 
conjunction with LabVIEW FPGA software. The NI devices 
have been chosen because they are extremely compact in 
size, rugged in construction, reliable and flexible for input/
output connection. Also, they can function reliably in − 40 
to 70 °C temperature range.

3.2.1 � cRIO‑9063 (Chassis)

The NI cRIO devices offer powerful stand-alone and also 
networked execution for real-time deterministic applications. 
A reconfigurable FPGA of cRIO facilitates custom timing, 
triggering and processing. It is embedded with a 667 MHz 
dual-core ARM Cortex-A9 processor and 4-slot Artix-7 
FPGA. It contains dynamic RAM of 256 MB for embedded 
operation and 512 MB nonvolatile memory for data logging. 
It has been supplied through a power module which can 
provide an isolated voltage of range 9–30 V.

3.2.2 � Current Module: NI 9227

The NI 9227 current module is interleaved in cRIO chassis 
for acquiring the current samples. It is designed to measure 
current signals of 5 A r.m.s. nominal current. It can sustain 
the current up to 14 A peak current on each channel with 
channel-to-channel isolation. It contains four distinct chan-
nels. The maximum sampling speed of the device is 50 kS/s 
per channel.

3.2.3 � GPS Module: NI 9467

The NI 9467 GPS module is selected for obtaining accurate 
time stamping, system clock setting and geographic location 
information based on pulse per second (PPS) signal arrival 
from the satellite. The NI FPGA timekeeper is designed to 
integrate the cRIO onboard FPGA clock with external tim-
ing sources such as SNTP, IRIG-B and GPS. The combina-
tion of NI 9467 and NI FPGA timekeeper provides time 
stamps each at a tick of 0.025/0.0125 µ second clock with 
real-world time, which is accurate to within ± 100 ns.

3.2.4 � NI LabVIEW FPGA

The graphical development for FPGA chips on NI cRIO 
hardware target has been done using the LabVIEW FPGA 
Module. The graphical code in the form of virtual instru-
mentation (VI) can be compiled and implemented in hard-
ware with the LabVIEW FPGA Module on a host computer. 
The custom hardware-based user-defined logic can also be 
created using FPGA VIs for many applications like digital 
protocol communication, hardware-in-the-loop (HIL) simu-
lation, etc. Since FPGA module has many built-in signal 
processing routines, it is possible to integrate existing hard-
ware description language (HDL) code as well as third-party 
IP including Xilinx CORE Generator functions. The impor-
tant feature of LabVIEW FPGA module is that the graphical 
code will be automatically converted into VHDL code and 
that will be converted into bit file using Xilinx ISE compiler.

The PMU (cRIO-9063 embedded with the NI-9227 cur-
rent sensor card and NI-9476 GPS) is connected as shown 
in Fig. 3. The cRIO chassis acquires the digital form of the 
analog three-phase current signals through the current sen-
sor card. These measurements are transferred to the central 
processing unit (CPU) of the personal computer (PC) where 
LabVIEW FPGA software estimates the time-tagged funda-
mental, second- and third-order harmonic current harmonic 
phasors for fault detection and location.

4 � Results and Discussion

In this section, a discussion has been carried out on the per-
formance of the RT-SHPM-FL method during various fault 
conditions. Numerous shunt faults with fault conditions are 
created randomly at different distances. This random pro-
cess does include the effect of FIA on the operation of the 
proposed method. It emphasizes the effect of FIA on fault 
detection function and trained location function (SVR-FL) 
of the RT-SHPM-FL method because in practical scenario 
the occurrence of the fault w.r.t. to the current waveform is 
random in nature. The threshold values (k1 & k2) for the sec-
ond- and third-order harmonic current phasors are selected 
as 0.1 and 0.012, respectively, after conducting numerous 
case studies on the experimental setup (Mallikarjua et al. 
2018). The respective results are depicted in Tables 1, 2, 3, 
4 and 5.

Under normal operating condition, the magnitudes of 
time-tagged 50, 100 and 150 Hz phasors of three-phase 
current signals and the operation of the proposed method 
are depicted in Table 1. It is clear that the values of 100 Hz 
and 150  Hz phasors of A, B and C current signals are 
0.0006, 0.0003 & 0.0003, and 0.00015, 0.00015 & 0.00015, 
respectively. The proposed method has detected the present 
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condition as ‘No Fault’ since the magnitude of neither syn-
chronized 100 Hz & 150 Hz current phasors nor 50 Hz pha-
sor are/is greater than the respective set value(s). This situ-
ation is depicted in Fig. 4.

The performance of the RT-SHPM-FL method for dif-
ferent fault conditions along with the corresponding results 
is depicted in Tables 2, 3, 4 and 5. For instance, consider a 
triple-line fault (L–L–L) with FR of 50 Ω at 100 km. The 
synchronized harmonic phasor measurements of three-
phase currents are tabulated in Table 2. The time-stamped 
100 and 150 Hz current phasors in ampere are (IA2 = 0.125, 
IB2 = 0.125 & IC2 = 0.125) and (IA3 = 0.03125, IB3 = 0.03125 
& IC3 = 0.03125), respectively. When these values are trans-
ferred to the proposed method, the fault is detected since the 
100 and 150 Hz current phasors are higher than the respec-
tive set values. The EHPs calculated from the 50, 100 and 
150 Hz three-phase current phasors are also given in Table 2. 
When the respective EHPs (|Ieq1| = 1.5086, |Ieq2| = 0.2692 
& |Ieq3| = 0.0541) are passed through the trained SVR-FL, 
the estimated fault distance is 101 km. Similarly, the per-
formance of RT-SHPM-FL method has been validated for 
L–L–L fault with wide-range variation in fault conditions as 
tabulated in Table 2.

Further, different double-line faults (L–L) with distinct 
FRs are created at different distances, and the correspond-
ing results are tabulated in Table 3. For example, consider 
an L-L fault at 100 km with FR of 20 Ω from the source 
end. The time-stamped 100 and 150 Hz three-phase cur-
rent phasors’ magnitudes estimated at 7.31.16.000 PM 
on 06.06.2017 are (0.03125, 0.2656 & 0.25) and (0.0156, 
0.0468 & 0.0468) respectively. When these values are 
passed through the RT-SHPM-FL method, the fault has been 
detected. The fault distance estimated by trained SVR-FL 
using the respective EHPs is 99 km. This condition is shown 
in Fig. 5. Likewise, different L–L faults with wide-range 
variation in FR and FD are detected and located by the pro-
posed method, which are given in Table 3.

As given in Table 4, furthermore the double-line-to-
ground fault (L–LG) with distinct values of FR is created 
randomly at different distances. For a case in point, con-
sider an L–LG with 50 Ω occurred at 200 km from the 
source end. When the resultant time-stamped magnitudes 
of 100 and 150 Hz current phasors measured at 7.37.06.000 
PM on 06.06.2017 are passed through the proposed fault 
location method, the fault is detected as shown in Table 4. 
The trained SVR-FL estimated the C–AG fault distance as 
202 km from the source end. Similarly, as given in Table 4, 
the proposed fault location method has detected and located 
the L–LG fault with different fault conditions.

Likewise, the estimated values of time-stamped 100 and 
150 Hz of three-phase current phasors for line-to-ground 
(LG) fault with distinct FRs at various distances are depicted 
in Table 5. For example, assume an LG fault with FR of 0 Ta
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Ω has occurred at 50 km from the source end. The time-
stamped magnitudes of 100 Hz (IA2, IB2&IC2) and 150 Hz 
(IA3, IB3&IC3) phasors of three-phase current signals esti-
mated at 7.38.59.000 PM on 06.06.2017 are (0.7968, 0.0468 
& 0.0468) and (0.1406, 0.0156 & 0.0156), respectively. 
When the EHPs of synchronized harmonic current pha-
sors are passed through the proposed fault location method, 

it recognized the prevailing condition as a fault since 100 
and 150 Hz current phasors are greater than 0.1 and 0.012, 
respectively. Furthermore, LG fault with different fault con-
ditions is detected and located as depicted in Table 5.

From the elaborated discussions carried above, the fault 
detection and location functions of RT-SHPM-FL method 
have detected the faults precisely and located the faults with 

Fig. 4   LabVIEW front panel display for no fault condition

Fig. 5   LabVIEW front panel display for L–L fault with FR = 20 Ω at 100 km from the source end (Bus 1)
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less error. Also, the user-friendly interface shows its suit-
ability of the proposed RT-SHPM-FL method for real-time 
applications. In the following section, a comparative analy-
sis is carried out to show the superiority of SVR-FL over 
ANFIS-based fault location as described below.

5 � Comparative Analysis of SVR‑Based Fault 
Locator and ANFIS‑Based Fault Locator

Once a fault is detected, EHPs are calculated from 50, 100 
and 150 Hz three-phase current phasors corresponding to 
the fault conditions. SVR and ANFIS are trained with these 
EHPs and fault distance as inputs and output, respectively. 
The accuracy of the proposed method using SVR in fault 
location is superior over that of ANFIS. Fuzzy inference 
system in ANFIS classifier is trained using a hybrid optimi-
zation method (Gaussian combination membership function) 
(Hsu and Lin 2002). The ANFIS classifier comprises of 181 
membership functions. The training set contains 1400 sam-
ples, and each type of fault contains 140 samples. Figure 6 
shows the percentage error in fault distance estimation by the 
proposed method using SVR and ANFIS. From Fig. 6a–d, 
it is evident that the percentage error in fault location is 

within ± 1% using SVR while using ANFIS varies widely 
with different fault conditions.

6 � Conclusions

This paper proposes a RT-SHPM-FL method for fault loca-
tion in transmission lines using SVR. The synchronized har-
monic phasor measurements of three-phase current signals 
obtained from PMUs are used to detect a fault. Also, the fault 
distance is estimated using magnitudes of EHPs. For fault 
distance estimation in transmission lines, the RT-SHPM-FL 
method has employed SVR. The fault detection and loca-
tion functions (SVR-FL) of the RT-SHPM-FL method are 
implemented in LabVIEW software. The proposed method 
has been tested on a scaled-down laboratory model of 400 kV 
EHV transmission line of 400 km long. The results show that 
the proposed method using SVR for fault location has been 
superior over ANFIS since the error associated with the for-
mer one is less than ± 1% regardless of the fault conditions.
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Fig. 6   Percentage error in fault distance estimation in real time, a when L–L–L fault with FR = 20  Ω occurred; b when L–LG fault with 
FR = 0 Ω occurred; c when L–L fault with FR = 1 Ω occurred; and d when LG fault with FR = 5 Ω occurred
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