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Abstract

In this paper, a novel approach for state-space evolving type-2 neural-fuzzy identification of multivariable dynamic systems is
proposed. According to adopted methodology, conditions for creating and merging clusters are used to perform the structural
adaptation of the neural-fuzzy model. The center and shape of each cluster are estimated, defining all rules in the interval type-2
neural-fuzzy inference system. The degree of uncertainty on the shape of type-2 membership functions is computed through
an extended Kalman filter-based learning mechanism. Once the type-2 membership functions (upper and lower membership
values) are estimated, the fuzzy Markov parameters are computed from experimental data, and for each incoming information,
the parameters of state-space linear models in the consequent proposition of inference system are recursively estimated. The
efficiency and applicability of the proposed methodology are demonstrated through experimental results of modeling of an
industrial dryer.

Keywords Type-2 neural-fuzzy inference system - Interval type-2 fuzzy sets - Evolving systems - Fuzzy state-space
identification

1 Introduction with the uncertainties mentioned above, type-2 fuzzy sys-
tems were proposed, where their membership functions are
Quite often, the knowledge that is used to design a fuzzy  themselves fuzzy (ZADEH 1975).
system can be uncertain. According to Mendel and John
(2002), there are, at least, four resources of uncertainties to
built a fuzzy system: (1) the meanings of words which are
used in the antecedent/consequent proposition of rules can
be uncertain, i.e., words have different meanings for different
people; (2) when the knowledge is extracted from a group of
experts who do not agree among themselves; (3) measure-
ments that activate a type-1 fuzzy system may be noisy and
therefore uncertain; (4) the data set used to tune parameters of
fuzzy systems may contain uncertainty and noise. Therefore,
type-1 fuzzy systems are not able to handle severe uncertain-
ties because their membership functions are crisp. To deal

1.1 State-of-the-Art

The concept of a type-2 fuzzy set was introduced by Zadeh
as an extension of the concept of ordinary fuzzy set (type-1
fuzzy set) (ZADEH 1975). However, the first works specif-
ically dealing with type-2 fuzzy sets were published in the
1990s. In Karnik and Mendel (1998), the initial concepts
about type-2 fuzzy system structure are presented such as
operations among type-2 fuzzy sets.

A type-2 fuzzy system is a set of IF-THEN rules, where
the antecedent and/or consequent propositions are composed

X Ginalber Luiz de Oliveira Serra of type-2 fuzzy sets. In type-2 fuzzy set (also called as gen-
ginalber @ifma.edu.br eral type-2 fuzzy set), each membership value is a fuzzy
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anderson.pablo.evangelista@gmail.com related to the shape of the membership function due to the

| use of uncertain information to generate it. This character-
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2007; Castillo 2011; Mendel 2014). The structure of a type-
2 fuzzy system is similar to type-1 fuzzy system; however,
the process to compute the output in type-2 fuzzy systems
is performed by two steps: type reducing and defuzzification
(Mendel and John 2002; Mendel et al. 2006; Oscar Castillo
2007). A disadvantage of type-2 fuzzy system is its applica-
tion in real-time problem due to the processing time, once the
general type-2 fuzzy sets increase the computational com-
plexity for performing the type-reducing process (Mendel
et al. 2006; Pratama et al. 2017).

A special case of type-2 fuzzy set, the interval type-2 fuzzy
set, was introduced in Karnik et al. (1999) and Liang and
Mendel (2000b), which is a simplification of the general type-
2 fuzzy set. In an interval type-2 fuzzy set, the third dimension
is always equal to one. Hence, the Footprint of Uncertainty
(FoU) of an interval type-2 fuzzy set is defined by upper and
lower membership functions. Compared to general type-2
fuzzy systems, the type-reduction operation for an interval
type-2 fuzzy system is computationally less intensive. Based
on interval type-2 fuzzy systems theory, many type-reduction
algorithms have been proposed (Liang and Mendel 2000a;
Wu and Mendel 2002; Nie and Tan 2008) and applied to
several areas, such as control (Hagras 2004; Li et al. 2015),
temporal series prediction (Lin et al. 2013; Lee et al. 2014)
and system identification (Abiyev et al. 2013; Kayacan et al.
2015). In Li et al. (2016), a fault detection design scheme
for interval type-2 Takagi—Sugeno fuzzy systems with sen-
sor fault based on a novel fuzzy observer is proposed. The
interval type-2 fuzzy model is used for modeling the non-
linear system, where the uncertain parameters are handled
by the lower and upper membership degrees with weight-
ing functions. The fault detection scheme is composed of
the interval type-2 fuzzy model and interval type-2 observer,
which derived condition to detect faults for a considered
application. In Gao et al. (2019b), a distributed filtering
scheme to deal with the fault detection problem of non-
linear stochastic systems with wireless sensor networks is
presented. The nonlinear stochastic systems are represented
by interval type-2 Takagi—Sugeno fuzzy system, and dis-
tributed interval type-2 fuzzy filters are designed for each
sensor of the wireless sensor network.

The analysis of input—output experimental data from a
dynamic system in order to find the proper rules and FoU for
interval type-2 fuzzy modeling is difficult, time consuming
and requires expert knowledge. Therefore, the problem of
designing interval type-2 fuzzy inference systems and make
good use of their properties is still open and an important
research field. In this case, evolving methodologies have been
proposed as one of the approaches to design interval type-2
fuzzy inference systems (Juang and Tsao 2008; Tung et al.
2013; Lin et al. 2015), as well as optimization/evolutionary
methods (Kumar and Kumar 2017; Antonelli et al. 2017).
In Das et al. (2015), an evolving interval type-2 neural-
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fuzzy inference system with sequential learning is proposed.
A data-driven type-reduction procedure is used so that the
computing of the output is fast and accurate. In Moham-
madzadeh et al. (2016), a novel Hy.-based adaptive fuzzy
control for the synchronization of fractional-order chaotic
systems is presented. The consequent parameters are tuned
based on adaptation laws that are derived from Lyapunov sta-
bility analysis. The antecedent part is estimated by clustering
algorithm considering that the upper limit of type-2 mem-
bership degree and the rule database is optimized using a
modified invasive weed optimization algorithm. In El-Nagar
(2018), a structure of a recurrent interval type-2 Takagi—
Sugeno—Kang fuzzy neural inference system for nonlinear
time-varying dynamic systems identification is proposed.
The antecedent and consequent parameters are updated based
on the Lyapunov function to achieve inference system sta-
bility. In Pratama et al. (2017), an evolving recurrent fuzzy
neural network structure, which presents two recurrent lay-
ers, is presented. In the antecedent proposition, multivariable
Gaussian membership functions are used, whereas the con-
sequent propositions are formed by the nonlinear wavelet
functions. The evolving mechanism is governed by type-2
data quality method and the adaptation of the consequent
parameters is performed by fuzzily weighted generalized
recursive least squares, with application to time-series pre-
diction in order to handle uncertainties inherent to the data.

As mentioned above in type-2 fuzzy model-based method-
ologies, it is observed that a set of multiple-inputs and
single-output (MISO) type-2 fuzzy structures are commonly
used to represent multivariable dynamic systems. Also,
single variable membership functions are formulated in
evolving context, where the clustering algorithm partition
the input space in fuzzy regions, defining the membership
function for each antecedent variable, and the relation of
interval type-2 membership functions for each rule is com-
puted by some t-norm. However, this approach may cause
the loss of information due to low interaction between the
antecedent variables (Kim et al. 1998; Lemos et al. 2011).
With regard to the type reducer method, Nie and Tan (2008)
and Wu (2013) approaches are generally adopted in litera-
ture, where they are more suitable to real-time application
because they demand computationally lighter burden. In a
comparative way, according to the proposed methodology, a
single multiple-inputs and multiple-output (MIMO) interval
type-2 neural-fuzzy structure is considered for multivariable
dynamic systems identification. Regarding the membership
functions, the interval type-2 multivariable Gaussian mem-
bership function with uncertain dispersion is adopted, whose
choice is motivated by the following aspects: this function
prevents information loss about antecedent variables inter-
actions; induces more reliable input space partition because
it is capable of covering arbitrary contours of data clouds;
the type-reducing process based on extension of Begian—
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Melek—Mendel and the Li—Yi—Zhao methods (Wu 2013) to
multivariable fuzzy context; the evolving multivariable Gaus-
sian fuzzy clustering algorithm as learning structure method
in order to estimate the antecedent parameters and determine
the number of rules in the interval type-2 state-space neural-
fuzzy model; the extended Kalman filter for estimating the
degrees of uncertainties associated with the shape of interval
type-2 multivariable Gaussian membership functions; and a
recursive state-space identification algorithm based on fuzzy
Markov parameters for estimating the consequent parame-
ters.

1.2 Contributions

The main contributions of the proposed methodology can be
described as follows:

— Efficiency in tracking the dynamic uncertainty inherent to
the experimental data set, adaptively. The evolving clus-
tering algorithm estimates the center and shape of the
clusters, defining the number of rules in type-2 neural-
fuzzy inference system. The compatibility degree and the
arousal index are important parameters to be computed
for a new incoming information, considering all created
clusters. Based on these metrics, conditions for variation
in the number of rules, through creating or merging clus-
ters, are used to allow the adaptation to a new structure
of type-2 state-space neural-fuzzy inference system;

— Efficiency in tracking the nonlinearity inherent to the
experimental data set, recursively. A fuzzy recursive least
squares-based algorithm is used for estimating the state-
space linear models in the consequence of the rules. The
algorithm computes the fuzzy Markov parameters for
all rules, and from fuzzy Markov parameters, the linear
state-space parameters are computed, recursively. Once
the i-th state-space model represents the linear behavior
of the dynamic system to be identified in an operating
point defined by each new sample, respectively, it can
be inferred the efficiency of the obtained evolving type-
2 neural-fuzzy inference system, through the evolving
linear combination of state-space models in the conse-
quence of each rule, in tracking the nonlinearity inherent
to the experimental data set;

— Robustness to outliers inherent to experimental data. The
evolving clustering algorithm computes the compatibility
degree of new incoming information, i.e., its membership
degree associated with each cluster indicates whether
or not the information belongs to the knowledge base.
It is also computed the arousal index, in the sense of
evaluating, if the new incoming information represents
persistently a new dynamic behavior not yet learned by
the interval type-2 neural-fuzzy inference system. If the
new incoming information is out of knowledge base and

is persistent along the time, a new operating pointis added
to the inference system. If the new incoming information
is out of knowledge base and is not persistent along the
time, it is considered as noise, disturbance or outlier, and
discarded by inference system. Besides that, an extended
Kalman filter algorithm is used for estimating the interval
type-2 fuzzy set, i.e., the parametrizations of upper and
lower membership functions so that the effects of noise,
disturbance and outliers are also attenuated in stages of
compositional rule and type reducer.

— Low computational effort, memory allocation and execu-
tion time. For a new incoming information, the Markov
parameters are computed and used for estimating of the
linear state-space model in the consequent proposition
of the interval type-2 neural-fuzzy inference system, via
fuzzy version of recursive least squares method. Once
the adopted methodology does not compute and allo-
cate large Henkel matrices, and avoid the discontinuity
problem induced by singular value decomposition in a
recursive approach, which is more useful as compared to
formulations found in several fuzzy state-space system
identification methods, it can be inferred a faster pro-
cessing for experimental data-based modeling, which is
useful for real-time applications.

2 Interval Type-2 Neural-Fuzzy
Takagi-Sugeno Inference System

The structure of the interval type-2 neural-fuzzy inference
system, adopted in this paper, is shown in Fig. 1 (Abiyev
et al. 2011; Tung et al. 2013; Lin et al. 2014; Wang and
Kumbasar 2019). It is divided into five layers: input layer,
fuzzification layer, consequent layer, type-2 compositional
rule of inference and type reducer layer.

The adopted general form of the IF-THEN propositions is
given by

Rule’ : IF Zy 18 VA
X, = A'X} + Bl

THEN { * o .
¥, = C'x; + D'y

ey

where i = 1,2,...,c is the rule number, zx = [z1x 22,k
- Zn,k] € N is the antecedent input variable, Al €
R BLoe WM CH e WP and DY e RPX are the
state-space matrices of the local linear model from each rule,
x;'( = [x{’ X xé’ X . xfl,k] e M is the local state vector for
i-th rule, y}; = [y{’k yé,k y;,k] € NP is the local output
vector fori-thrule, wy = [ug g w2k -+ Um k] € RN isinput
signal vector and 7' is the interval type-2 fuzzy set of the i-th
rule. The details of each layer are discussed in the sequel.
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Fig.1 Configuration of the proposed interval type-2 neural-fuzzy inference system

2.1 Layer I: Input Layer

The first layer of the type-2 neural-fuzzy inference system
is the input layer. The nodes of this layer represent the
physical variables related to dynamic system to be identi-
fied. Since these physical variables can operate in different
ranges, it is useful to normalize the experimental data and
adjust them in a unified range. Therefore, the max—min nor-
malization operator is adopted, in the sense of overcoming
the ill-conditioning and guaranteeing stable convergence of
antecedent parameters, as well as allowing the constructing
of new characteristics from input space. The max—min nor-
malization operator is given by

Zjk — me

(n) J .
k= ZMmax _ omin’ for j=1,2,...,n; )
J J

where z(") e [0, 1], me and zma" are the maximum and

minimum values of j-th feature, respectively, and z(n) =

(n) _(n) (n) ]

(2} x 22k " 2. x] 18 the normalized input vector.

2.2 Layer lI: Fuzzification Layer

The second layer of the interval type-2 neural-fuzzy infer-
ence system has the function of performing the fuzzification
operation. Each node in this layer represents an interval
type-2 fuzzy set. Thus, each interval type-2 fuzzy set is
computed by an evolving multivariable Gaussian fuzzy clus-
tering algorithm, which also adjusts the shape of membership
function and defines new rules from input space in online
manner as well. The fuzzification operation corresponds to
the mapping 9": — 9!, where the normalized experimental
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data in the input nodes vector z(") belongs to the interval
type-2 fuzzy set Z' with an 1nterval type 2 membership
degree [LiZi(z,(:')) = [u (z(”)) ,u, (zk )] computed as
follows:

1 .
s (z(")) = |:muexp< ZME, (z(") ’*)> ,

exp (—lM (Z(Yl) t*)>:|
2

where m, corresponds to an adjustment parameter, chosen
by an expert, and used to guarantee the uncertainty interval
between lower and upper membership functions. The Maha-
lanobis distance functions My (o) and M i (o) are defined
by (Babuska 2012; Pratama et al. 2017):

3

My (@, 2% = @" 27 (€)' @" -2 @)
M (Z(n) — (Z]((”) _ Zi*)T(ii)71 (Z]((n) _ Zi*) (5)
where z/* = [Z’i* Zé* -+ z*]is the center vector and X' and

%' being the lower and upper dispersion matrices (symmetric
and positive definite), respectively, which define the spread of
the i-th lower and upper multivariate Gaussian membership
function, in the sense of covering arbitrary contours of data
clouds in input space. The same type of membership function
used in this paper is very useful in other relevant approaches
(Han et al. 2019; Gao et al. 2019a), but is important high-
lighting that other types of fuzzy membership functions can
be used in the proposed approach, such as interval type-
2 exponential membership function whose implementation
would also imply in aspects as computational complexity and
robustness (Wang et al. 2019).
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2.3 Layer lll: Consequent Layer

The third layer of the interval type-2 neural-fuzzy inference
system has the objective of performing an arithmetic opera-
tion in function of linguistic variables of the antecedent, as a
consequent proposition. The adopted arithmetic operation is
based on linear state-space model structure, which allows the
representation of the dynamic behavior of multivariate phys-
ical system. Thus, the i-th consequent proposition is given
by

v, =C'x; + Dy (6)
R = A'X, + By (N
2.4 Layer IV: Type-2 Compositional Rule of Inference

The fourth layer relates type-2 membership degrees from
antecedent in layer II with the linear state-space models
from consequent in layer III. Thus, the interval type-2 states
[x/, X, ] and interval type-2 outputs [y;, y,] of the interval
type-2 neural-fuzzy inference system are computed through
the composition of all rules of inference, where the indexes
[ and r represent the lower and upper bounds, respectively.
The adopted procedure is given as follows:

[ Yo A My
Yo i (zk ")+ dimt W (z(n))

y, = max

Y W)y ] ®
SO A 2) + Y6 i (2
y; = min [ i ﬂi(z}gﬂ)w ,
Y @) + Y5 i (2)
Sii i @)y ] ©
Yo @) + Y i @)
= max | IRV
r Z;’;l ﬁi (Z(n)) + Z?:l Ei (z(”))
Zz . (z(n))xi
21u¢%+z”u¢%] o
X; = min |: Lo/ (z(”))x
dimt (Z(n)) + i (Zk
Yisi wl )X’ ] an
Y Al 2) + Y6 i (2)

2.5 Layer V: Type Reducer Layer

The fifth layer performs the type reducing for computing
type-1 states X4 and type-1 outputs §; of the interval type-

2 neural-fuzzy inference system. The procedure is defined
by two arithmetic operations and is given by

[vil 0 .o 0] [0 0 o 0]
A 0 v'0 | T
Xp+1 = | . . R . ol . | Xk
L0 0 oy L0 0 ]
(12)
vl o 0] [0 0 e 0]
. 0 w0 | 0 v 0 |
Y = . oYt . . Yk
L0 0 oy L0 0y
(13)

where v/, v*", v¥! and v " are adaptive weights, which

are updated by recursive least squares, as described in Algo-
rithm 1. The initial value of covariance error matrices Pﬁ, 0

and P} ; satisfies Pl = 1/riTand P ; = 1/r1, respec-

: o vl oy
tively, so that r; > 0,2 > 0, v}, = [vj v ] and
Jj o o_r.xl  xr

v, = [vj v; -

Algorithm 1: type reducer estimation -

type_reducer_rls(e)

input :y,,yi, %, x,, v}, v Po
output: t,, t;, P,

for j = 1to p do

1
Pli= 5P| (14)

AR S ]
Bi+ 1y YR Ly T

Vak = Vot Py [yf‘k =1 yj]uz]l,k} (15)

nd
or j =1tondo

P =P, [1— (16)

Ak_a

[~ce)

YA E x]PYkl ]
ﬁ1+[x x]Psk 1[)c x]T

Ui,k =Us,k+Ps,k [xj,k—[xj xj]vs_k] (17)

end

2.6 Issues on Representation of Uncertainties

The interval type-2 neural-fuzzy structure is considered as
a nonlinear function f(zgz) : M= — NP, In this sense,
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the data vector z; is normalized and fuzzified for comput—
L) = [l @),
(zk ))] Thus, the interval output value y = [yz yr] is

ing an interval membership grade i

obtalned which represents the uncertainties in the consid-
ered real dynamic system output, i.e., it is assumed that
y; < y* < y,, where y* is the real output, y; is the infe-
rior limit of the uncertainty and y, is the superior limit of the
uncertainty.

3 Learning Algorithm: Mathematical
Formulation

In this section, a mathematical description of the proposed
methodology is presented. The algorithms for evolving
estimation of type-2 antecedent parameters and recursive
estimation of consequent parameters are formulated.

3.1 Evolving Estimation of Type-2 Antecedent
Parameters

The adopted clustering algorithm partitions the input space
into interval type-2 multivariable Gaussian membership
functions, characterized by a center z;* € R": and a disper-

sion matrix (symmetric and positive definite) %, ¢ € Mz,
withi =1, 2, ..., c where c is the number of clusters.

The evolving estimation of type-2 antecedent parameters
is based on participatory learning (PL) (Yager 1990; Silva
etal.2014; Filho and Serra 2018). The PL approach takes into
account the impact of a new information to knowledge base
of the interval type-2 neural-fuzzy inference system, i.e., the
compatibility/ incompatibility of an incoming information
implies for updating/keeping the current knowledge base,
which makes the antecedent estimation more robust to effects
of noise and outliers inherent to experimental data. Thus, two
important variables are defined: the compatibility degree and
the arousal index. The compatibility degree p’ of anincoming
information z,((n) to the i-th cluster is computed as follows:

‘ I
Py = exp (—EM)A:;-( (zf{"), z ) (18)
with
NT A .
My .40 = (2" - 7). Ep~' (47 —47) 19

where ,o,i € [0, 1], so that for p,i = 1 means that incoming
information is completely compatible to i-th cluster.

The arousal index a,i supervises the creation of new
rules based on compatibility degree of incoming informa-
tion within a window of time. It is defined as the cumulative
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probability for occurring the violations #, of a compatibility
degree threshold, within a window w of time, and computed
as follows:

=P(Tj, <t) =Y P(Ti,=t) (20)

so that the probability function P(Tlf, © = tv) is characterized
by binomial distribution with probability of successful A,
computed as follows:

P(T} =1} = <;‘;>,\’5(1 — YT, 1y =0, w (21)
v

where the number of violations tl’; « of the compatibility
degree threshold in i-th cluster is given by

w—1
g Zjookjk>w 22)
0 otherwise

(23)

o = {1, for p; < T,

0, otherwise.

where T, is a compatibility degree threshold.
3.1.1 Cluster Creation Mechanism

Among several metrics used for creating new clusters
(Angelov and Buswell 2002; Lughofer 2008; Maciel et al.
2013; Costa and Serra 2015; Pires and Serra 2018), in evolv-
ing fuzzy clustering algorithms, the compatibility degree and
the arousal index are considered and defined as Condition
A, which are given by

IF o} < T,ViANDa! > T, THENz%1* = 2" (24)

where x = arg max ,o,i, c is the number of clusters at discrete
time k and 7, is the arousal threshold.

3.1.2 Cluster Adaptation Mechanism
In case of a new cluster has not been created, the inference

system considers the adaptation of cluster with highest com-
patibility degree for incoming information, as follows:

Gr = alpl)\~% (25)

2 =27 + G@ -2 (26)

2= -GnEL - Gr@” — 2 )@ -2 )1
27)

where o € [0, 1] is the learning rate and Gy is the gain of
adaptation at discrete time k.
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3.1.3 Merging Clusters Mechanism

The merging criteria are based on compatibility degree
between the cluster x, which was updated (or created), and
an existing cluster j, at discrete time k, as follows:

. 1 .
,Ok(ZI)C(*’ Z/jc*) = exp <_§Mﬁ:]€ (Zl){(*v Zl{*)) (28)

and, so called as Condition B is given by

IF ,ok(z,{*, z,)f*) > T, ORpk(zl){(*, z,{*) > T,
THEN merge [2"*, z/*] (29)

Algorithm 2 shows the flow of the participatory evolving
fuzzy clustering algorithm.

3.1.4 Estimation of Type-2 Membership Functions

The footprint of uncertainty is represented by a type-2 dis-
persion matrix X, = [}, X, ], which is defined as follows:

=[5 — v, 5 + wi] (30)

where Wi € 9":*": is a diagonal matrix and W =
diag([V¥y; Yo, -+ ¥, ;. The estimation of type-2
membership functions can be formulated as follows:

Vi =f@) + o =gl + o 31)
Vi =h(Wh) + v = ¥{ @)Y + v (32)

where y' = f(¢") is the output of type-2 inference system in
i-thrule, 1/1[ is the unknown uncertainty degree of dispersion
matrix )AJ;(, wk 1s a process noise and v is a measurement
noise, which are assumed with Gaussian distribution. Type-
2 activation degree of i-th rule is given by

(@ @) + i (2"))

| | (33)
S @) + X ")

Vi) =

The optimal estimation of type-2 membership functions
minimizes the following loss function:

k
1 oG\ (e i
V(¢7k)=§;(Yj_Yj) (3 -¥) (34)
j=
where
¥ =y @y, (35)
Vo=@, (36)

forj=1,2,...,c.

Algorithm 2: Evolving Multi-variable Gaussian Fuzzy
Clustering - eMG_clustering(e)

input : 7™ 7%, ):T, w, ):70, ¥, ¥y, C
output: z*, 3, ¥, p,created, merged
% compute p' and a' for all clusters;
fori =1tocdo

Compute M (z™, z'*) - Eq. (19);
Compute ol - Eq. (18);

if p! < T, then

| of =1
else

| o/ =0
end

if £k > w then

o' = Y15 oy
at = p (Tki,u < t£)§
else
| o' =0
end
end

X = argmax; p';

if Condition A (24) then
% Create a new cluster
c=c+1;

ZC% — Z(");

2 =3

¥ =90

x=c

created = true;

else
| Update cluster using Eqgs. (25)-(27)
end

% Check for similar clusters
fori =1tocdo
if Condition B (29) then
% Merge similar clusters [x,i]
2 = (2% 4 27%) /2;
25 =3
c=c—1;
merged = [x,1];
end
end

Using an estimation algorithm based on extended Kalman
filter, the uncertain degree ¥' is computed as follows:

. . . . . -1
Kj =P (H) [Ry + HP,  (H)) | (37)
Vi = i+ K (5 - 1) (38)
3”,k+1 = lf,k - KiicH;cPl},k + Qk (39)

where K}( is the Kalman gain,P’}’ i € IRfz XNz (PS‘,O =r3land
r3 > 0) is the covariance matrix of residues, Ry € RP*P is
the measurement noise covariance matrix and Q; € N>z
is the process noise covariance matrix. The observation
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matrix H}{ e RP*" which is defined as Jacobian matrix,
is given by

i Rl
H, = & . (40)

According to Haykin (2001), the covariance matrix Ry
can be given as a function of inverse learning rate, such that
R, =¢ _IWk_l. Thus, Eq. (37) can be formulated as follows:

, . . . . —1
K}, = P H o7 Wi+ B )T (41)

where ¢ € [0, 1]is learning rate and Wy, is the weight matrix.
The implementation of parameter-based Kalman filter learn-
ing procedure is shown in Algorithm 3.

Algorithm 3: EKF learning - EKF(e)

input : ¥, z,((”), Xk, Vi, Ui, 25, 2, Pri, ¢, CD,c
output: ’/’k+1ﬂ Pf,qu
fori = 1tocdo
Compute [Z, £}1, - Eq. (30);
Compute i, = [, i, 1-Bds. 3)-(5);
compute y; - Eq. (33);
compute 57,((0 and 37}( - Egs. (35)-(36);
compute H' - Eq. (40);
end

% W' and P update;

fori =1tocdo
Compute K;{ - Eq. (41);
Compute l/l;;_H - Eq. (38);
Compute P_"f-’kJrl - Eq. (39);

end

3.2 Recursive Estimation of Type-2 Consequent
Parameters

According to Eq. (1), in Sect. 2, the local state-space linear
model in the consequence associated with i-th rule of the

interval type-2 neural-fuzzy inference system is given by

R, =A%) + By
§i = C'%L + D'y, (42)

Considering the inclusion of a state observer to Eq. (42), it
has

X =A%, +B'u +L'e

§. = C'%l + D'y + e (43)

@ Springer

where e}; = y;; — 57}; and L/ denote the white innovation
sequence and local Kalman gain matrix for i -th rule, respec-
tively.

Assuming that controllability and observability properties
are satisfied (Houtzager et al. 2012; Ni et al. 2018a), Eq. (43)
can be formulated as follows:

& = (A )%ﬁ;;_qp + Chi—g, + cgé;;_qp (44)
Firg, = 0%+ Gliyg, + HE, (45)
where

B uk_qp 7] uy
- Uk,q,rH _ Ug41
We—gqp = : o Wetgr = :

L Wi—1 | uk+qf—1

y;(_qp y;c ]

[ 1
| Ve | Yen
yk*(Ip - . ? yk+(1f - :

L y;(_l y;(-H]f—l_

_e;C*pr e;( ]

1
_i i e;c—qp+l _i . €kt1
ek—qp - . ’ ek+q/ -
- e;<+f1f*1—
_ ci
CiA!
o0 =
_Ci(Ai)qf—l
C% — [(Ai)qp—lBi (Ai)qp—ZBi ... AIB Bi]
Ci — [(Ai)q,,—lLi (Ai)qp—2 Li ... AL Li]
B D 0 - 0
gi _ CiBi Di
: : o0
| C'(AH%/ B C'(A)? B --- Df
r I 0 |}
i CiL! I
: : =0
| CH(AHT 2L CHAHT 3L - 1

where O € 9RP9/*" is the observability matrix, Cg €
NX4p™ and Ci € M"*P9r are extend controllability matrix,
G' e M4rP*45m and H! € MI/™*47™ are the impulse matri-
ces with a lower block triangular structure and g, and g y are
the past time size and the future time size, respectively.
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3.2.1 Computation of Fuzzy Markov Parameters

According to Chiuso and Picci (2005), a vector auto-
regressive with exogenous inputs (VARX) predictor used as
approximator of the dynamic system in Eq. (43) can provide
a consistent estimation of Markov parameters. Thus, let the
VARX predictor is given by

q
§2=ZE’ g ,+Z:;(V}” (46)

where 9}{ is the predicted output at sample k using the inputs
atsamplesk, k—1, ..., k— p and using the outputs at samples
k—1, ..., k— p. Therefore, assuming that the dynamic sys-
tem in Eq. (43) is asymptotically stable, the transition matrix
Al is nilpotent, i.e., its eigenvalues are inside the unity circle
and, for some integer g, € N, the expression (Ai )ir ~ 0
is satisfied. Thus, the contribution of the state vector x;'(_ a0
in Eq. (44) can be made arbitrarily small for large values of
qp, leading in a systemic simplification, which affects the
matrices 2@ and B0 of the VARX in Eq. (46) related
to the Markov parameters of the system, where

g Dl: o =0 A7)
k= C (A’)J_IB’ if j >0

From Eqs. (47) and (48), the Markov parameters matrix (Jer-
Nan Juang 2011; Wu et al. 2015) can be defined as follows:

[x]

i [._z ()

e
HNR- 2] (49)

yi = E'8 +e (50)

: T
()_’;(_qp)T] . Considering k > g,

the batch representation of Eq. (50) is given by

i _ a7 T
where 8, = [uk_qp u

Y = EAL (51)
where
Yi = [¥o0 Yo o Wi (52)

] (53)

i _ g i
k= [‘Sq,ﬂrl 6qp+2

Thus, the output of the interval type-2 neural-fuzzy infer-
ence system is given by

c
Yi =) E'AT (54)
i=1

where I‘}; = diag([y[;pﬂ, y;p“, R y,é]), so that chp+1 is
computed by Eq. (33).

The local approach-based batch solution for Eq. (54),
in the sense of ensuring interpretability of interval type-2
neural-fuzzy inference system, is given by least square (LS)
solution, as follows:

-1
Ei = Y, Ti(A}) |:A Ti(A)) } (55)

where the relation g, > gy > n/p must be satisfied
so that Eq. (55) can be solved by the least mean square
method (Ni et al. 2018a; Houtzager et al. 2012), Y, =
[Yap+1¥q P2 ¥ ] is the output matrix, and the Markov
parameters E; minimizes the loss function:

k
1 . T .
=327 -v) (v-v) 56
j=1
Expanding Eq. (55) for discrete time of k + 1, it has

-1
Byl = Yk+1r;(+1(Af<+1)T[Al k+1(Ak+1) ] (57)

where Yy 41 = [Yk yk+1] and Ak+1 = [A’ k+1] So, from
Eq. (57), the covariance matrix is defined as follows:

r -1
. . . -
P;<+1 = A;<+1r;<+1(A;<+1) i|

-kt -1
- Zyjsl(al }

—1
= (Pzr‘ + wémme] (58)

Using the matrix inversion lemma in Eq. (58), it has

MR LAWY,
Lt ve 1 G D P8y

=P2|:I—

Substituting (58) in (57), results in

V/f+1 ;.c+1(8;c+1) P;c (59)
1+ (52+1)TP25;<+1

ri o

. A
Ejy1 = [Yk y’<+1] |: ()k i ] I:A;c a;c-i-l:l Pit
Vi+1

= [VTLADT + v yin @ PL

=Ej + Vl£+1 [Yk+1 - 523;&1] (62+1)TP;<+1 (60)

@ Springer



930

Journal of Control, Automation and Electrical Systems (2019) 30:921-942

where Eq. (60) is the recursive estimation of fuzzy Markov
parameters.

For time-varying dynamics, a pragmatic approach allows
the following criterion:

= %Zk:ﬁf_j [V} (Yj —yﬂ-)T (Yj —ﬁ-)} 61)
j=1

=i

The parameter Z’, which minimizes (61), can be esti-
mated, recursively, as follows:

P —in |:I—
k+1 — ,82 k

V1§+152+1 (‘SZH)TPi

B2 + V/f(“" +1)TPk k+1

(62)

E;{—H = E;c + Vl§+1 [Yk+1 - 525;&1] (6;<+1)TP;<+1 (63)

where the initial values of Pf) must satisfy Pf) =
r4 > 0.

3.2.2 Computation of State-Space Matrices

From Markov parameters

defined as follows:

2

r4I and

the matrices A}; and T}; are

For recursive estimation of fuzzy matrices [Ai R B};, C}'C, D};],
Eq. (42) can be formulated as follows:

. R .
X1 = [A;{ BZ] [ ' llk] = ©; v

R |
vi = [ i [Xk uk] +er =07y 4 e

(68)

(69)

Let the loss functions V(@;;’(x), k) and V(®§C’(y), k) for
the case of time-varying dynamics are given by

Ve, k) = %iﬂ;‘_j _y} (xj - x;)T (xj - x;>—
Jj=1 70

VO k) = %Xk:ﬂi‘" -yj (v - Y})T (v; y’,)-
=1 - 1

(71)

i _ @i ™)
wherexj = ®j

G)j{’ ) and @2’(” is given by

v ;. The recursive least-square solution for

; 1 v (v TP’ (x)
P;(,(x) P}( (xl) I— Vk 1 V1) L 72)
Ps B3 + v (v I)TPZx]"k 1
G);c @ 92 (x1) + ¥ [ G);c (xl)v;c 1] Pl’(x) (73)
()

. 1 vi (vl )TPl
P;c,(y):_P;c,iyl) I— ViVt (Vi - (74)
Pa Ba+ v (v 1)TP;< i
@i,(}‘) _ G)l () _ @ L, (y) Pl»()) 5

=000 4y [y vl [P (75)

'.:i,(u) =i, (u) .:.i,(u) =i, (1) 7]
“k—qp “k—qp+1 Sk—qpt+qr—1 k-1
0 =i g A
Ai _ “qup “‘qu,,+qf72 k-2
kK — . . .
=i, () i)
L 0 “k—qp Tk—qy |
(64)
(i) i) mi0) ombO T
“k—qp “k—qp+1 “k—qpt+qr—1 st
0 =i, () e L))
i “k—q “k—qpt+qr—2 k-2
i _ P pTa.
Tk - . .
0 =i, () i
L “k—qp Sk—qy |
(65)

The state vector )‘(;'C in Eq. (44) can be computed in function
of Uy_g,, Yk—q,, Ay and Y as follows (Ni et al. 2018a,b):

xi =8 [A;’cﬁk_q,, + T;;yk_qp] (66)
where § € \R*0nf=n) js 4 positive defined matrix, which can
be selected by user, in the sense of ensuring recursive compu-
tation of state vector x;, be convergent (Ni et al. 2018a). From
Eq. (66), the fuzzy state vector X is estimated as follows:

(67)

Cr
R =D _vixi
i=1
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i,(x)

where the initial values of Py’ are usually selected as

P6 ®) — rsI, such that r5 > 0; PO ) — rel, with rg > 0.
The steps for recursive estimation of type-2 consequent
parameters are shown through Algorithm 4, in the sequel.

3.3 Issues on Initialization: Parameters and
Structure

Initially, once there is no knowledge about the physical
system, the number of rules is zero. The first incoming infor-
mation becomes the center of first membership function, i.e.,
z'* = z; and the initial type-2 dlspersmn matrix, and is given
by 20 = [20 — Wy, Zo—i—‘l’o] where Z() = o01I": with o] €
[1072,0.5] and W = oy 17" with oy € [10710, 1074].
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Algorithm 4: Recursive Fuzzy State-Space Identifica- according to Lemos et al. (2011), are defined as follows:
tion Algorithm: RFSIA(e)

input : x, yi, Z¢, P, O, P P 0y, 0.01 I w =100
Sty vl Ml i S ol > 1005 1f 20 < w < 100 (76)

output: Zj 1, Pryq, G);'(’(x) , P;;‘(X), P;H(_‘l) 92’4(_}1)
S= [Inxn Orzx(mffn)];
rve=Wm v %l
%Step 1: Update the fuzzy Markov parameter &'

fori = 1tocdo
Compute P5<+1 - Eq. (62);
Compute E} | - Eq. (63);
end

Y0Step 2: construct the matrices Af( and Tf{
fori = 1tocdo

construct Afc - Eq. (64);

construct Ti - Eq. (65);

end

%Step 3: Estimate the local state vector X;<
fori=1tocdo

estimate x; - Eq. (66);
end
%Step 4: Update the matrices @ and @)
fori =1tocdo

Compute P;(’ @ _ Eq. (72);

Compute @;('(x) -Eq. (73);

Compute P;H(_vl) - Eq. (74);

Compute ©}") - Eq. (75);
end

The first local model is given by

Ag = «I", By = I
Co = «IP*" Dy = kIP*™

where « € [0, 1] is an initialization parameter used to set the
state-space matrices, and

0 = [40 Bo]
980‘) _ [Co Do]

In the evolving clustering algorithm, four parameters are
used: the compatibility threshold 7, € 10, 1[ , learning rate
o € [107°,107!], window size w and probability of suc-
cessful 1. The T, governs the ability to generate rules of the
clustering algorithm, where as T,, ~ 0 there is practically no
generation of cluster; and as 7, ~ 1 many clusters will be
created; therefore, it is suggested to choose a value between
0.2 and 0.7. The arousal threshold is given by 7, = 1 — A,
where A depends of w. The ranges for values of A, given w,

0.1 If 10<w <20

In the consequent estimation, the forgetting factor 8; for
j =1,2,3,4is auser-defined parameter which can be given
by 1 > B; > 0.95 so as to reduce the influence of old
data on the estimation of the parameters (Juang 1994; Jer-
Nan Juang 2011). Finally, the complete learning procedure
of the proposed interval type-2 neural-fuzzy inference system
is shown in Algorithm 5.

3.4 Issues on Convergence of the Tracking Errors

So to be clear how to ensure the convergence of the tracking
errors, let an interval type-2 neural-fuzzy inference system
with ¢ rules. The i-th submodel output can be estimated from
its Markov parameters for k > ¢, according to Eq. (50). The
matrix T} can be factored by

vl i

I = I,T,

/Vz;,,+1 0O 0--- 0

0 0 0
Voor1. 0 02 0
0 yi 0.+ 0

x| e . (77)
0 0 0¥

=i

and, the least square (LS) solution EY ¢ using Eq. (55), is
formulated by

. . o o i —1
2is = ViAp" [A,AYT ] (78)
where
Vi = YiF, (79)
A, = AT} (80)

Assumption 1 The multivariable nonlinear system can be
represented by an interval type-2 state-space neural-fuzzy
structure (Fig. 1) with cg rules, such that the rule form is
given by
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Algorithm 5: Main Algorithm

Initialize ry, 12, 13,74, , 75, 76, B1, B2, B3, , &, &, A Tp, w, qp, q

01,02,S, W
k=1,
Read sample z,((");

% Initialize the first cluster
c=1;
2 =2, 3" = 30, ¥ = ¥, Ef = 0;
(x) ) ()
Qk” =00,0, =0
repeat
k =k + 1; Read sample z,((”);
Y%prediction procedure;
fori = 1 to c do
compute X, - Eq. (66);
compute y}Ic - Eq. (6);

end

J J
[vy 4 Vs ko Py, Ps]=

[z*, )A:, ¥, pi, Ck, created, merged] =

if created then

1 i
= _ Doici PLEL .
=T
i=
. Zz»—l iel.(x)
(_)c,(h): i:lpl\i k.
—r
k XiZi
—1 i i)
o0 _ Xii Ao
k = =T i
i=1 Pk

P"f (=l PL=pyl,
Py =51, PP = rel,
end
if merged # @ then
gidv _ AEP+0lE]

_k oo
P =L, P =ryl;
Pim ) — psr, PO = s
end

D A R (5.
compute fi'y, = [l jit, 1- Egs. (3)-(5);
compute the model output y; - Egs. (8), (9), (13);

% Type Reducer Estimation - (Algorithm 1),

s);

type_reducer_rls(y”, yl, "é,k’ uf_k, Py, P

%evolving Clustering procedure - (Algorithm 2)

eMG_clustering(z™, z*, 3, w, %o, ¥, Yo, k)

% Consequent estimation - (Algorithm 4);

[Ees1. Perr, O PLY P @) =

RESIAGK, yi, Ex, Pr, O, P P, 0, .00
Extract the local state-space matrices [A’, B, C', D] from

©"® and @i.()’);

% Type-2 parameter estimation - (Algorithm 3);
[Yis1: Prasil=
EKF(Yy, 2", Xk, yeo we, 2%, £, P 4, ¢, C, D, ©);

until ;| = 9
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Rule'=12¢R ; IF z; is Z!

I
Xpy1 = ARXp + BRrug

THEN 81

y, = Cixi + Diuy

where the (o) (subscript R) represents the real parameters
of the interval type-2 state-space neural-fuzzy model.

Let the batch computation of the output is given by
Yi = ERAL 4+ By (82)
where Y}; = [y;p 41 yf] U y}(] and Ey, is an error matrix.

Through Assumption 1 and considering ¢ = cg, substituting
Eq. (82) in Eq. (79), Eq. (78) is reformulated as follows:

. . o, oo i vi -1
=) = 2+ BLAYT [AA)] | (83)

where E;{ =E; f;( Let the following covariance matrix

k
; ciovi 1 o «T
= [Ak(Ak)T] - [k_q 3 sjaj} (84)
p j:qp
~ . s — T
where §; = /yj’.Sj = y;[u,{fqp ukT (y}(fqp)T] . Thus,
Eq. (83) is formulated as follows:

[x]

k
. . 1 o oT .
Els=CEg+ [Ze’ja }(Pﬁ;) ! (85)

k —
ap J=qp
In order to analyze the behavior of the LS solution for k —

00, it is appropriate to assume that ey is stationary stochastic
processes and uy is a quasi-stationary process, so that

k
1
P, = ;ukuth (86)

converges (with probability 1) when k — oo (see Ljung
1999), 1. e.,

lim P, =P, (87)
k— 00
.. T
Thus, analyzing P§ and [k—lq,, Z’;:qp é’jS ] when k — oo,
it has
lim P. — P} (88)
k—oo O
1 k T
<i 3! pi
oy ®
P J=4p
. i i
kli)ngo Pgé — Pj; (90)
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Fig.2 Industrial dryer data set: inputs

In other words, Pi converges (with probability 1) to I_’fg and

similarly, P._ converges (with probability 1) to Pae when
k — oo (see Ljung 1999). Thus, for k — oo, Eq. (85) is
given by

B¢ =Eh +P5(Py) ™! 91)
Hence, for the parametric estimation of the i-th submodel
to be convergent and consistent, i. e., E’L g = E’R when

k — o0, the following necessary conditions must be satisfied
(Ljung 1999):

Fg is nonsingular. It is satisfied if u; and e; must
be independent and u; must be persistently exciting,
with k sufficiently large;

e, is described by a white noise sequence. In this

(C.1):

(C.2):
case l_’;e = 0, because e, is not dependent of data
until time instant k — 1.

In consequence of (C.1), the activation degree must
be greater than zero, i. e., y; >0 Vi, Vj.

(C.3):

3.5 Issues on Stability of Estimation

Let recursive estimation of fuzzy Markov parameters is given
by Eq. (60):

=i i + vi _ :isi (Sl )TPi (92)
Skt = 2k T Yert T =%+ | k1) Frg

Considering (S;( _H)TP;; = G , Eq. (92) is reformulated

as follows:
. . o —i vl o .
Zhor = i+ [ — 2 | 6Ly ©93)
Reformulating Eq. (93), it has
CHRE S ES (5k+1)Gk+1) + 16 04

is introduced at time k¢, from
0
Eq. (94), the error propagation from instant ko to k + 1 is

given by

If a parametric error e
= ki

~ 06 95)

Based on Assumption 1 and ¢ = cg, the error propagation
proprieties are dependent on

k+1
ko k+ 1) =[] (1- (5]“)(;]“)
Jj=ko

(96)

Based on Eq. (58), the matrix P!, canbe expressed as follows:

1

[ Z py 8,8 } ©7)
J =qp
Thus, Eq. (96) is expressed as follows:
k—ko+1p 1
D ko, k+1) =B, PkO(Pk+1) (98)

Since (P )~! remains uniformly bounded and the forgetting
factor B, < 1,itcanbe stated that the effect of asingle errorin
recursive estimation given by Eq. (93) decays exponentially
(Ljung and Ljung 1985). Being g2 = 1,s0 P} (P))~! <1,
which means stability estimation.

4 Experimental Results
In this section, the efficiency and applicability of the pro-
posed methodology, according to the theoretical formulation

presented in Sect. 3, are discussed by the identification of
an industrial dryer (Chou and Maciejowski 1997; Santos and
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Fig.3 Industrial dryer data set: outputs
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Number of Rules
= &

v

0 . . . . . B . 4 . . .
0 100 200 300 400 500 600 10 0 100 200 300 400 500 600
Samples Samples
. . . . S (@) y1
Fig.4 Variation in the number of rules during the evolving identifica-
tion of the industrial dryer
4 T T T

—Plant 01£tput
- -Estimated output

Barreto 2018), which has three inputs (fuel flow rate u 1, hot
gas exhaust u and raw material u3) and three outputs (dry
bulb temperature y;, wet bulb temperature y, and moisture
content of the raw material when it leaves the dryer y3). The
industrial dryer receives the raw material continuously, and
the moisture in it is removed by passing hot gas. The effi-

ciency of this process depends on both the temperature and 4k ) ) ) ) ]
0 100 200 300 400 500 600

the rate of flow of the hot gas. Samo]

The experimental data set consists of 867 inputs and out- (:)I;lp ©
puts samples, as shown in Figs. 2 and 3, which are available Yz
at the database for the identification of systems (DaISy)1 5 i i i i i
repository. According to this repository, the physical units | —Plant output

. . . W 1 - -Estimated output
are omitted due to some pre-processing applied to data set. \ :: .
1

In order to represent the dynamic behavior of the industrial
dryer, it used an interval type-2 state-space TS neural-fuzzy 0
inference system, with the following generalized rule base:

Rule i : IF z; = [ug_1 yr_1]is Z*

THEN/ %+ =A™+ Blug
1

ST (99) 0 100 200 300 400 500 600
Yip3 = C'xp + D'y Samples
(©) y3

where the center of Z' is given by z;* = [w* | y;* 1.
Fig. 5 Performance of identification in training process for industrial
- dryer

1 See https://homes.esat kuleuven.be/~tokka/daisydata.html.
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Fig.6 Performance of interval type-2 neural-fuzzy model for industrial
dryer validation data set

The parametrization used for implementing the algo-
rithm of the proposed methodology is defined as follows:
my, = 0.9 (maximum value of lower membership func-

1.1 T T T T T
. y,l YT
f\/\/\ — U1 Uy
Y7 il
—v] —v
+— 1 3
y,l YT
Uy v3

09 =T s i

08 1 1 1 1 1 1 1
100 200 300 400 500 600 700
Samples
(a)
1.6 T T = — — ; =
—oup —u) gt —uy —ug —vy —u —vy
x,l x,r x,l x,r x,l z,r x,l z,r
14l —ug Uy —vg g vy —uy —ug —vg ||
. ,l Z,7 T z,r ,l z,r ,l z,r
Vg — Vg — Uy Vo — Uy —Vin Vi V2
y x,r x,l x,r
12l U3 Vi3 Uy Vi

100 200 300 400 500 600
Samples

(b)

Fig. 7 The recursive estimation of the parameters u;’[, v;.c’r [J=1n15

)1 v, N ),
uf and vj}. " of type reducer layer: a the parameters vjy and v'j‘- " are

used to compute the crisp outputs and b the parameters u}“l and v}""
are used to compute the crisp states

tion); A = 0.07 (probability of success); « = 1 x 1073
(clustering learning rate); T, = 0.77 (compatibility thresh-
old); w = 80 (clustering window size); o7 = 0.3 (initial
dispersion constant); oo = 1073 (initial degree of uncer-
tainty); n = 1072 (EKF learning rate); 8; = 1 (forgetting
factor—type reducer parameters); fo = 1 — 10~* (forget-
ting factor—Markov parameter estimation); 3 = 1 — 107°
(forgetting factor—[A’ B] estimation); 4 = 1 — 1076 (for-
getting factor—[C! D'] estimation); r; = 107> (constant
initialization of covariance matrix—state type reduction);
r» = 1073 (constant initialization of covariance matrix—
output type reduction); r3 = 20 (constant initialization of

Table 1 Comparative analysis according to RMSE values for validation of the obtained models based on the proposed methodology and the
methodologies proposed in Santos and Barreto (2018) (industrial dryer—MIMO system)

Models RMSE - y; (mean =+ std) RMSE - y; (mean = std) RMSE - y3 (mean =+ std)
FS-LSSVR 0.635+9.10 x 1073 0.179 £+ 4.50 x 103 0.458 +£7.40 x 1073
RFS-LSSVR 0.631 £ 1.02 x 1072 0.182 £4.60 x 1073 0.473 +£4.41 x 1073
R2FS-LSSVR 0.641 +8.02 x 1073 0.178 £2.79 x 1073 0.478 +5.90 x 1073
Proposed 0.484 +1.02 x 1077 0.089 = 1.07 x 10”7 0.646 + 1.51 x 1077

The better results are given in bold
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Fig.8 Variation in the eigenvalues of A’ |/=1>-16 during the training step, where it is observed that each submodel of the interval type-2 neural-fuzzy

model are stable, since the magnitude of the eigenvalues is less than 1
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Fig.8 continued
covariance matrix—EKF); r4 = 10* (constant initializa- [A B] estimation); r¢ = 10° (constant initialization of
tion of covariance matrix—Markov Parameters estimation); covariance matrix—[C D] estimation); g, = 13 (past win-
rs = 102 (constant initialization of covariance matrix—  dow size); gy = 6 (future window size); n = 13 (order of
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Fig. 9 Recursive estimation of y'|'=!~16 which represents the degrees of uncertainty associated with the membership functions of the interval
type-2 neural-fuzzy model for industrial dryer identification
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the system); S = [I"*" 0"*@r%/=™)]; and ¥ = 0 (constant
of initialization of consequent parameters). For this applica-
tion, the first 600 samples are used for online training and
the last 267 samples make up the experimental data set for
validation. At the beginning of online training step, type-2
neural-fuzzy model has no rules, i.e., the initial condition
used in the simulations considers that all parameters are set
up to zero and, after that, the knowledge base is estimated
from data stream.

The evolving procedure is illustrated in Fig. 4, where it can
be observed the variation in the number of rules. At sample
81, the condition A (Eq. 24) is satisfied and the second rule is
created; at sample 120, the third rule is created; at sample 135,
the fourth rule is created; the number of rule is 5 at sample
158; the number of rule is 6 at sample 203; the number of rule
is 10 at sample 288; the number of rule is 15 at sample 551;
the number of rule is 16 at sample 570; and finally, the interval
type-2 neural-fuzzy inference system has 17 rules. It can be
noted that the number of rules of the fuzzy model is changed
according to a new dynamic behavior of the industrial
dryer, i.e., the structure of the interval type-2 neural-fuzzy
inference system changes according to the data stream,
adaptively.

For evaluation of the proposed methodology, the following
quality measures are defined:

N
1
— 5,12
RMSE= | k§—l(yk ) (100)

where y is the plant output, y is the estimated output and N
is the size of the data set.

The estimation of the industrial dryer outputs y =
[¥1, y2, y3] performed in the training step is shown in Fig. 5,
and in the validation step is shown in Fig. 6. The compara-
tive analyses using RMSE criterion are shown in Table 1.
According to Table 1, some potentialities of the proposed
methodology are demonstrated, such as partition and repre-
sentation of the complex operating range of the industrial
dryer through the stable estimation (see Sect. 3.5) of local
MIMO linear dynamic models, where the nonlinearities and
uncertainties are represented by combination and definition
of the interval type-2 multivariable Gaussian membership
functions from a data stream, respectively. However, it is
observed a higher RMSE value for estimating the output y3.
The cause of that, compared to estimates of outputs y; and
y2, can be the high variability in the behavior of output ys3,
due possibly to noise, serving as a limiting factor for learning
procedures. This limitation can be overcome via instrumental
variables methods (Serra and Bottura 2007; Filho and Serra
2018), consisting in processing the uncorrelated noise from
the data stream, which will be considered for further works.
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The recursive estimation of the parameters v;’ , U;’r, v Jy

and v} of type reducer layer is shown in Fig 7, which were
used for performing the weighted sum between the lower and
upper limits of uncertainty region obtained in layer I'V.

The magnitude of eigenvalues computed from recursive
estimation of transition matrices A?|'=1-~16 in training step,
is shown in Fig. 8, whose behavior supports the assump-
tion that transition matrices are nilpotent, implying that each
submodel is stable, according to the theoretical foundations
presented in Sect. 3.2. Once the i -th state-space linear model
represents the linear dynamic behavior of the industrial
dryer in an operating point defined from each new sam-
ple, respectively, it can be concluded that, from the proposed
methodology, the efficiency of the obtained evolving interval
type-2 neural-fuzzy inference system, through the evolving
linear combination of state-space models in the consequence,
in tracking the nonlinearity inherent to the experimental data
set, recursively.

The estimation of vector 1/fi |i =L...16 which represents the
uncertainties on shape of i-th membership function, is shown
in Fig 9, where it is observed that the proposed methodology
estimates the uncertainty degree ¥’ from experimental data,
adjusting the footprint of uncertainty on the interval type-2
membership functions, adaptively.

According toFigs.7,8and9, i.e., considering the temporal
response of recursive estimation of the coefficients related
to type reducer, the eigenvalues of transition matrices and
coefficients related to degree of uncertainty, in general, the
numerical stability of the proposed approach can be inferred,
once their bounded behavior were guaranteed in processing
the experimental data, implying to important properties as
consistency and convergence (Mendel 1995).

5 Conclusions

In this paper, an approach to evolving type-2 neural-fuzzy
identification of multivariable dynamic systems was pro-
posed. Considering the experimental results, some aspects
were highlighted, such as adaptive fully data driven, once
the structure of the interval type-2 neural-fuzzy inference
system is changed according to the new behavior from exper-
imental data; robustness to outliers, once the interval type-2
fuzzy sets are estimated according to data stream, comput-
ing the uncertainty degree on the antecedent, adaptively; and
the parametric estimation are convergent and stable accord-
ing to conditions in Sects. 3.4 and 3.5. The computational
efficiency and applicability were justified by the following:

— The computation and processing of the Henkel matrix,
for each rule, as well as its decomposition into singular
values, were not necessary. This factor increases the exe-
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cution speed and reduces the storage cost, once that less
variables were used to estimate the consequent parame-
ters.

— The evolving methodology was initiated considering a
neural-fuzzy model without rules, so that all rules were
born from the data stream.

For further works, the use of QR decomposition with
Householder reflections to guarantee numerical robustness in
estimation of the Markov parameters and state-space matri-
ces, in order to overcome possible problems related to large
time of parametric convergence, as well as the use of instru-
mental variable methods for overcoming the high variability
of data stream due to presence of noise, are of particular
interest.
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