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Abstract

This paper investigates the problem of multi-robot exploration in unknown environment situations. In order to build a coherent
representation of the environment, a decentralized coordination approach is proposed to minimize the exploration time while
considering the total motion energy saving of the mobile robots. The exploration target is defined as a segment of the
environment including the frontiers between the unknown and the explored areas. Each robot evaluates its relative rank
among the other robots of the team regarding energy consumption to reach this exploration target. As a result, the robot is
assigned to the segment for which it has the lowest rank. An implementation on real robots and tests in simulation as well
as a comparison with some existing approaches have been performed. The obtained results demonstrate the validity and the
efficiency of the proposed method.

Keywords Autonomous exploration - Multi-robot coordination - Multi-robot task allocation - Distributed robot systems -

Mobile robot teams

1 Introduction

One of the most challenging problems of autonomous mobile
robotics is the exploration of unknown areas using multiple
robots. The main idea behind the multi-robot exploration
problem is to coordinate the actions of robots to obtain
the greatest amount of information while reducing the time
needed to completely build a map of the environment. For this
reason, multi-robot exploration algorithms become neces-
sary in many real-world situations like oceanic and planetary
exploration (Ropero et al. 2019), or simply applications such
as cleaning (Altshuler et al. 2018).

This paper is designed to investigate a new approach in
order to coordinate a team of mobile robots for reducing both
the overall exploration time and the total motion energy con-
sumption of robots; specifically to explore as many unknown
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areas of the environment as possible. The use of a multi-robot
system is motivated by its ability to perform rapidly complex
tasks while being more tolerant to the failure or loss of robots.
However, the challenge is the choice of an appropriate coor-
dination strategy that assigns each robot to a specific target
while reducing the risk of collision between members of the
team.

As solutions to the multi-robot exploration problem,
Yamauchi (1998) proposed a decentralized coordination
approach in which each robot moves to the closest frontier
defined as the limit between uncharted and explored accessi-
ble areas. The drawback is that some robots may waste time
by navigating to the same frontier. In order to avoid redun-
dant work, Zlot et al. (2002) presented a method based on a
market economy that guides the exploration process. In this
approach, the potential targets are provided by the robots
which negotiate their assignments to them. This auction-
based coordination strategy was extended by Hawley and
Butler (2013) for coalition formation when the number of
robots is more than the exploration targets.

Burgard et al. (2005) performed an approach that explic-
itly coordinates the robots by considering the estimated path
cost to reach a frontier while evaluating its utility corre-
sponding to the expected gain in information from it. Their
work also considers the problem of limited communication
between robots. In the context of simultaneous localization
and mapping (SLAM) (Dissanayake et al. 2001), Stachniss
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et al. (2005) used a Rao-Blackwellized particle filter (RBPF)
to present a strategy in which the next locations to visit are
selected in order to maximize the size of the explored area
while minimizing the uncertainty on the map as well as that
on the robot location. In order to improve the overall per-
formance, later approaches considered the use of semantic
information for allocating robots to the appropriate targets
(Calisi et al. 2009; Li et al. 2016). Some recent work has
leveraged distributed inference techniques to coordinate the
exploration using visual features (Strom et al. 2015) or sim-
ulated laser scans (Smith and Hollinger 2018).

Regarding the cooperation between heterogeneous robots,
Wurm et al. (2013) applied a temporal symbolic planning
approach to coordinate heterogeneous teams of robots in
exploration and transport tasks. Their work was an exten-
sion to the one in which the path planning for exploration
using marsupial robots was investigated (Wurm et al. 2010).

Alternative coordination strategies exploited techniques
based on the segmentation of the environment. Wurm et al.
(2008) divided the map into segments using a Voronoi
graph (VG) (Beeson et al. 2005). These segments repre-
sent individual rooms or parts of a large corridor. The
assignment of robots to the segments is done by apply-
ing a Hungarian method. The approach presented by Puig
et al. (2011) used the K-means algorithm to obtain the same
number of segments as the robots used for the exploration.
Even if these segmentation-based approaches significantly
reduce the exploration time compared to the frontier-based
approaches, their performance is limited to environments that
can be divided into reasonably large and separated segments.
Otherwise, if the environments are small and crowded with
large teams of robots, other methods could generate better
results.

This is the case of Bautin et al. (2012) who have pro-
posed a new algorithm so-called MinPos (for Minimum
Positions) based on the frontier concept. This approach takes
into account the rank of the robot toward its target, which is
defined as the number of robots closer to the frontier than
the considered one. The rank is evaluated on the basis of the
path distance needed for the robot to reach the frontier. The
advantage of this approach is its ability to separate the robots
in different directions which allows covering effectively the
environment and so that reducing the overall exploration
time. However, in the very distinct situations where sev-
eral robots have the same rank toward the same target, the
algorithm introduces redundancy in the assignment of robots
caused mainly by the limited communication between them.
In this context, significant efforts focused on multi-robot
exploration under communication constraints (Amigoni et al.
2017). Nestmeyer et al. (2017) presented a role-based dis-
tributed algorithm able to guarantee the exploration task
by multiple robots while maintaining a continuous connec-
tion between them. Otte (2018) demonstrated the ability to
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train a collective neural network across a swarm of robots
with limited communication. Recently, Amigoni et al. (2019)
presented a multi-robot system that learns and updates a
communication graph in order to improve the exploration of
unknown environments considering connectivity constraints.
Additionally, Otte et al. (2019) compared several auction
algorithms considering unreliable communication.

The approaches discussed above typically use the distance
to each exploration target and its expected information gain
to assign the robots without considering their energy state.
Indeed, even if a robot is closest to an exploration target, this
does not guarantee its ability to reach it. As a result, some
robots of the team may stop exploring their environment due
to lack of energy and could be left with empty batteries in
the field. From another point of view, reducing the motion
energy consumption of robots keeps them running as long as
possible to cover more unknown areas, which is relevant for
an exploration task.

The contribution of this paper is a new coordination
approach that uses the segmentation of the already explored
area (Wurm et al. 2008) and introduces the energy state and
consumption of each individual robot as the main criterion
for their assignment to their exploration target. The latter is
defined as a segment of the environment including the fron-
tiers between the unknown and explored areas. The proposed
assignment strategy takes into account the rank of a robot
toward a target (Bautin et al. 2012), which is defined as the
number of robots that should consume less energy to reach
this target.

This work is an improved version of the one previously
presented in Benkrid et al. (2016) by using an energy-efficient
motion planner! to compute the energy consumption needed
to the robot for reaching the selected exploration target, as
well as to generate the path between them. In addition to
the simulation experiments, the implementation and tests on
real robots show that the proposed approach distributes effec-
tively the robots over the unknown areas allowing to explore
wider environments compared to the existing approaches
while maintaining a high performance in terms of reducing
the overall exploration time.

The remainder of this paper is outlined as follows. Section
2 contains some preliminaries while introducing the problem
posed by the exploration of unknown environments using
multiple robots. In Sect. 3, we present our coordination strat-
egy based on the motion energy consumption for a team of
mobile robots. In addition to the real-world experiments, we
compare in Sect. 4 the performance of the proposed approach
to some existing methods through a series of experiments
carried out in simulation. Section 5 is a conclusion.

1 Which explicitly takes into account the energy consumption of the
robot rotation.
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2 Preliminaries and Problem Formulation

In the present work, we consider the environment to explore
as a finite space in which multiple homogeneous robots are
deployed, each of them is equipped with sensors that allow
building a local map and localizing the robot in it using a
SLAM algorithm. To limit the extent of the problem, we
consider that all robots can communicate among themselves
wherever they are. In addition, the produced map is repre-
sented by an occupancy grid in which the targets to explore
are identified. Thus, we focus in this paper on the coordina-
tion of robots by giving each of them the appropriate target to
reach considering its energy state and consumption in order to
explore the environment within a minimal time while reduc-
ing the total motion energy consumption of the robot team.

The distribution of the robots over the targets can be con-
sidered as an optimization problem where the number of
possible assignments is equal to the number of permuta-
tions without repetition. Considering the fact that solving this
problem optimally is intractable for large teams of robots, we
propose a new distributed approach that deals with the fol-
lowing criteria:

e During the exploration process, new targets can poten-
tially be discovered. Therefore, no robot should be left
without an assignment.

e The deployment of robots in the environment consists of
assigning to each robot from the team a specific target to
explore.

e Regardless of their number, the robots used for the explo-
ration should be distributed in different directions toward
the targets for covering a maximum of unknown areas.

e The distribution of robots over the targets involves con-
sidering the energy ability of each robot to reach its
assigned exploration target and return to the starting point
of the exploration task, from where it can be recovered.

e The total energy consumed during the exploration is the
sum of the energies consumed by the members of the
robot team to reach the set of targets. The optimization
problem is, therefore, the minimization of the energy con-
sumption of each robot of the team to reach a target.

e The time for all assigned targets to be explored is deter-
mined by the maximum exploration time among all
targets (Bautin et al. 2012).

e Since no information about what is behind the targets
is available, the impact of a given assignment on the
global system performance cannot be determined. There-
fore, the assignment process must be performed in each
iteration or extension of the map representing the envi-
ronment.

3 Proposed Coordination Approach
3.1 Robot’s Motion Energy Consumption

For an exploration task, a mobile robot has limited energy
needed for different uses such as motion, communication,
sensing and computation. As the motion is the major con-
sumer of the robot’s energy (Yan and Mostofi 2013), saving
the motion energy of mobile robots allows covering more
unknown areas.

In our study, an energy-efficient motion planner detailed in
Mei et al. (2006) is used to find the path allowing each robot
of the team to reach an exploration target with the lowest
energy consumption. In order to compute the robot’s motion
energy consumption, a directed graph is generated from the
grid cell map by considering the free cells as vertices. Each
vertex of the graph should represent the robot’s state includ-
ing both location and direction. All neighboring vertices are
connected by edges, each edge between two vertices has a
weight representing the robot’s energy consumption to move
from one state to another. If the robot’s direction changes
between the states, its energy consumption for stops and turns
is considered. Thereby, the energy-efficient motion planner
attempts to find the energy-efficient path for which there is
a minimum of edges and changes of direction between the
states.

During the exploration process, each robot of the team
computes its energy consumption to reach the target using
the energy-efficient motion planner cited above. Thus, the
motion energy consumption Ec; of a robot r from a starting
point A to the desired point B is the energy needed for travel-
ing the energy-efficient path connecting A to B. Considering
that the latter consists of N edges and K states where the
robot has to change its direction, the robot motion energy
consumption Ec; is thus given by

N K

Ec, = Z Ecedge,- + Z (ECstop + EC@j) > (1)
i—1 =1

where Eceqge, is the weight of the i-th edge and represents
the energy needed for the robot to move between two states,
Ecgtop is the energy needed for the robot to stop at the j-th
state and Ecg; is the energy needed for the robot to turn at
the same state with an angle 6;.

In order to consider the robot’s ability to explore its envi-
ronment, the energy remaining in its battery Eb; is compared
with the sum of the energy consumed to reach the target Ec’
and that needed to return toward the starting position EcS". If

2 Their work has been applied to a single robot and extended in this
paper to multi-robot exploration tasks.
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this sum is greater, a new energy consumption’ is used. The
latter is defined as

Ec! if Ect + Ec®" < Eb
T e @)
oo otherwise

Thus, considering the case where the energy stored in the
battery of arobotis less than its expected energy consumption
to reach the target and return to the starting position, this
robot will not be considered at the assignment of robots to
the targets and should return to the starting position in order
to be recovered.

3.2 Robots Assignment Strategy

Our multi-robot coordination strategy aims to reduce both
the overall exploration time and the total motion energy con-
sumption of robots to cover a maximum number of accessible
areas in an unknown environment. For this purpose, the pro-
posed method uses an assignment algorithm based on the
motion energy consumption of each robot to compute its
rank toward an exploration target. This rank represents the
number of robots that can consume less energy to reach a
target than the considered one. As a consequence, each robot
is assigned to the target for which it has the lowest rank. Con-
sidering P,; the rank of a robot r from the set of all robots R
toward a target ¢ from the set of targets T such as:

P,; = Card(R"), 3)

where R’ is a subset of R including all robots r’ # r for which
their energy consumption Ec!, needed to reach a target 7 is
less than the energy consumption Ec! of the robot r to reach
the same target ¢.

Using the notion of rank, algorithm 1 allows an appro-
priate target ¢’ to be assigned to a specific robot r, based
on its motion energy consumption. This algorithm improves
the spatial distribution of robots in the environment to be
explored by separating them in different directions toward
the targets. Furthermore, this algorithm has low complexity
[O(NM’) with N: number of robots and M’ number of tar-
gets (Bautin et al. 2012)], allowing it to be used with robots
which are limited in their computational capabilities.

During an exploration task, each of the team’s robots
repeatedly and independently performs the following steps:
first, it shares its position, the energy remaining in its bat-
tery and its local map built from its perceptions and merged
with the broadcasted maps of the other robots. The gener-
ated partial map of the environment is then segmented to a
set S of segments following the method described in Wurm

3 This energy consumption will be used to assign the robots to their
appropriate exploration targets.
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Algorithm 1: Motion Energy Consumption-Based Tar-
get Assignment

Require: The robot r € R to be assigned and the matrix of
motion energy consumption E CITe
1 foreach r € T do calculate P,;;
2 Assign the robot r to the appropriate target ¢’ with:
t'e T At =argmin(Py) ;
VieT
3 if there is equality then choose a target for which the motion
energy consumption is minimum among arg min(Py;);
Return : The assignment of robot r to the target ¢’

et al. (2008). This map is also used to identify the sets of
frontiers Fy which are affiliated to the segments that include
them. Thus, the motion energy consumption matrix che is
calculated using the positions of all robots and their energy
autonomy. This matrix holds the expected energy consump-
tion Ec] of each robot r of the team R to reach the closest
frontier included in each segment s from the set S. Consider-
ing the situation in which a robot is already in a segment, its
motion energy consumption is reduced by a constant factor
B* in order to keep it in its assigned segment until the total
exploration of the latter. The motion energy consumption
matrix che is then used to assign the specific robot r’ to the
appropriate segment s’ using algorithm 1. This algorithm is
also used to assign the same robot ' to the appropriate fron-
tier f;, inside the previously determined segments s’ using

the motion energy consumption matrix Ec;“ calculated from
each robot r to reach all the frontiers fi included in this seg-
ment. All the steps previously cited for the target assignment
are summarized in Algorithm 2.

4 Experimental Results

4.1 Simulation Experiments

In order to evaluate our approach over previous techniques,
some simulation experiments have been performed on MAT-
LAB software using Robotics Toolbox from Corke (2011).
Figure 1 depicts two maps of a real office environment used
for the simulations, the first map represents its structured and
large configuration without any fitting out (see Fig. 1a) unlike
the second map which refers to the same environment clut-
tered with objects and obstacles (see Fig. 1b). The state space
is discretized using an occupancy grid based representation,
each cell of this grid is considered as a unit that can be clas-
sified in one of the following states: free (for explored cell
cleared from obstacle); occupied (for explored cell occupied

4 The experiments showed that the value of 8 should be within the
interval [0.3, 0.7].
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Algorithm 2: Energy Based Multi-Robot Exploration

1 Determine the set of map segments S ;

2 Determine the set of frontiers Fy for each segment s € S;
3 Set the matrix of motion energy consumption £ cfz to 0;
4 foreach r € R do

5 foreach s € S do

6 Compute the motion energy consumption Ec; ;

7 if the robot r is already in the segment s then Reduce
Ec} according to Ec} < BEc);

8 Update Ec‘fe according to: Eclse (r,s) < Ec};

9 Assign the determined robot ” € R to the appropriate segment
s’ € S using Algorithm 1 ;

—
e

. . . Fy
Set the matrix of motion energy consumption Ecj" to 0;
foreach r € R do

foreach fy € Fy do

13 L Compute the motion energy consumption Ec;*’ ;
fy.
.

s

—-
N =

Update Ec;"' according to: Ec;"" (r, fy) < Ec

—
-

15 Assign the determined robot r” € R to the appropriate frontier
fl, € Fy using Algorithm 1 ;

mmmg Sine
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-
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paths
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positions

AAAA Final

positions

—
—— Exploration u
—— paths

(b) The crowded configuration

Fig.1 The simulated environment with the starting and final positions
as well as the exploration paths (successive assignments) of four robots
using our coordination approach

by obstacle); unknown (for unexplored cell) and frontier

(for explored free cell neighboring of an unknown cell).
The simulated robots are assumed to be identical, and their

dimension is set as the size of a grid cell. Based on the energy

measurements taken from our mobile robots used in the real-
world experiments, the following values were used in the
simulation tests: for one unit of distance, each robot con-
sumes 1.14 unit of energy; the energy consumption for v/2
unit of distance is fixed to 1.56 unit; each stop consumes 0.75
unit of energy; a turn of 45° takes 0.55 unit of energy; turns
of 90°, 135°, 180° take, respectively, 0.85, 1.15, 1.35 unit of
energy. Furthermore, we can assume that all robots use sen-
sors that allow them to scan their neighborhood at 360° field
of view with a parameterized range fixed in our experimen-
tal simulation to 5 units.” The inaccuracies during the robot
localization and the map generation are not considered. The
position of each robot is shared with the energy remaining
in its battery as well as its local generated map to the other
robots through a simulated communication network covering
all areas of the environment.

Regarding the reduction of the overall exploration time
and the total motion energy consumption of robots, the
proposed coordination approach is compared to three differ-
ent methods®: the nearest frontier introduced by Yamauchi
(1998), the cost-utility based approach performed by Burgard
et al. (2005) and MinPos algorithm proposed by Bautin et al.
(2012). In order to eliminate influences from the segmen-
tation technique on our coordination method, the segmented
maps of the simulated environment are supposed to be given.

In the first part of our study, we supposed unlimited energy
for all robots of the team. For each coordination strategy,
we performed several experiments while varying the size of
the simulated team from two to ten robots with the same
random starting position. The objective was to compare the
exploration time needed to cover all unknown areas of the
environment. Figure2 presents the results (provided in sim-
ulation steps) according to the map of the environment used
for the simulation. These results represent an average of 50
runs of each method with a given amount of robots. The error
bars in the plots indicate 95% confidence intervals.

According to the results, the proposed coordination
approach may allow exploring the structured and large con-
figuration of the environment in less time compared to the
three other methods, regardless of the number of robots used
for the exploration (see Fig. 2a). This performance is justi-
fied by the use of the segmentation technique that divides the
environment into separate regions representing the segments
as targets for the robots assignment. In the crowded configu-
ration of the environment, the performance of our approach
decreases significantly but remains slightly better than the
three other methods, regardless of the number of robots (see
Fig. 2b). This small advantage is mainly due to the use of
the energy-efficient motion planner that allows finding the

> This value is approximately derived from the range measurement of
the Kinect sensor used for the real-world experiments.

6 These approaches are purely distance-based for robot assignment.
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Fig. 2 Exploration results according to the configuration of the simu-
lated environment

energy-efficient paths with a minimum of stops and turns for
the robots.

The second part of our study was carried out to compare
the motion energy consumption of the robot team using each
of the four coordination approaches in our simulation exper-
iments. The energy stored in the batteries of the robots has
been initially fixed.” The aim was that none of the coordina-
tion methods should allow to fully exploring the simulated
environment. At the end of the exploration process (when all
the robots have consumed the energy stored in their batteries),
we measured in percentage the surface of the environment
explored by the robots. Figure 3 shows the results that repre-
sent an average of 50 runs of each method with a given size
of the simulated team (which has been varied from two to six
robots for the two configurations of the environment). The
error bars in the plots indicate the 95% confidence level.

The main observation that can be made is the efficiency
of our coordination approach to cover more unknown areas
and thus to reduce the total motion energy consumption of
robots compared to the three other methods in the two con-

7 This energy varies from one robot to another, the rate of variation can
reach 15%.
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Robots number

(b) The crowded configuration

Fig. 3 Percentage of explored areas according to the configuration of
the simulated environment

figurations of the simulated environment. In addition, we can
observe the impact of the segmentation technique on the per-
formance of our coordination approach. The latter is less
effective in the crowded configuration of the environment
where the segmentation of the map has little effects.

In order to show the benefit of the proposed approach
regarding the total motion energy saving of the robot team, a
third part of the simulation experiments was carried out. The
number of robots used to explore the simulated environment
was fixed to four.® The objective was to measure the pro-
portion of the explored area according to the energy stored
in the batteries of the robots. This available energy repre-
sents, respectively, 25%, 50% and 75% of the total energy
needed to fully explore the simulated environment. As shown
in Fig. 4, the results are given as a percentage and represent
an average of 50 runs of each exploration algorithm. The 95%
confidence level is indicated by the error bars in the plots.

For each configuration of the simulated environment, the
proposed strategy can significantly outperforms the three
other methods, especially for a high level of available energy

8 The significant results were obtained with four robots for all simulated
environments.
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Fig.4 Proportion of the area explored according to the energy available
in the robots batteries and the configuration of the simulated environ-
ment

where the difference between the proportions of the explored
areas is approximately 30% more important. These last
results strengthen the observation previously done about
the ability of our coordination approach to reduce the total
motion energy consumption of the robot team which allows
exploring more unknown areas.

These last results are justified by the combination of the
segmentation technique and the minimum position algorithm
based on the motion energy consumed by the robots. The
latter are separated in different directions toward the targets
following the path determined by the energy-efficient motion
planner.

4.2 Real Robots Experiments

The evaluation of our coordination strategy in the real-world
experiments has been conducted on two mobile robots specif-
ically designed and built for this study. Each of them uses a
National Instruments robot (i.e., NI Robotics Starter Kit 2)
as a platform featuring sensors, motors and NI Single-Board
RIO hardware for embedded control. In the context of navi-
gation and mapping, a Kinect sensor was mounted on the top

Fig.5 Front view of the integrated robots used for the real-world exper-
iments

of the platform and used as a 2D laser scanner by convert-
ing the Kinect’s 3D depth into 2D laser scan-like data based
on the technique proposed by Kamarudin et al. (2013). Each
platform of both mobile robots has been also connected to
a Netbook (embedded on it) using an Ethernet cable. This
Netbook consists of a 2.16 GHz Intel Celeron N2840 and 4
GB random access memory (RAM), the whole powered by a
4-cell lithium-prismatic battery. Figure 5 shows a front view
of the mobile robots.

As far as the software components are concerned, the Win-
dows 7 operating system was used as a host with Ubuntu
12.04 installed in a virtual machine on each Netbook. The
LabVIEW program running on Windows collected the data
from the NI platform and allowed calculating the odome-
try of the robot as well as evaluating the charge state of its
battery. The results were sent, with the scan data obtained
from the Kinect sensor, to the SLAM algorithm (Gmapping’
developed by Grisetti et al. (2007)) running on the Robot
Operating System (ROS'?) in a Linux virtual machine. The
resulting map was merged with the local map of the other
robot shared with its position and energy remaining in its
battery!! through wireless communication.'? The generated
global map was then used by the exploration algorithms for
assigning the determined robot to the appropriate target. The
communication between the host (i.e., Windows 7) and ROS
was assured by the ROSBridge and the TCP/IP protocol.

The first experiment with the two mobile robots was car-
ried out to prove the ability of our coordination approach in
order to cover all unknown areas of the environment. The
goal of the experiment was to explore two adjacent office
rooms connected by a long corridor leading to a hall. The
map segmentation technique was used so that each distinct

9 http://wiki.ros.org/gmapping.
10" http://www.ros.org/wiki/.

I The charge state of the batteries was only used by our exploration
algorithm.

12 Wireless routers were used for covering all areas of the environment
where the experiments were achieved.
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(b) Resulting map of the real world experiment including the
trajectories of the two individual robots

Fig. 6 Coordinated exploration by a team of two mobile robots in a
real-world experiment

part of the environment (the corridor, the office rooms, and
the hall) is considered as a segment to explore. Figure 6a
depicts the two mobile robots during their exploration mis-
sion, while Fig.6b shows their combined map'® resulting
from the exploration of this part of the environment which
has a size of approximately 35mx 51 m. The robots trajec-
tories are also represented on the map.

As can be seen, both robots start to explore their envi-
ronment from the same position in the corridor. Once they
arrive in the first office room, the robots separate. One of
them keeps exploring all the corridor'# until reaching the
hall (see the green trajectory in Fig.6b), while the second
robot successively explores the two adjacent office rooms
(see the red trajectory in Fig. 6b). This demonstrates the abil-
ity of our coordination approach to distribute the robots over
an unknown environment in order to explore it.

The second experiment with the two mobile robots was
conducted to evaluate the impact of the map segmentation
technique on our coordination approach. In this framework,
the two mobile robots were redeployed considering the fron-
tiers between the unknown and the explored accessible areas

13 Note that the inaccuracy of the map is mainly due to the limited field
of view and range of the Kinect’s depth sensor.

14 Which is considered as a segment that must be completely explored
by the robot.
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Fig. 7 Resulting maps with the robots trajectories obtained using the
proposed coordination approach without the map segmentation tech-
nique

Table 1 Overall exploration time and percentage of the total energy
consumed by the robot team in the two experiments

Results First experiment ~ Second experiment
Exploration time (s) 215 405
Total energy consumed (%) 31 53

as the targets to explore. Figure 7 shows the resulting maps
with the robots trajectories generated from the exploration
process.

Despite the similarity of the maps between the second and
the third experiment, the behavior of the two mobile robots
during the exploration process seems completely different
(see Figs. 6b and 7). Indeed, using our coordination approach
without the map segmentation technique, the robots begin to
discover the corridor which they leave for exploring sep-
arately the two adjacent office rooms. Once explored, the
robots meet to discover the rest of the corridor that leads to
the hall (see Fig.7). It is interesting to note that during the
exploration of this last part of the environment, a problem
of obstruction between the robots'> has frequently occurred.
This distribution of the robots in the environment is not effi-
cient in reducing the overall exploration time and the total
motion energy consumption of the robot team compared to
the use of our coordination approach considering the map
segmentation technique. This ascertainment is confirmed by
the results reported in Table I which represent the overall
exploration time and the rate of the total motion energy con-
sumed by the robot team during the two experiments.

In order to validate the simulation results shown in
Sect. 4.1 (Simulation experiments), several real-world exper-
iments were conducted with the two mobile robots in the
same environment previously used. The aim was to com-
pare the performance of the proposed approach to reduce the
overall exploration time and the total energy consumption
of the robot team with the three other methods previously

15 Where one robot’s path is blocked by another.



Journal of Control, Automation and Electrical Systems (2019) 30:911-920

919

700

600
500
400
300
200
100

0

Algorithm used for the exploration

B Nearest Frontier based coordination
W Cost-Utility based coordination

1 Minimum Position based coordination

W Energy Consumption based coordination

Overall exploration time (seconds)

Fig. 8 Overall exploration time of the robot team in the real-world
experiment

100 B Nearest Frontier based coordination

90

80
70
60
40
30
20
10

0

Algorithm used for the exploration

W Cost-Utility based coordination
i Minimum Position based coordination

B Energy Consumption based coordination

Total energy consumption (%)
w
o

Fig. 9 Percentage of the total energy consumed by the robot team in
the real-world experiment

cited which are: the nearest frontier introduced by Yamauchi
(1998); the cost-utility-based approach performed by Bur-
gard et al. (2005); and MinPos algorithm proposed by Bautin
etal. (2012).

Figures 8 and 9, respectively, show the overall exploration
time and the total motion energy consumption of the robot
team for all four exploration algorithms. The observation that
can be made is the efficiency of our coordination approach
to reduce both the exploration time and the motion energy
consumption of the two robots compared to the three other
methods. These results can be justified by the behavior of the
two mobile robots during the exploration process. Indeed, for
the cost-utility based approach and the MinPos algorithm, the
two robots have approximately the same trajectories as those
shown in Fig. 7.

5 Conclusion

The central question addressed in this paper is how to dis-
tribute and coordinate a team of mobile robots to ensure an
energy-efficient exploration of an unknown environment. For
this purpose, a novel approach has been suggested which

splits the generated partial map of the environment into dif-
ferent segments, each of which contains one or more frontiers
that are the final targets to explore. Based on the motion
energy consumption of robots and the remaining energy in
their batteries, the coordination is achieved in two phases.
Initially, each robot is assigned to the segment for which it
has the lowest rank. This rank is defined as the number of
robots that can consume less energy to reach the segment
than the evaluated one. In a similar way, once the robot has
reached the segment, it moves to the next frontier within
the segment that minimizes the motion energy consumption.
Since the communication between robots is limited to shar-
ing their position and local maps as well as their remaining
energy, the decision about which target to visit is indepen-
dently made, which could make our approach robust despite
the loss of communication between robots.

In addition to the simulation runs, the implementation and
tests of the proposed coordination strategy on real robots
demonstrate its efficiency to reduce the total motion energy
consumption of robots and thus to cover more unknown
areas of the environment compared to the nearest frontier
assignment, the cost-utility-based method and the MinPos
algorithm. Regarding the minimization of the overall explo-
ration time, our approach is significantly more efficient in the
large and structured environments than the three other meth-
ods previously mentioned. This performance is mainly due to
the segmentation of the environment and the notion of robot’s
rank that allow separating the robots in different directions
toward the segments. In the crowded configuration of the
environment where we cannot benefit from using the map
segmentation, the performance of our assignment approach
decreases but remains slightly better than the MinPos algo-
rithm and the cost-utility-based method. This last result can
be explained by the use of an energy-efficient motion planner
that allows finding the energy-efficient paths with a minimum
of stops and turns for the robots.

References

Altshuler, Y., Pentland, A., & Bruckstein, A. M. (2018). Coopera-
tive “swarm cleaning” of stationary domains (pp. 15-49). Cham:
Springer. https://doi.org/10.1007/978-3-319-63604-7_2.

Amigoni, F, Banfi, J., & Basilico, N. (2017). Multirobot exploration
of communication-restricted environments: A survey. I[EEFE Intel-
ligent Systems, 32(6), 48-57. https://doi.org/10.1109/MIS.2017.
4531226.

Amigoni, F.,, Banfi, J., Basilico, N., Rekleitis, 1., & Quattrini Li, A.
(2019). Online update of communication maps for exploring mul-
tirobot systems under connectivity constraints. In N. Correll, M.
Schwager, & M. Otte (Eds.), Distributed Autonomous Robotic Sys-
tems (pp. 513-526). Cham: Springer.

Bautin, A., Simonin, O., & Charpillet, F. (2012). Minpos: A novel
frontier allocation algorithm for multi-robot exploration. In: Su,
C. Y, Rakheja, S., Liu, H. (eds) 5th International Confer-
ence on Intelligent Robotics and Applications-ICIRA (Vol. 7507,

@ Springer


https://doi.org/10.1007/978-3-319-63604-7_2
https://doi.org/10.1109/MIS.2017.4531226
https://doi.org/10.1109/MIS.2017.4531226

920

Journal of Control, Automation and Electrical Systems (2019) 30:911-920

pp- 496-508). Montréal: Springer https://doi.org/10.1007/978-
3-642-33515-0_49, http://hal.inria.fr/hal-00757960, the original
publication is available at www.springerlink.com.

Beeson, P, Jong, N. K., & Kuipers, B. (2005). Towards autonomous
topological place detection using the extended voronoi graph.
In Proceedings of the IEEE international conference on robotics
and automation-ICRA (pp. 4373-4379). https://doi.org/10.1109/
ROBOT.2005.1570793.

Benkrid, A., Benallegue, A., & Achour, N. (2016). Robot’s energy con-
sumption based multi-robot exploration strategy. In Proceedings
of the IEEE international conference on robotics and biomimetics
(ROBIO), Qingdao, China (pp. 1129-1134).

Burgard, W., Moors, M., Stachniss, C., & Schneider, F. E. (2005). Coor-
dinated multi-robot exploration. IEEE Transactions on Robotics,
21(3), 376-386. https://doi.org/10.1109/TR0O.2004.839232.

Calisi, D., locchi, L., Nardi, D., Randelli, G., & Ziparo, V. A.
(2009). Improving search and rescue using contextual informa-
tion. Advanced Robotics, 23(9), 1199-1216. https://doi.org/10.
1163/156855309X452539.

Corke, P. (2011). Robotics, vision and control: Fundamental algorithms
in Matlab, Springer tracts in advanced robotics, vol 73. Berlin:
Springer. http://opac.inria.fr/record=b1133311, mention sur la p.
de titre: With 393 images, Additional material is provided at www.
petercorke.com/RVC.

Dissanayake, M. W. M. G., Newman, P., Clark, S., Durrant-Whyte, H.
F., & Csorba, M. (2001). A solution to the simultaneous local-
ization and map building (slam) problem. IEEE Transactions
on Robotics and Automation, 17(3), 229-241. https://doi.org/10.
1109/70.938381.

Grisetti, G., Stachniss, C., & Burgard, W. (2007). Improved techniques
for grid mapping with rao-blackwellized particle filters. /EEE
Transactions on Robotics, 23(1), 34-46. https://doi.org/10.1109/
TRO.2006.889486.

Hawley, J., & Butler, Z. (2013). Hierarchical distributed task alloca-
tion for multi-robot exploration (pp. 445-458). Berlin: Springer.
https://doi.org/10.1007/978-3-642-32723-0_32.

Kamarudin, K., Mamduh, S. M., Shakaff, A. Y. M., Saad, S. M., Zakaria,
A., Abdullah, A. H., & Kamarudin, L. M. (2013). Method to con-
vert kinect’s 3d depth data to a 2d map for indoor slam. In 2013
IEEE 9th international colloquium on signal processing and its
applications (pp. 247-251). https://doi.org/10.1109/CSPA.2013.
6530050

Li, A. Q., Cipolleschi, R., Giusto, M., & Amigoni, F. (2016). A
semantically-informed multirobot system for exploration of rele-
vant areas in search and rescue settings. Autonomous Robots,40(4),
581-597. https://doi.org/10.1007/s10514-015-9480-x.

Mei, Y., Lu, Y. H,, Lee, C. S. G, & Hu, Y. C. (2006). Energy-efficient
mobile robot exploration. In Proceedings 2006 IEEE international
conference on robotics and automation, 2006. ICRA 2006 (pp.
505-511). https://doi.org/10.1109/ROBOT.2006.1641761.

Nestmeyer, T., Giordano, P. R., Biilthoff, H. H., & Franchi, A. (2017).
Decentralized simultaneous multi-target exploration using a con-
nected network of multiple robots. Autonomous Robots, 41(4),
989-1011.

Otte, M. (2018). An emergent group mind across a swarm of robots:
Collective cognition and distributed sensing via a shared wireless
neural network. The International Journal of Robotics Research,
37(9), 1017-1061. https://doi.org/10.1177/0278364918779704.

@ Springer

Otte, M., Kuhlman, M. J., & Sofge, D. (2019). Auctions for
multi-robot task allocation in communication limited environ-
ments. Autonomous Robots,. https://doi.org/10.1007/s10514-019-
09828-5.

Puig, D., Garcia, M., & Wu, L. (2011). A new global optimization
strategy for coordinated multi-robot exploration: Development and
comparative evaluation. Robotics and Autonomous Systems, 59(9),
635-653. https://doi.org/10.1016/j.robot.2011.05.004.

Ropero, F., Muiioz, P., & R-Moreno, M. D. (2019). Terra: A path plan-
ning algorithm for cooperative ugv-uav exploration. Engineering
Applications of Artificial Intelligence, 78, 260-272. https://doi.
org/10.1016/j.engappai.2018.11.008.

Smith, A. J., & Hollinger, G. A. (2018). Distributed inference-based
multi-robot exploration. Autonomous Robots, 42(8), 1651-1668.
https://doi.org/10.1007/s10514-018-9708-7.

Stachniss, C., Grisetti, G., & Burgard, W. (2005). Information gain-
based exploration using rao-blackwellized particle filters. In Pro-
ceedings of robotics: science and systems (RSS), Cambridge, MA,
USA, (pp. 65-72).

Strom, D. P., Nenci, F., & Stachniss, C. (2015). Predictive explo-
ration considering previously mapped environments. In 2015 IEEE
international conference on robotics and automation (ICRA) (pp.
2761-2766).

Wurm, K. M., Dornhege, C., Eyerich, P., Stachniss, C., Nebel, B., &
Burgard, W. (2010). Coordinated exploration with marsupial teams
of robots using temporal symbolic planning. In 2010 IEEE/RSJ
international conference on intelligent robots and systems (pp.
5014-5019). https://doi.org/10.1109/IROS.2010.5649820.

Wurm, K. M., Dornhege, C., Nebel, B., Burgard, W., & Stachniss, C.
(2013). Coordinating heterogeneous teams of robots using tem-
poral symbolic planning. Autonomous Robots, 34(4), 277-294.
https://doi.org/10.1007/s10514-012-9320-1.

Wurm, K. M., Stachniss, C., & Burgard, W. (2008). Coordinated
multi-robot exploration using a segmentation of the environment.
In IEEE/RSJ international conference on intelligent robots and
systems (IROS) (pp. 1160-1165). https://doi.org/10.1109/IROS.
2008.4650734.

Yamauchi, B. (1998). Frontier-based exploration using multiple
robots. In Proceedings of the second international conference on
autonomous agents. AGENTS "98 (pp. 47-53). New York: ACM.
https://doi.org/10.1145/280765.280773.

Yan, Y., & Mostofi, Y. (2013). Communication and path planning
strategies of a robotic coverage operation. In 2013 American con-
trol conference (pp. 860-866). https://doi.org/10.1109/ACC.2013.
6579944.

Zlot, R., Stentz, A., Dias, M. B., & Thayer, S. (2002). Multi-robot
exploration controlled by a market economy. In /EEE international
conference on robotics and automation, 2002. proceedings. ICRA
02 (Vol. 3, pp. 3016-3023). https://doi.org/10.1109/ROBOT.
2002.1013690.

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.


https://doi.org/10.1007/978-3-642-33515-0_49
https://doi.org/10.1007/978-3-642-33515-0_49
http://hal.inria.fr/hal-00757960
www.springerlink.com
https://doi.org/10.1109/ROBOT.2005.1570793
https://doi.org/10.1109/ROBOT.2005.1570793
https://doi.org/10.1109/TRO.2004.839232
https://doi.org/10.1163/156855309X452539
https://doi.org/10.1163/156855309X452539
http://opac.inria.fr/record=b1133311
www.petercorke.com/RVC
www.petercorke.com/RVC
https://doi.org/10.1109/70.938381
https://doi.org/10.1109/70.938381
https://doi.org/10.1109/TRO.2006.889486
https://doi.org/10.1109/TRO.2006.889486
https://doi.org/10.1007/978-3-642-32723-0_32
https://doi.org/10.1109/CSPA.2013.6530050
https://doi.org/10.1109/CSPA.2013.6530050
https://doi.org/10.1007/s10514-015-9480-x
https://doi.org/10.1109/ROBOT.2006.1641761
https://doi.org/10.1177/0278364918779704
https://doi.org/10.1007/s10514-019-09828-5
https://doi.org/10.1007/s10514-019-09828-5
https://doi.org/10.1016/j.robot.2011.05.004
https://doi.org/10.1016/j.engappai.2018.11.008
https://doi.org/10.1016/j.engappai.2018.11.008
https://doi.org/10.1007/s10514-018-9708-7
https://doi.org/10.1109/IROS.2010.5649820
https://doi.org/10.1007/s10514-012-9320-1
https://doi.org/10.1109/IROS.2008.4650734
https://doi.org/10.1109/IROS.2008.4650734
https://doi.org/10.1145/280765.280773
https://doi.org/10.1109/ACC.2013.6579944
https://doi.org/10.1109/ACC.2013.6579944
https://doi.org/10.1109/ROBOT.2002.1013690
https://doi.org/10.1109/ROBOT.2002.1013690

	Multi-robot Coordination for Energy-Efficient Exploration
	Abstract
	1 Introduction
	2 Preliminaries and Problem Formulation
	3 Proposed Coordination Approach
	3.1 Robot's Motion Energy Consumption 
	3.2 Robots Assignment Strategy

	4 Experimental Results
	4.1 Simulation Experiments
	4.2 Real Robots Experiments

	5 Conclusion
	References




