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Abstract
In this paper, the problem of integrated fault-tolerant stabilization control is studied for the attitude systems of a rigid satellite
with both actuator and sensor faults. Firstly, a virtual observer is designed for the faulty attitude systems of rigid satellite in
order to estimate the unknown actuator and sensor faults. Because the virtual observer includes unmeasurable information
of the attitude systems, the real observer is then presented. On this basis, an integral sliding-mode fault-tolerant stabilization
control approach is proposed by using the estimated fault information, and it not only suppresses the disturbance with a
disturbance attenuation level γ , but also eliminates the effects of actuator and sensor faults. Finally, the effectiveness of
the proposed fault-tolerant stabilization scheme is demonstrated in the attitude systems of a rigid satellite subject to the
time-varying actuator and sensor faults.

Keywords Fault-tolerant stabilization · Rigid satellite · Actuator and sensor faults

1 Introduction

The attitude control of satellites is an essential subsystem
and has important applications for some space missions
such as pointing and formation flying (Zhang et al. 2013;
Doroshin 2017; Chunodkar and Akella 2014). Therefore,
the corresponding attitude control design has received sig-
nificant attentions in the past decade, and many effective
methods has been investigated for satellites. For example,
Ma et al. (2014) propose an adaptive control strategy for
the attitude systems of a rigid satellite with external distur-
bance by using quaternion feedback to compensate actuator
failure. In Xiao et al. (2017a), a nonlinear estimator-based
control approach is presented for the attitude stabilization
of flexible satellites with unknown flexible vibrations. A
novel control approach with simple structure is presented
in Xiao et al. (2017b) to perform attitude tracking maneu-
ver for rigid satellites with external disturbance torque and
uncertain inertia parameters. A fractional-order attitude con-
troller with memory ability is proposed in Guo et al. (2018)
to guarantee the attitude stability of a rigid satellite. It is
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noted that the Euler angle-based attitude model and the
quaternion-based attitude model are used to describe the
satellite attitude motion in the above-described studies. The
Euler angle-based attitude model could intuitively describe
the satellite attitude motion, but it has two disadvantages:
(i) to calculate a number of complex trigonometric functions
and (ii) the attitude angle singularity problem. Taking into
account these defects, the Euler angle-based attitude sys-
temmodel is only suitable for small-angle deviation stability
control and general maneuver control of in-orbit satellite
(Zhang et al. 2013). The quaternion-based attitude model
could avoid the attitude angle singular problem and no com-
plicated trigonometry. However, it is difficult to guarantee
the normalization conditions of quaternion due to calcula-
tion errors, and the quaternion-based attitude systemmodel is
suitable for large-angle maneuver control or attitude capture
of in-orbit satellite (Xiao et al. 2017a). In past few decades,
people have focused on the attitude control of in-orbit satel-
lites that are operating at the small angles. In recent years,
with the continuous development of space technology, peo-
ple are payingmore andmore attention to the attitude control
problem in the process of satellite large-angle maneuvering
(Xiao et al. 2017b).

It is well known that the complex satellite attitude con-
trol systems inevitably manifest various types of faults in a
harsh space environment, which may result in the degraded
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system behavior or even system failure. Therefore, the fault
diagnosis (FD) technique for satellite attitude control sys-
tems has been an important research topic in recent years
(Gao et al. 2013; Cheng et al. 2016; Wang et al. 2015). Gen-
erally speaking, the FD strategy divided into three essential
tasks: fault detection, fault isolation and fault estimation. It
is worth pointing out that all these tasks can be accomplished
by fault estimation. Meanwhile, in order to eliminate the
impact of faults, fault-tolerant control (FTC) has also become
important. Thus, fault estimation and FTC has attracted
considerable attentions in recent years. For instance, two
observer design method are proposed in Xiao et al. (2015)
for the attitude stabilization of a satellite with external dis-
turbances, reaction wheel faults, actuator saturation and
unavailable angular velocity.Anequivalent idea is introduced
to design a sliding-mode observer in Zhang et al. (2017),
such that the amplitudes of the faults and disturbances can
be detected, identified and estimated. Zhao et al. (2016a, b)
focus on the robust control problem of a class of uncertain
nonlinear systems, and the considered uncertainty parame-
ters are all dealt with by sliding-mode control technique. An
active FTC approach is proposed in Gao et al. (2017) for a
class of flexible spacecraft attitude systems with Lipschitz
nonlinearity and sensor fault. A dynamic output feedback-
based fault-tolerant controller is designed to guarantees the
attitude stabilization of flexible spacecraft in sensor faulty
case. In Yin et al. (2017b), the fault-tolerant stabilization
problem is investigated for a class of nonlinear Marko-
vian jump systems, and a sliding-mode observer design
scheme is proposed with the aim of eliminating the effects of
unknown actuator fault to the overall closed-loop systems.
A descriptor sliding-mode observer approach is proposed in
Yin et al. (2017a) for linear continuous-time switched sys-
tems, such that the state of the system, disturbances, sensor
and actuator faults could be estimated simultaneously. Chen
et al. (2016) investigate the fault-tolerant control problem
for a class of stochastic Markovian jump systems, and a
novel sliding-mode control strategy is proposed by utiliz-
ing the state estimation information generated by an adaptive
sliding-mode observer, which stabilize the faulty closed-loop
systems. In Hamayun et al. (2013), a novel FTC approach
scheme is proposed for a linear systems by incorporating
integral sliding modes, unknown input observers and a fixed
control allocation scheme. In Hamayun et al. (2017), an inte-
grated integral sliding-mode fault-tolerant control scheme is
proposed for the linear parameter-varying systems in the out-
put feedback framework. The feedback and observer gains
are designed using linear matrix inequalities approach to
ensure closed-loop stability nominally and in the situation of
actuator faults/failures. In Zhao et al. (2017), a novel fault-
tolerant control scheme is developed for a linear systems
with time-varying actuator fault, an adaptive unknown input
observer is exploited to estimate state and fault simultane-

ously, and the adaptive output integral-type sliding mode is
designed to attenuate unknown bounded uncertainty and tol-
erate time-varying fault. In Liu et al. (2018), the finite-time
sliding-mode controller is designed for a class of singular
time-delay system with sensor failures and uncertain non-
linearities, and it guarantees that the closed-loop system is
nonsingular sliding-mode finite-time boundedness in both
reaching phase and sliding-motion phase. However, it is
noted that most of the FTC schemes described above are
only solved to the stabilization/tracking problem of all kinds
of linear/nonlinear control systems in actuator faulty case or
in sensor faulty case, and the fault-tolerant stabilization or
tracking control problem of linear/nonlinear in both actua-
tor and sensor faulty cases is always an open problem in the
field of automatic control and has not been fully investigated
yet, which remains challenging and motivates us to do this
study.

Motivated by the preceding discussions, we consider a
rigid-body satellite in orbit that runs at a small angle, and an
integrate fault-tolerant stabilization control scheme is pro-
posed for the satellite attitude systems described by an Euler
angle-based model in both actuator and sensor faulty case.
The main contributions of this study could be described by
the following: (i) A novel fault estimate observer (FEO) is
designed for the considered faulty attitude systems to esti-
mate the sates of system, actuator faults and sensor faults,
simultaneously. (ii) An integral sliding-mode fault-tolerant
attitude stabilization control scheme is developed by utilizing
the information from observer, and it not only attenuates the
disturbance with a disturbance attenuation level γ , but also
eliminates the influence of both actuator and sensor faults.
(iii) Lyapunov stability theory is applied to the closed-loop
stability analysis, and the gain matrices for controller and
observer could be obtained through the linearmatrix inequal-
ities technique. In the future works, we hope that the main
results obtained in this paper could be further improved and
applied to fault-tolerant attitude control of satellite in large-
angle maneuvering stage.

This paper is organized as follows. In Sect. 2, the atti-
tude dynamics of rigid satellite with actuator and sensor
faults is describes firstly; then, the control objectives of this
paper and some necessary assumptions are formulated. In
Sect. 3, a novel observer is designed to estimate states of sys-
tem, actuator and sensor faults. The main results of integrate
sliding-mode FTC strategy are presented, and the closed-
loop stability analysis is carried out using Lyapunov stability
theory. A numerical example is provided to verity the effec-
tiveness of the proposed fault-tolerant stabilization method
in Sect. 4. Finally, the conclusion and some remarks are given
in Sect. 5.

Notations The symbol � stands for the terms induced by
symmetry. The symbol ‖·‖ represents the norm of thematrix.
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2 Problem Statement

This paper consider an attitude systemmodel of satellite with
reaction wheel as actuator and running in a circular earth
orbit, and the attitude dynamic model of rigid satellite is gov-
erned by the following differential equation (Gao et al. 2013)

J ω̇ + ω× Jω = 3ω2
0ζ

× Jζ + u + d (1)

where J = diag{J1, J2, J3} is the symmetric inertia matrix
of rigid satellite, ω = [ωx , ωy, ωz]T is the angular velocity
in a body-fixed reference frame andω0 is the constant orbital
rate. u = [u1, u2, . . . , um]T is the control torque vector gen-

erated from the reaction flywheels and m > 3 is the number
of reaction flywheel. d = [dT

1 , dT
2 , dT

3 ]T is the external dis-
turbance torque, and ζ = [− sin θ, sin ϕ cos θ, cosϕ cos θ ]T
is the known nonlinear term. ϕ, θ and ψ are the roll, pitch
and yaw attitude angles, respectively. The skew-symmetric
matrix ω× is given by

ω× =
⎡
⎣

0 −wz wy

wz 0 −wx

−wy wx 0

⎤
⎦

For small attitude angles, the attitude dynamics (1) could be
rewritten as

J1ω̇x − (J2 − J3)ωyωz + 3ω×
0 (J2 − J3)ϕ = u + d1 (2)

J2ω̇y − (J3 − J1)ωzωx + 3ω×
0 (J1 − J3)θ = u + d2 (3)

J3ω̇z − (J1 − J2)ωxωy = u + d3 (4)

The kinematic differential equation of an orbiting rigid satel-
lite can be described as Gao et al. (2013)

⎡
⎣

ϕ̇

θ̇

ψ̇

⎤
⎦ = 1

cosθ

⎡
⎣
cos θ sin ϕ sin θ cosϕ sin θ

0 cosϕ cos θ − sin ϕ cos θ

0 sin ϕ cosϕ

⎤
⎦

⎡
⎣

ωx

ωy

ωz

⎤
⎦

+ ω0

cos θ

⎡
⎣

sinψ

cos θ cosψ

sin θ sinψ

⎤
⎦ (5)

and this nonlinear system (5) is linearized as

ϕ̇ = ωx + ω0ψ, θ̇ = ωy + ω0, ψ̇ = ωz − ω0ϕ (6)

Choosing the state variable x = [ϕ, θ, ψ, ωx , ωy, ωz]T, the
satellite attitude systems model with parameter uncertainty
could be described as

{
ẋ = (A + 	A(t))x + g(x, t) + Bu(t) + Dd(t)

y = Cx
(7)

where 	A(t) represents the parameter uncertainty of state
matrix with appropriate dimension and

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 ω0 1 0 0
0 0 0 0 1 0

−ω0 0 0 0 0 1
−3ω2

0 J−1
1 (J2 − J3) 0 0 0 0 0
0 −3ω2

0 J−1
2 (J1 − J3) 0 0 0 0

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

J−1
1 0 0
0 J−1

2 0
0 0 J−1

3

⎤
⎥⎥⎥⎥⎥⎥⎦

g(x, t) = [0, ω0, 0, J−1
1 (J2 − J3)ωyωz, J−1

2 (J3 − J1)ωzωx , J−1
3 (J1 − J2)ωxωy],

C = I6, D =
⎡
⎣
0 0 0 0.4 0 0
0 0 0 0 0.6 0
0 0 0 0 0 0.5

⎤
⎦
T

There the matrices A and B always satisfy Assumption 2.

To the objective of fault-tolerant attitude stabilization control,
the actuator and sensor fault model should be considered in
the attitude systems (7). Thus, the faulty satellite attitude
systems could be transformed into the following form

{
ẋ(t) = (A + 	A(t))x(t) + g(x, t) + Bu(t) + Fa fa(t) + Dd(t)

y f (t) = Cx(t) + fs(t)
(8)

where fa(t) denotes the unknown actuator fault, which may
be loss of effectiveness fault or increased bias torque. fs(t)
denotes the unknown sensor fault, which may be random
drift or bias fault. Fa is known constant matrix of compatible
dimension.

To get the purpose of integrated FTC, the following main
objectives should be achieved in this study.

1. For the faulty attitude systems (8), design a novel aug-
mented observer to estimate states of the system, actuator
and sensor faults simultaneously.

2. For the faulty attitude systems (8), design an integral
sliding-mode controller, based only on output measurements
and the obtained fault estimation information, and it could
maintain the closed-loop stability in the face of some actuator
and sensor faults.

Based on some recent results obtained in Lan and Patton
(2018), Li et al. (2018), Gao (2015) andYoussef et al. (2017),
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Fig. 1 Integrate fault-tolerant
stabilization control scheme for
satellite attitude systems

an integrated fault-tolerant stabilization control scheme is
developed for the attitude systems of rigid satellite with both
actuator and sensor faults in this paper, and the block diagram
of FTC is shown in Fig. 1.

Throughout the remainder of this paper, some necessary
assumptions and lemmas are given in this position.

Assumption 1 Liu et al. (2018) The satellite is assumed to
be running in a small-angle maneuver; therefore, the non-
linearity g(x, t) is assumed to locally Lipschitz in x , i.e.,
g(0, t) �= 0, and the following inequality holds:

‖g(x, t) − g(x̃, t)‖ ≤ β‖x − x̃‖

where β is the known Lipschitz constant, x is the state of the
satellite attitude systems and x̃ is the error between the state
and its estimate.

Assumption 2 The nonlinearity g(x, t) is bounded.

Assumption 3 The pair (A, C) is observable, and the pair
(A, B) is controllable.

Assumption 4 Rahmani (2017)Theuncertaintymatrix	A(t)
is norm-bounded and could be written as

	A(t) = M�(t)H

where M and H are knownmatrices with appropriate dimen-
sions and �(t) is an unknown matrix satisfying �(t)�T(t)
≤ I .

Assumption 5 The external disturbance, unknown faults and
their time derivative are all bounded.

Lemma 1 Liu et al. (2018) Let Z , W and diagonal matrix R
be the real matrices of appropriate dimensions with |R| ≤ S,

where S is an known real constant matrix, and there exists a
scalar ε > 0, such that

Z RW + (Z RW )T ≤ εZ SZT + ε−1WTSW

3 Integrate Fault-Tolerant Stabilization
Control

3.1 Fault Estimation Observer Design

In this section, a novel observer will be designed to provide
the estimation of system state, actuator fault and sensor fault
simultaneously, which has the following form

{ ˙̂
ξ(t) = Aξ̂ (t) + Bu(t) + Ly f (t) + F1g(x̂, t)

ẑ(t) = ξ̂ (t) + Cy(t)
(9)

where ξ̂ (t) is an auxiliary variable, matrices A, B, C and L
are observer parameters to be determined later and ẑ(t) is the
estimation for x(t), fa(t) and fs(t). To design observer (9),
the faulty attitude systems (8) could be reformulated as

{
E1 ż(t) = Āz(t) + 	̄(t)z(t) + g(x, t) + Bu(t) + Dd(t)

y(t) = E2z(t)
(10)

where z(t)=[
xT(t) f Ts (t) f Ta (t)

]T
, Ā=[

A 06×6 Fa
]
,

	̄(t) = [
	A(t) 06×6 06×6

]
, E1 = [

I6×6 06×6 06×6
]
,

E2 = [
C I6×6 06×6

]
, E3 = [

B1C 06×6 I6×6
]
,

and B1 ∈ R6×6 is a full-rank matrix; then, it is clear that

rank

⎡
⎣

E1

E2

E3

⎤
⎦ = 12, which means it is a full-rank matrix and

its inverse exists.

123



868 Journal of Control, Automation and Electrical Systems (2019) 30:864–878

Let F = [
F1 F2 F3

] =
⎡
⎣

I6×6 06×6 06×6

−C I6×6 06×6

−B1C 06×6 I6×6

⎤
⎦;

then, it can be easily known that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎣

E1

E2

E3

⎤
⎦[

F1 F2 F3
] = I18×18

[
F1 F2 F3

]
⎡
⎣

E1

E2

E3

⎤
⎦ = I18×18

(11)

which means

⎡
⎣

E1

E2

E3

⎤
⎦

−1

= [
F1 F2 F3

]
.

Multiplying F1 to both sides of (10) yields that

F1E1 ż(t) = F1 Āz(t) + F1	̄(t)z(t) + F1Bu(t)

+F1g(x, t) + F1Dd(t) (12)

and by using fact (11), namely F1E1 + F2E2 + F3E3 =
I18×18, we have

ż(t) = F1 Āz(t) + F1	̄(t)z(t) + F1Bu(t) + F1g(x, t)

+F1Dd(t) + (F2E2 + F3E3)ż(t) (13)

Consider the following virtual observer

˙̂z(t) = F1 Āẑ(t) + F1Bu(t) + F1g(x̂, t)

+(F2 + F3B1)E2 ż(t) + L(y − E2 ẑ(t)) (14)

where L = [LT
1 , LT

2 , LT
3 ]T is an unknown gain matrix to be

determined later.
Define the following estimation error variable as e(t)

= z(t) − ẑ(t), and the error dynamics of observer could
be obtained as follows

ė(t) = (F1 Ā − L E2)e(t) + F1	̄(t)z(t) + F1g̃

+F̄ ż(t) + �Dd(t)

= (F1 Ā − L E2)e(t) + F1M�(t)H x(t)

+F1g̃ + F̄ ż(t) + �Dd(t) (15)

whereF̄ =
⎡
⎣
0 0 0
0 −B1 0
0 0 I6×6

⎤
⎦,�=[I6×6, −CT, −CTBT

1 ]T,

g̃ = g(x, t) − g(x̂, t).

It is noted that the virtual observer (14) may have poor esti-
mation ability because of the term (F2 + F3B1)E2 ż(t). By
defining ξ̂ (t) = ẑ(t)−(F2+F3B1)E2z(t), such that observer
(14) could be further rewritten as

˙̂
ξ(t) = F1 Āẑ(t) + F1Bu(t) + F1g(x̂, t) + L(y(t) − E2 ẑ(t))

= (F1 Ā − L E2)ẑ(t) + F1Bu(t) + F1g(x̂, t) + Ly(t)

= (F1 Ā − L E2)ξ̂ (t) + F1Bu(t) + F1g(x̂, t)

+(L + (F1 Ā − L E2)(F2 + F3B1))y(t) (16)

Then, the fault estimation observer (9) is designed with the
following parameters

A = F1 Ā − L E2, B = F1B, C = F2 + F3B1,

L = L + (F1 Ā − L E2)(F2 + F3B1) (17)

Observer (16) is the similar to the designed observer (9) with
the parameters (17). Finally, we can obtain ẑ(t) = ξ̂ (t) +
(F2 + F3B1)E2z(t) = ξ̂ (t) + (F2 + F3B1)y(t).

Remark 1 The satellite attitude systems considered in this
study are suffered from actuator fault, sensor fault, param-
eter uncertainty and external disturbance simultaneously, so
it is difficult to design an observer which estimates the sys-
tem state and fault with the relatively high accuracy. In this
section, a virtual observer is firstly designed for the faulty atti-
tude systems, and the main purpose of the virtual observer is
to improve the observation precision of the system state vari-
ables and unknown faults. However, it is hard to realize the
virtual observer because it includes inaccessible information,
namely (F2 + F3B1)E2 ż(t). As a result, an actual observer
based on the virtual observer is derived by eliminating the
time derivative term, such that the target of state and fault
estimation can be achieved.

Remark 2 It is noted that most existing fault estimation
approach, such as Zhang et al. (2013) and Gao et al. (2013,
2017), could only estimate the individual actuator fault or
the individual sensor fault. To address this defect, a novel
fault estimation observer design approach is proposed in
this study, which could estimate the state of the plant, actu-
ator fault and sensor fault simultaneously and could be
regarded as the supplement of the existed fault estimation
results.

3.2 Integral Sliding-Mode Controller Design

In this section, an integrated sliding-mode fault-tolerant con-
trol scheme is proposed using only the measurable output
signal, which guarantees the attitude stability of the faulty
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satellite. Here, an integral sliding-mode surface by using the
output feedback information is designed as

s(t) = G(yc(t) − yc(0)) −
∫ t

0
ul(τ )dτ (18)

where G = (C B)+ − Y (I − C B(C B)+) with an arbitrary
matrix Y ∈ R3×6 and (C B)† = ((C B)TC B)−1(C B)T. yc
= y − f̂s = Cx +e fs is the attitude output signal after sensor
fault compensation, and e fs = fs − f̂s is the sensor fault
estimation error. ul is a control input to guarantee disturbance
attenuation.

The designed sliding-mode controller has the following
form

u = un + ul (19)

where the linear component is ul = −K x̂ − W̄ f̂a with a
design matrix K ∈ R3×6 and W = B†Fa. x̂ and f̂a are the
estimates of the system state and actuator fault, respectively.

The nonlinear component un is designed as

un =
⎧⎨
⎩

− (ρ̂(t) + ϕ + κ)
s

‖s‖ , s �= 0

0, s = 0

where ρ̂(t) is the estimation of unknown scalar ρ(t) =
‖GC D‖‖d(t)‖ + ‖GC Fa‖‖ fa‖ + ‖G‖‖ė fs‖, which has the
following adaptive updated algorithm ˙̂ρ = 1

κ
‖s‖ and ϕ, κ

are the design constants.
Differentiating (18) with respect to time and substituting

ẋ(t) from (8) obtains

ṡ = GC(A + 	A)x + GCg(x, t) + GC Bu + GC Fa fa

+ GC Dd + Gė f s − ul (20)

In this position, the first main results of this study are given
by Theorem 1.

Theorem 1 Under Assumptions 1–4, suppose the integral
sliding-mode surface function is designed described by (18),
and the sliding-mode controller u described by (19) guaran-
tees that the sliding-motion is driven on the sliding surface,
namely s = ṡ = 0.

Proof Select the following Lyapunov function

Vs = 1

2
(sTs + κρ̃2) (21)

where ρ̃ = ρ−ρ̂ is the error variable of parameter estimation.

Then, it is derived directly that

V̇s = sT ṡ − κρ̃ ˙̂ρ
= sT(GC(A + 	A)x

+ GCg(x, t) + GC Bu + GC Fa fa + GC Dd

+ Gė f s − ul) − κρ̃ ˙̂ρ
= sT(GC(A + 	A)x + GCg(x, t)

+ GC Bu + GC Fa fa + GC Dd

+ Gė f s + K x̂ + W̄ f̂a) − κρ̃ ˙̂ρ
= sT(GC(A + 	A)x + GCg(x, t)

+ GC Bu + GC Fa fa + GC Dd

+ Gė f s + K x̂ + W̄ f̂a) − ρ̃‖s‖
≤ ‖s‖(‖GC A‖‖x‖ + ‖GC M‖‖H‖‖x‖ + β‖GC‖‖x‖

+‖GC D‖‖d(t)‖
+‖GC Fa‖‖ fa‖ + ‖G‖‖ė f s‖) − ‖s‖(ρ + ϕ + κ)

≤ (a‖x‖ − ϕ − κ)‖s‖ (22)

where a = ‖GC A‖ + ‖GC M‖‖H‖ + β‖GC‖. If the
parameter is chosen to be ϕ > aν with a given scalar
ν > 0 and ϕ should be chosen large enough, then reach-
ing the sliding-mode condition sT ṡ ≤ −κ‖s‖ is satisfied for
{x : ‖x‖ ≤ ν}. Then the sliding-mode controller (19) guar-
antees that s(t) = ṡ(t) = 0 for all t ≥ 0. This completes the
proof. ��

3.3 The Closed-Loop Stability Analysis

In this section, the stability analysis of the closed-loop atti-
tude systems in both actuator and sensor faulty cases is given.
Suppose that the system has been successfully controlled to
stay in the sliding-mode surface, and the equivalent control
law is designed as

ueq = −GC Ax − GCg(x, t) − GC Dd + ul (23)

Substituting (23) into (8) obtains the closed-loop attitude sys-
tems as

ẋ = (A + 	A)x + B(−GC Ax − GCg(x, t) − GC Dd + ul )

+Fa fa + g(x, t) + Dd

= ((I − BGC)A − BK )x + T e + 	Ax + (I − BGC)Dd

= (�A − BK )x + T e + 	Ax + �Dd (24)

where � = I − BGC and T = [
BK 0 Fa

]
.
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Meanwhile, consider the error dynamics of observer (15),
and the following augmented closed-loop attitude systems
are given by

{
ẋ = (�A − BK )x + T e + 	Ax + �Dd

ė = (F1 Ā − L E2)e + F1M�(t)H x + F1 g̃ + F̄ ż + �Dd
(25)

In this position, the second main results of this study are
given by Theorem 2.

Theorem 2 Under Assumptions 1–5, for a given positive con-
stant γ , if there exist symmetric positive definite matrices Q̄,
Q, P11, P22, P33, and matrices J̄ , L̄1, L̄2, L̄3, and satisfying
the following linear matrix inequality

� =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�11 �12 0 �14 0 �16 QM 0 0 0
� �22 �23 �24 �25 �26 0

√
αP11M 0 0

� � �33 �34 �35 �36 0 0
√

μP22C M 0
� � � �44 �45 �46 0 0 0

√
ς P33B1C M

� � � � −I 0 0 0 0 0
� � � � � −γ 2 I 0 0 0 0
� � � � � � −I 0 0 0
� � � � � � � −I 0 0
� � � � � � � � −I 0
� � � � � � � � � −I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (26)

where �11 = Q�A + AT�TQ − B J̄ − J̄TBT + HTH +
α−1HTH − μ−1HTH − ς−1HTH + I , �12 = B J̄ , �14

= QFa, �16 = Q�D1, �22 = P11A + ATP11 − L̄1C −
CT L̄T

1 + β2 + I , �23 = −L̄1 − ATCTP22 − CT L̄T
2 , �24

= P11Fa − ATCTBT
1 P33 − CT L̄T

3 , �25 = P11, �̄26

= P11D1, �33 = −L̄2 − L̄T
2 + I , �34 = −P22C Fa −

L̄3, �35 = −P22C, �36 = −P22D2 − P22C D1, �44

= −P33B1C Fa − FT
a CTBT

1 P33 + I , �45 = −P33B1C −
CTBT

1 P33, �46 = P33D3 − P33B1C D1.
Then the augmented closed-loop attitude systems is

asymptotically stable with a disturbance attenuation level
γ . Furthermore, the observer gain L = [LT

1 , LT
2 , LT

3 ]T
and the controller gain K are given by L1 = P−1

11 L̄1, L2

= P−1
22 L̄2, L3 = P−1

33 L̄3, K = Q̄−1 J̄ where Q is a matrix
satisfying

Q B = B Q̄ (27)

Proof Consider Lyapunov function candidate

Vex = xTQx + eTP1e (28)

where Q = QT > 0, P1 = diag{P11, P22, P33} = PT
1 > 0.

Calculating the time derivative of Vex , it is obtained as

V̇ex = 2xTQẋ + 2eTP1ė = 2xTQẋ + 2eTx P11ėx + 2eTf s P22ė f s

+ 2eTf a P33ė f a

= 2xTQ[(�A − BK )x + BK ex + Fae f a

+ M�(t)H x + �Dd]
+ 2eTx P11[(A − L1C)ex − L1e f s + Fae f a

+ M�(t)H x + g̃ + Dd]
+ 2eTf s P22[(−C A − L2C)ex − L2e f s − C Fae f a

− C M�(t)H x − Cg̃ − C Dd − B1 ḟs]
+ 2eTf a P33[(−B1C A − L3C)ex − L3e f s − B1C Fae f a

−B1C M�(t)H x − B1Cg̃ + ḟa − B1C Dd] (29)

Here, we have a transformation to 2xTQM F(t)H x ; there-
fore, the following inequality could be derived

2xTQM F(t)H x

= −(MTQx − F(t)H x)T(MTQx − F(t)H x)

+xTQM MTQx + xTHTFT(t)F(t)H x

≤ xTQM MTQx + xTHTH x (30)

UnderAssumptions 1, 3 andLemma1, the following inequal-
ities are easily obtained

g̃T g̃ ≤ β2eTx ex (31)

2eTx P11M�(t)H x ≤ αeTx P11M MTP11ex

+α−1xTHTH x (32)

− 2eTfs P22C M�(t)H x ≤ μeTfs P22C M MTCTP22e fs

−μ−1xTHTH x (33)

− 2eTf a P33B1C M�(t)H x

≤ ςeTf a P33B1C M MTCTBT
1 P33e f a

−ς−1xTHTH x (34)
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Substituting (30)–(34) into (29), we have

V̇ex ≤ 2xTQ(�A − BK )x + 2xTQ BK ex + 2xTQFae fa

+xTQM MTQx + xTHTH x + 2xTQ�D1d̄

+ 2eTx P11(A − L1C)ex − 2eTx P11L1e fs

+ 2eTx P11Fae fa + αeTx P11M MTP11ex

+α−1xTHTH x + 2eTx P11g̃ + 2eTx P11D1d̄

+ 2eTfs P22(−C A − L2C)ex − 2eTfs P22L2e fs

− 2eTfs P22C Fae fa

+μeTf s P22C M MTCTP22e f s − μ−1xTHTH x

− 2eTf s P22Cg̃ − 2eTf s P22C D1d̄

− 2eTf s P22D2d̄

+ 2eTf a P33(−B1C A − L3C)ex − 2eTf a P33L3e f s

− 2eTf a P33B1C Fae f a

+ςeTf a P33B1C M MTCTBT
1 P33e f a − ς−1xTHTH x

− 2eTf a P33B1Cg̃ + 2eTf a P33D3d̄

− 2eTf a P33B1C D1d̄ + β2eTx ex − g̃T g̃

≤ ηT�̄η − xTx − eTx ex − eTf se f s − eTf ae f a + γ 2d̄Td̄

≤ ηT�̄η − ξTξ + γ 2d̄Td̄ (35)

where η = [xT, eTx , eTf s, eTf a, g̃T, d̄T]T, ξ = [xT, eTx , eTf s,

eTf a]T, D1 = [D, 06×6, 06×6], D2 = [06×3, B1, 06×6], d̄

= [dT, ḟ Ts , ḟ Ta ], D3 = [06×3, 06×6, I6×6] and

�̄ =

⎡
⎢⎢⎢⎢⎢⎢⎣

�̄11 �̄12 0 �̄14 0 �̄16

� �̄22 �̄23 �̄24 �̄25 �̄26

� � �̄33 �̄34 �̄35 �̄36

� � � �̄44 �̄45 �̄46

� � � � −I 0
� � � � � −γ 2 I

⎤
⎥⎥⎥⎥⎥⎥⎦

with �̄11 = Q�A + AT�TQ − Q BK − KTBTQ +
QM MTQ + HTH +α−1HTH −μ−1HTH − ς−1HTH +
I , �̄12 = Q BK , �̄14 = QFa, �̄16 = Q�D1, �̄22 =
P11A + ATP11 − P11L1C − CTLT

1 P11 + αP11M MTP11 +
β2 + I , �̄23 = −P11L1 − ATCTP22 − CTLT

2 P22, �̄24 =
P11Fa − ATCTBT

1 P33 − CTLT
3 P33, �̄25 = P11, �̄26 =

P11D1, �̄33 = −P22L2 − LT
2 P22 + μP22C M MTCTP22 +

I , �̄34 = −P22C Fa − P33L3, �̄35 = −P22C, �̄36 =
−P22D2− P22C D1, �̄44 = −P33B1C Fa− FT

a CTBT
1 P33+

ς P33B1C M MTCTBT
1 P33 + I , �̄45 = −P33B1C −

CTBT
1 P33 �̄46 = P33D3 − P33B1C D1.

By the Schur complement to the inequality (26), �̄ < 0
is easily obtained. Therefore, integrating both sides of (35)
from 0 to ∞ satisfies
∫ ∞

0
V̇ex + ξTξ dt < γ 2

∫ ∞

0
d̄Td̄ dt (36)

Then under zero initial conditions, the inequality (36) could
be rewritten as
∫ ∞

0
ξTξ dt < γ 2

∫ ∞

0
d̄Td̄ dt (37)

Therefore, the augmented closed-loop systems (25) are
asymptotically stable with a given disturbance attenuation
level γ . This completes the proof. ��
Remark 3 In Li et al. (2018), Gao (2015) and Lee et al.
(2018),some observer-based FTC strategies are proposed
for linear system with sensor and actuator faults, but the
unmatched parameter uncertainty and Lipschitz nonlinear-
ity function are not included in the considered linear system,
Therefore, the FTC approach designed in Li et al. (2018),
Gao (2015) and Lee et al. (2018) has the poor robustness. On
the basis of these results, the unmatched parameter uncer-
tainty and Lipschitz nonlinearity function are introduced in
this study and an integrated FTC approach is designed for
the attitude systems of rigid satellite with parameter uncer-
tainty, Lipschitz nonlinearity, external disturbance, actuator
and sensor faults in this paper. Compared with the FTC
result developed in Li et al. (2018), Gao (2015) and Lee
et al. (2018), the integrated FTC approach could guarantee
the attitude systems asymptotically stable with a disturbance
attenuation level γ and has better robustness.

Remark 4 Compared with the sliding-mode controller by
using the state feedback information designed in Yin et al.
(2017b) and Liu et al. (2018), an integrate sliding-mode con-
troller is designed for the attitude systems of rigid satellite
by only utilizing the output feedback information. It is well
known that the output information is easier to obtain than the
state information in practical engineering application; thus,
the integral sliding-mode controller developed in this paper
has a wider application value than the sliding-mode control
scheme proposed in Yin et al. (2017b) and Liu et al. (2018).

Remark 5 Note that the equality constraint (27) is difficult
to solve using MATLAB LMI toolbox. However, by using
the method presented in Youssef et al. (2017), for a positive
scalar γ̄ , it can be converted into the following optimization
problem to solve using the LMI toolbox

Minimize γ̄ subject to (26) and[
γ̄ I Q B − B Q̄

BTQT − Q̄TBT γ̄ I

]
> 0 (38)
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Fig. 2 Attitude angle output
curve in fault-free case using
attitude stabilization approach in
Xiao et al. (2017a)
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4 Simulation Example

To demonstrate the effectiveness of the proposed integrated
fault-tolerant stabilization control scheme, simulation results
of a satellite attitude control systems are presented in this
section.

The inertia matrix is assumed as J = diag{18.55, 20.49,
23.56} and the orbital angular velocity asω0 = 0.0014 rad/s.
The initial attitude angles are selected as ϕ(0) = − 0.0245,
θ(0) = 0.0335 and ψ(0) = 0.0516, and the initial angular
velocities are selected as ωx = 0.0316, ωy = 0.0424 and
ωz = 0.056.

The satellite has three reaction flywheels as actuators
at each principle axis, gyroscopes and star sensors as sen-
sors are used to measure angular velocity and attitude angle
respectively. In the severe space environment, actuators and
sensors are unavoidably susceptible to possible faults. In the
simulation, we consider additive time-varying bias actua-
tor fault and sensor fault occurred in the satellite attitude
systems. For actuator fault, it is assumed that the second
actuator is prone to fault, and other actuators are fault-free;
the actuator vector is defined as fa = [0, fa2, 0, 0, 0, 0]T
with

fa2(t) =

⎧⎪⎨
⎪⎩

0 rad/s, 0 ≤ t < 12 s

0.04 rad/s, 12 s ≤ t < 20 s

0.05sin(t) rad/s, t ≥ 30 s

For sensor fault, it is assumed that only the first star sensor is
prone to time-varying fault, while other sensors are fault-free.

Define the sensor fault vector as fs = [ fs1, 0, 0, 0, 0, 0]T
with

fs1(t) =
{
0 rad, 0 ≤ t < 12 s

0.03sin(t) rad, t ≥ 12 s

In the design of integral sliding-mode controller (19), the
adaptive gain parameter κ is selected as 1.2. By means
of MATLAB linear matrix inequality toolbox, and choos-
ing α = 0.5, μ = 0.2, β = 0.5, γ = 0.7, γ̄ =
0.9, the unknown observer gain matrix and the integral
sliding-mode controller gain matrix could be solved from
the inequality (26) and (37), which are given by the next
page.

To illustrate the superiority of the integratedFTCapproach
proposed this study, some necessary simulation comparisons
are given in the following. A normal attitude stabiliza-
tion control approach of satellite is proposed in Xiao et al.
(2017a), which can be used to stabilize the rigid satellite atti-
tude systems considered in this study, and the attitude angle
output curve and the control input torque curve are depicted in
Figs. 2 and3, respectively. It is easily seen that the attitude sta-
bilization control approach developed in Xiao et al. (2017a)
guarantees that the closed-loop attitude systems in actuator
and sensor healthy case have good dynamic performance.
When the unknown actuator fault and sensor fault considered
in this study occur in satellite attitude systems, the attitude
stabilization control approach designed in Xiao et al. (2017a)
is still used; the corresponding attitude angle output curve and
the control input torque curve are depicted in Figs. 4 and 5; it
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Fig. 3 Control input torque
curve in fault-free case using
attitude stabilization approach in
Xiao et al. (2017a)
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is not difficult to find that the attitude stabilization approach
could not guarantee the closed-loop attitude systems in actu-
ator and sensor faulty case which has the acceptable dynamic

performance; the attitude angle curve and the control input
torque curve shows unstable phenomenon, which fully illus-
trate the necessity of designing fault-tolerant attitude control
scheme for satellite attitude systems.

L1 = 102

⎡
⎢⎢⎢⎢⎢⎢⎣

− 0.1198 0.0192 0.1121 − 1.0239 − 0.0047 0.0262
0.0061 0.3343 − 0.0409 − 0.0348 − 1.1295 − 0.0179
0.1254 − 0.0404 − 0.0075 − 0.0025 − 0.0237 − 0.9108

− 1.0037 − 0.0360 − 0.0006 0.0457 0.0189 0.1362
− 0.0028 − 1.1378 − 0.0155 0.0309 0.1203 − 0.0563
0.0239 − 0.0067 − 0.9224 0.1192 − 0.0566 0.0241

⎤
⎥⎥⎥⎥⎥⎥⎦

L2 = 103

⎡
⎢⎢⎢⎢⎢⎢⎣

− 1.2172 0.9783 − 2.0050 − 2.2483 1.6308 − 1.3966
0.9119 − 0.3703 1.8213 0.9272 − 2.4504 0.7030

− 1.8676 1.8144 − 1.6881 − 1.3205 1.3129 − 3.9580
− 2.1541 0.9227 − 1.3212 − 0.6776 1.2412 − 1.4894
1.5715 − 2.4817 1.3826 1.2886 − 0.9692 2.4932

− 1.3620 0.7532 − 4.0658 − 1.5630 2.5216 − 1.2421

⎤
⎥⎥⎥⎥⎥⎥⎦

L3 = 102

⎡
⎢⎢⎢⎢⎢⎢⎣

− 0.0046 0.0035 − 0.0042 − 0.0004 0.0002 − 0.0008
− 0.0022 0.0012 − 0.0014 − 0.0000 − 0.0005 0.0003
− 0.0281 0.0122 − 0.0112 − 0.0007 − 0.0009 − 0.0030
1.0803 − 0.4771 0.4359 0.0235 0.0490 0.0836

− 0.0223 0.0113 − 0.0102 − 0.0002 − 0.0017 − 0.0006
− 0.0137 0.0050 − 0.0034 − 0.0007 − 0.0005 − 0.0012

⎤
⎥⎥⎥⎥⎥⎥⎦

K =
⎡
⎣

− 49.5645 5.9053 − 8.6881 − 270.9268 157.3410 − 126.4720
3.6891 2.0305 − 1.7437 136.3118 − 34.6346 − 116.6039

− 30.0092 − 2.7538 − 2.2670 − 116.5872 − 128.1343 36.9429

⎤
⎦
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Fig. 4 Attitude angle output
curve in faulty case using
attitude stabilization approach in
Xiao et al. (2017a)
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Fig. 5 Control input torque
curve in faulty case using
attitude stabilization approach in
Xiao et al. (2017a)
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In this position, the integrated fault-tolerant attitude con-
trol scheme designed in this paper is used to stabilize the rigid
satellite in both actuator and sensor faulty cases, the unknown
actuator and sensor faults could be estimated accurately
by utilizing the designed observer, and the corresponding
simulation results are given in Figs. 6 and 7. It is easily
known that the designed observer has good fault estimation
capability, and it laid a good foundation for the implemen-
tation of the subsequent fault-tolerant control scheme. By

utilizing the designed sliding-mode fault-tolerant stabiliza-
tion control scheme (19), the corresponding attitude angle
output curve and control input torque curve are depicted
in Figs. 8 and 9, respectively. It is not difficult to find
that the effects of actuator and sensor faults considered
in this paper to the closed-loop attitude systems could be
compensated, such that the closed-loop attitude systems
in faulty case have also the satisfactory dynamic perfor-
mance.
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Fig. 6 Actual actuator fault and
its estimation curve
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Fig. 7 Actual sensor fault and
its estimation curve
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In order to make a comparison, the fault-tolerant stabi-
lization control strategy proposed in Xiao et al. (2015) is
also simulated, and the attitude angles curve and the control
input torque curve are depicted in Figs. 10 and 11. It is not
difficult to find from Figs. 10 and 11 that the attitude angle
output curves and control input–control torque curves have
the greater oscillation under the fault-tolerant schemes devel-

oped in Xiao et al. (2015). Meanwhile, it is clearly seen from
Figs. 8 to 9 that simulation results using integrated fault-
tolerant stabilization scheme developed in this paper have
better dynamic performance than those obtained in Figs. 10
and 11. To further emphasize the superiority of the proposed
method, the control performance comparisons using two dif-
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Fig. 8 Attitude angle output
curve in faulty case using
integrated FTC designed in this
paper
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Fig. 9 Control input torque
curve in faulty case using
integrated FTC designed in this
paper
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ferent FTC schemes are also given in Table 1, which includes
the convergence time and steady precision.

By the comparison of above cases, it can be found that
the proposed integrated fault-tolerant stabilization control
approach could accomplish the quick attitude stabilization
for satellite attitude systems in the presence of actuator and
sensor faults, parameter uncertainty, Lipschitz nonlinearity
and external disturbance. Simulation results demonstrate the
superior fault estimation and accommodation performance

compared with the existing approaches reported in recent
years.

5 Conclusions

In this paper, an integrated fault-tolerant attitude stabiliza-
tion control strategy is proposed for a rigid satellite with
unmatched uncertainty, Lipschitz nonlinearity, external dis-
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Fig. 10 Attitude angle output
curve in faulty case using FTC
designed in Xiao et al. (2015)
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Fig. 11 Control input torque
curve in faulty case using FTC
designed in Xiao et al. (2015)
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turbance, along with unknown actuator and sensor faults.
A novel fault estimation approach is firstly given, which
provides the estimation information of unknown actuator
and sensor faults. Then an integral slide mode-based fault-
tolerant stabilization controller is designed using only the
measurable attitude angle output, which guarantees the faulty
closed-loop attitude systems are asymptotically stable with

a given disturbance attenuation level γ . Finally, simulation
results show that the integrated design strategy leads to a
good fault-tolerant performance. The limitation of the FTC
approach developed in this paper is that it is only suitable
for the rigid satellite and works in small-angle maneuver-
ing stage; how to design a fault-tolerant attitude controller,
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Table 1 Comparison of control performance using two different FTC
scheme

Control scheme Steady precision

FTC designed in this paper 5.5 × 10−4

FTC designed in Xiao et al. (2015) 7.1 × 10−3

which is suitable for the satellite in orbit and works in the
large-angle maneuvering stage, will be our future work.
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