
Vol:.(1234567890)

Journal of Control, Automation and Electrical Systems (2019) 30:832–839
https://doi.org/10.1007/s40313-019-00487-6

1 3

A General Methodology for Evaluation and Classification 
of Oil‑Immersed Power Transformers: Application to Electrical 
and Physicochemical Parameters

Leonardo da Cunha Brito1 · André Pereira Marques2,3 · Cacilda de Jesus Ribeiro1 · Nicolas Kemerich de Moura1   · 
Yuri Andrade Dias1 · Cláudio Henrique Bezerra Azevedo2 · José Augusto Lopes dos Santos2 · 
Pedro Henrique da Silva Palhares1

Received: 16 April 2018 / Revised: 6 April 2019 / Accepted: 8 June 2019 / Published online: 8 July 2019 
© Brazilian Society for Automatics--SBA 2019

Abstract
Condition monitoring of power transformers is of vital importance to prevent electricity supply stoppages and reduce power 
plant maintenance costs. To that end, the use of techniques to evaluate and classify the condition of these devices is highly 
recommended in order to obtain good quality information for their proper maintenance planning. This article presents and 
details a general methodology for the creation of methods to evaluate and classify these devices, by means of computational 
modeling and optimization. The results indicate a higher than 93% accuracy rate compared to that of numerical evaluations 
and symbolic classifications expected by experts, thus demonstrating the applicability of the proposed methodology, which 
is found to be superior in comparisons against Computational Intelligence and Statistical Learning methods.
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1  Introduction

The development and use of predictive techniques aimed 
at increasing the efficiency of preventive maintenance pro-
cesses are essential to preserve the service life of power 
transformers, which are vital and high-cost devices in the 
power transmission and distribution system (Marques et al. 
2014; Jahromi et al. 2009). Obviously, the same concept 
applies to the other elements that make up electric power 
supply systems.

Typically, a wide range of methods can be applied to eval-
uate the condition of power transformers. These methods 
usually include, among others:

•	 Dissolved gas analysis of transformer insulating oil, 
which reveals the existence of incipient thermal or elec-
trical faults in the transformer (Duval and Lamarre 2014; 
IEC 2007; Singh and Bandyopadhyay 2010);

•	 Physicochemical analysis, which allows one to identify 
the degradation level of transformer insulating oil and 
infers that of electrical insulation paper (Barbosa et al. 
2012; Moulai et al. 2010);

•	 Detection of partial discharges in power transformers 
by means of acoustic emission, which can indicate the 
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existence of partial discharge inside the transformer 
(IEEE 2000, 2010; Chen et al. 2007); and

•	 Electrical tests in general, which allow one to diag-
nose the transformer with regard to the presence of 
mechanical deformations and movements of its active 
components and of anomalies in its insulation system, 
electrical circuit or magnetic core (IEEE 2013).

The literature describes numerous diagnostic tech-
niques to pinpoint problems in the transformer (Duval 
and Lamarre 2014; IEC 2007; Singh and Bandyopadhyay 
2010; Chen et al. 2007; IEEE 2013; Hooshmand et al. 
2012; Li et al. 2016; Marques et al. 2015; Contin 2015), 
and to assess and classify its condition by assigning con-
dition indices (Jahromi et al. 2009; Abu-Elanien et al. 
2012; Ashkezari et al. 2013). The diagnostic methods to 
determine transformer conditions are well established, 
especially the aforementioned ones. However, the pro-
cess for evaluating and classifying the condition of power 
transformers still lacks a general methodology that can be 
employed to create analytical methods based on the use of 
an existing historical database. Jahromi et al. (2009) and 
Abu-Elanien et al. (2012), for example, propose analytical 
methods involving linearly dependent parameters, which 
can lead to inaccurate results, given the natural nonlinear-
ity of evaluation and classification processes. Ashkezari 
et al. (2013) report good results in terms of overall accu-
racy rates achieved by the proposed method, but one sees a 
high accuracy rate for good ratings (1 and 2, which can be 
seen as ratings “A” and “B”) and a significant decrease in 
accuracy for the worst ratings (3–4, or “C” to “E”), which 
can be worrisome because poorer ratings have a stronger 
impact on decision making.

Expert power transformer analysts usually classify the 
condition of transformers based on guidelines, recommen-
dations or standards, as well as on field experience, exam-
ining each criterion or parameter separately, or a subset of 
parameters, and then analyzing the overall results, in order 
to generate final global classifications to underpin deci-
sion making about the set of transformers that make up the 
installed power plant. The results of these analyses can be 
used to create evaluation and classification methods, so that 
the results of the application of the knowledge of specialists 
can be mapped computationally, thereby greatly assisting 
decision making about the operational planning for these 
devices.

Therefore, aiming to contribute to this area, this article 
presents in detail a general methodology for the evalua-
tion and classification of oil-immersed power transformers, 
although it can be applied to any elements with characteris-
tics similar to those described below.

To use the proposed methodology, the following informa-
tion is required:

•	 A database of historical records about the analytical 
method in question, in which each record must contain 
the values of the parameters considered in the analysis, 
as well as the global symbolic classification prepared 
by the specialist, in order to consider the values of all 
the parameters involved; and

•	 For each parameter of the analytical method, classifi-
cation ranges whose values are mapped into symbolic 
classifications that are suitable for the separate obser-
vation of the respective parameter, which are typically 
obtained from preexisting guidelines or standards (Jah-
romi et al. 2009; IEC 2007; IEEE 2013), as well as 
from the experience of maintenance specialists.

The methodology itself comprises the following 
elements:

•	 The evaluation and classification method that can provide 
a numerical score of 0 (terrible condition) to 1 (perfect 
condition) and a symbolic rating of “A” (best rating) to 
“E” (worst rating), for example; and

•	 The optimization method adapted to find optimal or near-
optimal values for the variables of the evaluation and 
classification method, in order to maximize the assertive-
ness of the results when comparing the ratings provided 
by expert analysts.

Section  2 presents the evaluation and classification 
method, while Sect. 3 describes the optimization method. 
Lastly, Sects. 4 and 5, respectively, present two case studies 
and our final conclusions.

Although the evaluation and classification model has 
been applied in Marques (2017a), its detailed exposition and 
generalization is originally presented in this paper (Sect. 2), 
as well as the first description of the optimization strategy 
(Sect. 3) to (quasi) optimally tune its parameters, aiming 
the maximization of the classification accuracy. Also, the 
aforementioned work did not compare the proposed method 
against other classification methods.

2 � Evaluation and Classification Model

The input data for the evaluation and classification method 
are the ranges that map the parameters that are considered 
in their respective individual classifications, which are 
defined when each parameter is analyzed separately. Table 1 
describes the general form of these input data. In this table, 
note that:

•	 vp is the value assigned to the p-th parameter, with 
p ∈ {1, 2,… ,P};
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•	 v
q,(i)
p  is the i-th limit, with i ∈ {1, 2,… ,V − 1} , corre-

sponding to the q-th magnitude, with q ∈ {1, 2,… ,Q} , 
of the p-th parameter of the method of analysis; and

•	 c(i)
p  is the classification attributed to the corresponding 

range.

In the proposed method, for classifications that are more 
consistent with what is considered in real cases, it is pos-
sible to use parameters that depend on other magnitudes. 
For example, in a physicochemical analysis, it is known 
that the definition of classification ranges of the dielectric 
strength of insulating oil depends on the highest nomi-
nal voltage of the power transformer, since higher volt-
ages require more rigorous evaluations in this regard. If 
one considers three voltage ranges, for instance, one will 
have up to three classification tables, one for each value 
of q ∈ {1, 2, 3} . Thus, for the analysis of a specific case, 
the table that corresponds to the highest nominal voltage 
of the device in question should be used.

The value of each parameter of analysis is mapped into 
scores, applying continuous injective functions, which 
are expressed by piecewise linear functions. Figure  1 
illustrates the correspondence between the value vp of the 
parameter and its respective score, sp , which is obtained, 
here, by means of simple linear interpolation. It should 
be noted that for real mapping, it is necessary to adopt 
suitable values for the limits of scores, 

{
t1, t2,… , tV−1

}
 , 

which are also applied to all the parameters of this pro-
posed method.

After determining the scores of all the analysis param-
eters, Eq. (1) is applied to obtain a global score, sg , for a 
given set of values of the parameters.

In Eq. (1):

(1)sg =

∑P

p=1
�p ⋅ �(sp) ⋅ sp

∑P

p=1
�p ⋅ �(sp)

•	 The value �p is the weight that represents the importance 
of the p-th parameter in the composition of the global 
score; and

•	 The second weighting �(sp) follows Eq. (2), which should 
indicate that poorer scores are more penalized when 
determining the composition of the global score.

Equation (2), which is exponential, decreases as the sp 
score increases when b < 0 , resulting in the application of 
an increase in poor scores. Note that the values of parameters 
a, b and c must be properly dimensioned to result in suitable 
global sg scores.

Lastly, the global score is mapped for the global classifi-
cation, as illustrated in Fig. 2, by using appropriate values 
for the limits 

{
l1, l2,… , lV−1

}
 that demarcate the global clas-

sifications with respect to the scores.

3 � Optimization Strategy

To use the evaluation and classification method presented 
in Sect. 2, suitable values must be adopted for the following 
parameters of model, which are indicated in vector form for 
convenience:

•	 T = (t1, t2,… , tV−1) , which provides the limits used in 
mapping the values and the individual scores of the 
parameters;

(2)�(sp) = a ⋅ eb⋅sp + c

Table 1   General form of mapping between ranges of values and indi-
vidual classifications for the parameters

Range Classification

v
q,(V−1)
p ≤ vp ≤ v

q,(V)
p

c(V)
p

v
q,(V−2)
p ≤ vp < v

q,(V−1)
p

c(V−1)
p

⋮ ⋮

v
q,(2)
p ≤ vp < v

q,(3)
p

c(3)
p

v
q,(1)
p ≤ vp < v

q,(2)
p

c(2)
p

v
q,(0)
p ≤ vp < v

q,(1)
p

c(1)
p

Fig. 1   Injective functions for mapping the values of scores
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•	 W = (�1, �2,… , �P) , which are the weights that express 
the importance of each parameter of analysis;

•	 E = (a, b, c) , which shapes the exponential function that 
emphasizes poor scores assigned to values of the param-
eters under analysis;

•	 L = (l1, l2,… , lV−1) , which defines the limits applied in 
mapping the global score and the global classification.

Thus, the vector X = (T,W,E,L) , which determines 
the quality of the evaluation and classification method, 
can be obtained by trial and error, or, more conveniently, 
because it is a nontrivial problem with several variables, 
by using an optimization algorithm. In this work, we used 
the hill climbing algorithm (Engelbrecht 2007; Michale-
wicz and Fogel 2004), which is associated with the “1/5 
rule” (Michalewicz and Fogel 2004). This combination 
provides a balance between global exploration and local 
exploitation in the process of searching for optimal or 
quasi-optimal solutions. The pseudocode of the algorithm 
is presented below in Procedures 1–4. In these procedures, 
we use the various data records from the application of 
the parameter measurement technique that composes it to 
measure the quality of the evaluation model and the result-
ing classification.

The use of the “1/5 rule,” which renders the search pro-
cess adaptable, enables the deviation applied to the gen-
eration of a proposed neighboring solution to be increased 
when the number of hits is relatively large, expanding the 
search to larger regions, whereas, when the number of hits is 
small, it is preferable to concentrate the search in a smaller 
search space.

Fig. 2   Injective function for mapping the global score for the global 
classification



836	 Journal of Control, Automation and Electrical Systems (2019) 30:832–839

1 3

Empirically, the Fibonacci sequence proved to be ade-
quate to generate weights for the individual scores assigned 
to the analysis parameters, since the corresponding weight 
grows rapidly in response to the reduction in the score and 
respective assigned classification. For continuous map-
ping of the scores and their amounts in the application of 
Eq. (1), an exponential approximation of the aforementioned 
sequence is proposed, in the form of Eq. (2). To this end, 
the linear system (3) is solved by the least squares method 
(Press et al. 2007), using the pairs {xi, yi} , i = 0, 1,… ,V  , 
where xi = i∕V  and yi = FV−i+1 (the numerical term of the 
Fibonacci sequence, V − i + 1 , in which F1 = F2 = 1 and 
Fn = Fn−1 + Fn−2 ), in addition to a = eA and the initial value 
of c = 0.

(3)

⎡⎢⎢⎢⎢⎣

V∑
i=0

yi

V∑
i=0

xi ⋅ yi

V∑
i=0

xi ⋅ yi

V∑
i=0

x2
i
⋅ yi

⎤
⎥⎥⎥⎥⎦

�
A

b

�
=

⎡
⎢⎢⎢⎢⎣

V∑
i=0

yi ⋅ ln(yi)

V∑
i=0

xi ⋅ yi ⋅ ln(yi)

⎤⎥⎥⎥⎥⎦

The absolute distance is the difference between the response 
obtained by taking the proposed solution to the model and 
the answer previously provided by the specialist. For exam-
ple, if the classification estimated by the model is “B,” but 
the predefined classification is “D,” is the absolute error is 2.
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4 � Case Studies and Results

The proposed methodology was applied to two datasets, 
one pertaining to physicochemical parameters and the other 
to electrical tests on power transformers. The records used 
here pertain to transformers with power ratings ranging 
from 1 to 50 MVA, with nominal voltages in the range of 
34.5–138 kV, with ages varying from 1 to 58 years, whose 
data were obtained over a period of 36 years (1979–2015). 
The most representative subsets were extracted from the 
entire available databases (approximately 5000 records), 
balancing classifications from “A” (excellent) to “E” (very 
poor). The variety and number of records used in this study 
was considered suitable by the maintenance engineers, since 
the great majority of cases were “A” (excellent) or “B” (very 
good) conditions, which could unsuitably bias the results, 
inadvertently increasing the correct predictions.

The following configuration was considered in both 
cases: V = 5 , corresponding to classifications of “A”–“E”); 
nmax = 10,000 iterations; kmax = 100 iterations as an inter-
val to proceed with the application of the “1/5 rule”; and 
Errmin = 0 (utopian error).

All the presented results are given by the average correct-
ness ratios considering 100 runs of each method and consid-
ering, at each run, a training dataset randomly composed by 
90% of the cases and a validation dataset with the remaining 
10% of the cases. Thus, this leave-10%-out cross-validation 
procedure was used to accurately estimate the prediction 
performance of the classification methods.

4.1 � Case 1: Physicochemical Results

The parameters considered in the physicochemical analysis 
of the transformer insulating oil were: interfacial tension 
(IT), neutralization index (NI), color index (CI), dielectric 
strength (DS), moisture content (MC) and power factor (PF). 
To optimize the evaluation and classification model, we used 
218 diversified representative records, each with a symbolic 
quality classification predefined by maintenance engineering 
specialists.

An average accuracy rate of 93.6% was obtained for the 
datasets used to create the models, whose one of the results 
is shown in “Appendix A,” and all the observed errors 
showed an absolute difference of only one unit. To validate 
the methodology, 21 (10%) cases not used to create the 
model were also applied, resulting in an average accuracy 
rate of 85.0%, which confirms the quality of the classifica-
tion model.

The following methods were also applied (Engelbrecht 
2007) for comparison purpose, and the corresponding results 
were obtained.

•	 Naive Bayesian Network (NBN) resulted in an 85.7% 
average accuracy rate for the training datasets and 
82.0% for the validation datasets. The advantages of this 
approach stem from its ability to provide a degree of 
belief (probability) for each classification, and because 
it is unnecessary to provide the individual classifica-
tion ranges for each parameter, while its disadvantages 
are the need to use a larger number of training cases to 
ensure a lower classification error, and the impossibility 
of directly generating a numerical value pertaining to the 
global evaluation (condition index).

•	 Decision Tree (DT) resulted in an 85.46% average accu-
racy rate for the training datasets and 72.59% for the 
validation datasets. These results were achieved with 
very deep trees and showed undesirable overfitting. The 
errors increased considerably with smaller depths. The 
advantage of this approach stems from the simplicity of 
its implementation. However, it is not able to provide a 
global evaluation, but only a global classification.

•	 Linear Discriminant Analysis (LDA) this approach pro-
vided an average accuracy rate of 87.6% for the training 
datasets and 81.0% for the validation datasets, and pre-
sented the same advantages and disadvantages as those 
of a Naive Bayesian Network.

These results demonstrate that the proposed methodology 
can provide better results than the three methods applied. 
Moreover, it should be noted that the three aforementioned 
approaches presented errors with an absolute distance 
greater than 1, which may result in a highly undesirable 
gross classification error for new cases.

4.2 � Case 2: Electrical Results

The methodology developed on this work was applied to 
insulation resistance and power factor tests. The following 
analysis parameters were considered in the Insulation Resist-
ance (IR) case study:

(a)	 RH : IR from HV (high voltage) winding to ground;
(b)	 PIH : Polarization Index (PI) of RH;
(c)	 RHL : IR between HV and LV (low voltage) windings;
(d)	 PIHL : PI of RHL;
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(e)	 RL : IR from LV winding to ground; and
(f)	 PIL : PI of RL.

To optimize the model applied to insulation resistance 
tests, we used 150 diversified representative records, each 
with a symbolic quality classification predefined by main-
tenance engineering specialists.

Average accuracy rates of 86.7% and 88.9% of the cases 
were obtained in training and validation datasets, respec-
tively, which also confirms the quality of the classification 
model. The results achieved applying the other methods, 
considering training and validation, respectively, were: NBN 
with average accuracies of 68.75% and 46.6%; DT with aver-
age accuracies of 59.4% and 34.4%; and LDA with average 
accuracies of 68.1% and 42.0%.

Applying the general methodology to power factor tests 
(PF), the following parameters were considered:

(a)	 PFHV/(LV+G) : PF of the insulation of HV winding in rela-
tion to LV winding and ground, together;

(b)	 PFHV/G : PF of the insulation of HV winding in relation 
to ground;

(c)	 PFLV/(HV+G) : PF of the insulation of LV winding in rela-
tion to HV winding and ground together; and

(d)	 PFLV/G : PF of the insulation of LV winding in relation 
to ground.

In this case, we also analyzed 150 results of power factor 
tests, obtaining average accuracy rates of 92.4% in training 
sets and 93.3% in validation sets, which shows its efficiency 
for the characterization of the insulation system of power 
transformers. The results achieved by applying the other 
methods, considering training and validation, respectively, 
were: NBN with average accuracies of 75.92% and 71.9%; 
DT with average accuracies of 79.2% and 64.4%; and LDA 
with average accuracies of 81.57% and 69.1%.

“Appendix B” illustrates results obtained for the param-
eters of the electrical classification/evaluation methods.

5 � Conclusion

This work proposed a methodology for developing evalua-
tion and classification models for power transformer preven-
tive maintenance, although it can be used for any type of 
component or device for which there are previous records 
of measurements of their parameters and classifications pre-
pared by specialists. The fundamental purpose of the pro-
posed methodology is to map the function performed by spe-
cialists, i.e., evaluation and classification of the equipment 
for decision-making purposes, including the prioritization of 
actions to be taken in urgent and emergency cases. This tool 
can be used jointly with well-established diagnostic tech-
niques, to provide not only the diagnosis itself but also the 
condition index and the respective classification.

Compared with decision trees, Naive Bayesian networks 
and linear discriminant analysis, the proposed method 
showed superior results, i.e., accuracy rates exceeding 93% 
in the case of physicochemical analysis classification, with 
a maximum absolute error of one unit in terms of classifica-
tion, which is highly desirable.

Acknowledgements  The authors thank the Federal University of Goiás 
and the Federal Institute of Education, Science, and Technology of 
Goiás for their practical support, as well as the Goiás State Research 
Foundation (FAPEG) and the Brazilian Electricity Regulatory Agency 
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Appendix A: Physicochemical Evaluation 
and Classification Method

The results of the optimization of evaluation and classifi-
cation model with respect to physicochemical parameters 
(Marques et al. 2017a) are presented in Table 2.

Table 2   Results of optimization of the model applied to physico-
chemical tests

Parameter Value

T (0.250, 0.541, 0.628, 0.925)
W (0.1488, 0.2746, 0.0316, 

0.2771, 0.1690, 0.0990)
E (7.6409, − 2.2542, 0.0242)
L (0.468, 0.641, 0.758, 0.877)
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Appendix B: Electrical Evaluation 
and Classification Method

The results of the optimization of evaluation and classifica-
tion model with respect to insulation resistance parameters 
(Marques 2017b) are presented in Table 3.

The results of the optimization of evaluation and clas-
sification model with respect to power factor parameters 
(Marques et al. 2018) are presented in Table 4.
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Table 4   Results of optimization of the model applied to power factor 
tests

Parameter Value

T (0.0974, 0.3224, 0.7519, 0.9201)
W (0.3191, 0.1617, 0.3252, 0.1939)
E (8.5968, − 2.7736, 0)
L (0.0974, 0.3224, 0.7519, 0.9201)

Table 3   Results of optimization of the model applied to insulation 
resistance tests

Parameter Value

T (0.3070, 0.5155, 0.6416, 0.7896)
W (0.2790, 0.0417, 0.2790, 0.0641, 

0.2721, 0.0641)
E (7.0876, − 1.8332, 0)
L (0.3070, 0.5659, 0.6618, 0.8536)
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