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Abstract
This paper proposes a deterministic iterative method to obtain a linear time-invariant model of a multivariable plant from
time-domain measured data. Model identification is based on frequency response matrices computed from time input–output
signals which can be also measured during the normal system operation, possibly without the need of introducing special
classes of input signals. Quality of computed frequency response is improved as a new data set is considered at each iteration.
The iterative process runs as a filter for noises introduced by system or sensors. Once a frequency response matrix is obtained,
a matrix function model is estimated by computing a sequence of optimal and analytical solutions to a convex problem based
on a quadratic criterion and an optimized expansion of rational functions. Final identified models are chosen considering a
trade-off between small cost and low complexity (small order). Numerical examples are used to evidence advantages and
limitations of the method.

Keywords Multivariable systems identification · Fast Fourier transform · Frequency response · Optimized expansion of
rational functions

1 Introduction

Mathematical models of dynamic systems are particularly
useful for both theoretical and numerical analysis and synthe-
sis of control systems. Closed-loop control is commonly used
to modify the system behavior to meet robustness require-
ments for stability and performance. An adequately tuned
model is often able to represent the systemdynamics satisfac-
torily without presenting excessivemathematical complexity
to allow applying advanced control system methods. A nat-
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ural way to obtain differential equations to model system
dynamics is by using dynamic analysis based on physi-
cal principals. System identification is an alternative to that
class of modeling techniques which, in some cases, can be
impractical or difficult due to the complexity of physical laws
describing the system dynamics (Tóth 2010).

Several approaches have been presented to address the
problem of identifying systems in the frequency domain,
and there is currently a large literature available on this
subject; see Ljung (1999), Pintelon and Schoukens (2012),
Tischler and Remple (2012) and Ljung (2013), for instance.
In Ljung (2013), an overview about identification of lin-
ear systems is presented. It covers the classical approach of
parametric methods by means of maximum likelihood and
prediction error methods, as well as some classical nonpara-
metric methods through spectral analysis. Some approaches
are based on least square method (Sanathanan and Koerner
1963; Drmac et al. 2015; Galrinho 2016). Other studies use
H∞-norm-based estimation (Ninness 1998; Vizer 2015). It is
also observed that some works propose two-stage algorithms
(Akçay and Heuberger 2001): an estimation of a high-order
model is performed before the application of a model order
reduction technique, normally based on balanced truncation
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theory. In (Ninness 1996; Oliveira et al. 2011), orthonormal
basis functions such as Laguerre or Kautz are used for series
expansion of rational transfer functions. In general, the main
concern is to solve the identification problem as a solution to
a convex optimization problem.

Despite frequency identification techniques are widely
used in practice, in certain cases, especially in highly com-
plex systems, their application may be difficult or even
impractical, notably due to the impossibility of exciting the
system with specific classes of signals having sufficient high
amplitudes. It is also worth mentioning that, in some sit-
uations, it is also difficult to interfere with (or make the
necessary field tests during) the system regular operation.
Identification of electromechanical dynamics in large hydro-
electric power plants is a typical example where there are
difficulties in obtaining field data from the power machines
operating in closed loop and regularly connected with the
rest of the system due to the associated risks (Bossa et al.
2011). In addition, the system could be unstable in open loop
or not contain important oscillation modes if some genera-
tors are not synchronized with the rest of the system during
field tests.

In this paper, a three-step method of frequency-domain
identification of a multiple-input multiple-output (MIMO)
system based on a convex optimization problem is pre-
sented. In the first one, a frequency response matrix (FRM)
is iteratively computed, considering a particular bandwidth
of interest, from simultaneous measurement of system inputs
and outputs. The idea in this first step is to also consider the
possibility of interfering minimally on the normal system
operation. That is, no specific classes of exciting inputs must
necessarily be considered provided that the regular operat-
ing (input/output) signals are rich enough. If this does not
occur, in systems whose inputs are excitable for model iden-
tification purposes, some specific signals can be used, such
as the swept sine, also called periodic chirp, Schroeder multi-
sine, which is a sum of harmonically related sine waves, and
the pseudorandom binary sequence (Pintelon and Schoukens
2012). Then, an alternative approach is based on the principle
of superposition. That is, these specific signals can be added
to the operating system inputs as disturbances with small
amplitudes, interfering minimally in its operation, as in the
large power plant example reported by Bossa et al. (2011).
In a second step of the method, for a set of previously cho-
sen orders, {n} ∈ N

+, a corresponding family of nth-order
rational and proper models, Gn

e (s), is estimated by comput-
ing a sequence of optimal solutions to a convex problem
based on a quadratic criterion. The best model is chosen con-
sidering a trade-off between small cost and low complexity
(small n). Finally, in the last step, the identified model is
validated.

2 ProposedMethod

2.1 General Problem Statement

Consider a linear time invariant (LTI) MIMO system with p
inputs and q outputs and a given set of time-domain sam-
pled input/output data. The general black box identification
problem (Ljung 1999; Pintelon and Schoukens 2012) in the
frequency domain to be solved can be stated as follows: deter-
mine a transfer function matrix (TFM) model, Ge(θ, s), with
limited and reduced complexity whose frequency response
be as close as possible to that of the system, according to a
given optimization criterion. In this case, limited and reduced
complexitymeans that the estimatedmodel depends on a real
parameter vector, θ , of finite and reduced dimension. The
system to be identified can be nonlinear since the available
small-signal data are obtained from field tests performed on
a stable operating point.

2.2 General Algorithm

The identification method is proposed to be performed in
three main steps as shown in the algorithm of Fig. 1. A fre-
quency response is first determined frommeasured time data

Fig. 1 Proposed general algorithm
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considering a bandwidth of interest (first step described in
Sect. 2.3). Then, an n-order TFM model is tuned by using a
basis expansion that minimizes an optimal quadratic norm
(second step described in Sect. 2.4). The estimated model
order n is iteratively increased up to a previously established
cost is reached, which results in a corresponding family of
models of different orders. The choice of themost appropriate
order n and hence Gn

e (s) is based on a trade-off between the
precision required to represent the dynamic behavior of the
plant and the mathematical complexity of the model. Once
an n-order system model has been estimated, it can be val-
idated by using some algorithm, e.g., one of the methods
presented by Ljung (1999). If the validation fails, the overall
identification process has to be restarted by using a new set
of measured data. Regarding the computational burden, it is
mainly related to the application of the fast Fourier transform
(FFT) in the first step and with the solution of two system
of linear equations (SLE), in the first and second. In fact, the
algorithm is polynomial time in general: in the first step, it
is O(p3), O(q) and O(m), where m is the dimension of the
frequency vector; in the second step, it isO(n3),O(p),O(q)

and O(m).

2.3 Obtaining Frequency Response Data

According to Schumacher et al. (2015), frequency-domain
data can be obtained in three ways: as a solution to a non-
parametric identification problem in which an estimate of
the frequency response of the system is computed from time-
domain input/output data; through the application of the FFT
to the time-domain input/output data; and by a direct mea-
surement of the frequency response of the system. Here,
we propose to apply the FFT to time data. The frequency
response of each plant channel is obtained through the solu-
tion of an SLE. For multiple-input single-output (MISO)
and MIMO cases, the idea is to split each set of sampled
input/output data into a family of windows not necessarily
having the same number of points. Eachwindow corresponds
to one equation in the SLE. Then the number of windows
must be equal to (or greater than) the number of inputs so
that an (over)determinate SLE is obtained, as detailed in the
following sections. A sequence of iterative solutions is then
computed for each new set of time data until a smooth and
rich frequency response is obtained. That is, the effect of
noises and outliers in measured time data is attenuated and
more frequency components are introduced in the frequency
response as the number of iterations increases.

2.3.1 SISO Case

The classical procedure to obtain a frequency response of a
stable LTI single-input single-output (SISO) system is based
on the fact that, if it is subjected to a sinusoidal input, its

output will, at steady state, be a sinusoidal signal of the
same frequency as the input, but with different amplitude and
phase. Thus, it is enough to excite the system with sinusoidal
inputs having frequencies in a range of interest to obtain a
discrete number of frequency data. However, this procedure
may present some practical difficulties. For instance, it is not
always possible to excite a system with specific classes of
signals. Besides, for same complex systems like chemical
processes, for example, time spent in this kind of test may be
prohibitive due to very slow dynamics involved.

An alternative to the aforementioned procedure is to apply
the FFT to the input and output plant signalsmeasured during
regular operation conditions, as indicated in the first step of
Fig. 1, considering or not some additional small disturbance
inputs. For SISO systems, the frequency response curves can
be computed by sampling input and output signals and apply-
ing the FFT to u(kT ) and y(kT ), where k ∈ {1, 2, . . .} and
T is the sampling time (Ljung 1999; Pintelon and Schoukens
2012; Tischler and Remple 2012):

G( jωi ) = Y ( jωi )

U ( jωi )
, i ∈ {1, 2, . . . ,m}, (1)

where U ( jω) = FFT[u(kT )], Y ( jω) = FFT[y(kT )] and
ω ∈ R

m is a frequency vector.

2.3.2 MISO Case

ForMISO systems, with p inputs and for i ∈ {1, . . . ,m}, the
output in the frequency domain can be written as:

Y ( jωi ) = G11( jωi )U1( jωi ) + G12( jωi )U2( jωi )

+ · · · + G1p( jωi )Up( jωi ). (2)

In this case, computing all entries of G( jωi ) simultaneously
by using relation (1) is not possible due to multiplicity of
inputs. To overcome this problem, one can take advantage of
the superposition property of linear systems by testing each
input–output pair independently (and alternately) which can
be costly in terms of time spent in the process. Besides, that
maneuver could be infeasible for financial, operational or
technical reasons in an industrial plant, for instance.

A practical way proposed here to compute all entries of
G( jωi ) simultaneously is by splitting a set of input–output
samples into subsets (windows), not necessarily containing
the same number of points, and constructing a set of lin-
ear equations whose unknown variables are the coefficients
G1k( jωi ), k ∈ {1, 2, . . . , p}. The number of windows must
be equal to (or greater than) the number of inputs so that
an (over)determinate system of linear equations is obtained.
This allows determining a system frequency response for
a selected set of discrete frequencies. This computation is
repeated as many times as needed so that, by monitoring the
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Fig. 2 Two-input two-window case

system inputs and the output, the frequency response con-
verge iteratively to a solution.

Consider now, for instance, the case of a two-input system
and data split into two windows, a and b, as illustrated in
Fig. 2. For a vector of m selected frequencies, the following
set of linear equations is obtained, where i ∈ {1, 2, . . . ,m}
(Oliveira et al. 2017):

{
G11( jωi )Ua

1 ( jωi ) + G12( jωi )Ua
2 ( jωi ) = Ya( jωi ),

G11( jωi )Ub
1 ( jωi ) + G12( jωi )Ub

2 ( jωi ) = Yb( jωi ).
(3)

For a given frequency value, problem (3) defines an SLE
which may be undetermined if the associated (2× 2)-matrix
is singular or poorly conditioned. A condition to be satisfied
such that this problem iswell conditioned is that the input fre-
quency spectra vary sufficiently from onewindow to another.
Otherwise, SLE (3) will be almost linearly dependent. If this
is the case, a good practice is to consider a greater period of
time for data measurements to get rid of singularities, since
it is enough that small variations occur at least in one of the
inputs from window a to b for a given frequency range of
interest ω ∈ [ω1, ωm].

Notice that SLE (3) can be rewritten as a single system of
linear equations as follows:

⎡
⎢⎢⎢⎣
U1 0 · · · 0
0 U2 · · · 0
...

...
. . .

...

0 0 · · · Um

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
G1
G2
...

Gm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
Y1

Y2
...

Ym

⎤
⎥⎥⎥⎦ , where (4)

Ui =
[

Ua
1 ( jωi ) Ua

2 ( jωi )

Ub
1 ( jωi ) Ub

2 ( jωi )

]
, Gi =

[
G11( jωi )

G12( jωi )

]
, Yi =

[
Ya
1 ( jωi )

Yb
1 ( jωi )

]

and i ∈ {1, 2, . . . ,m}.
From now on, the first step of algorithm in Fig. 1 is more

deeply studied and detailed for the MISO case, as shown in
Fig. 3. This newalgorithmhas fourmain parts. First two parts
basically consist of obtaining a three-dimensional matrix
with the data related to the system input/output frequency
spectra, computed from time-domain measured signals. Last

Fig. 3 FRM computation—MISO system case

two parts define and solve iteratively a set of SLE. The result-
ing FRM is computed as an average of all iterative solutions.
Algorithm in Fig. 3 can be described by the following steps:
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Algorithm 1 : FRM computation for MISO systems

Step 1: Measure discrete-time input/output data by using
a sampling rate T suitably chosen to capture main
system dynamic features in terms of frequency spec-
tra.

Step 2: Split sampled input/output data into a family of
discrete-time windows not necessarily having the
same number of points. The data windows are
arranged and stored as pages (or cards) in a three-
dimensional (3D) matrix as shown in Fig.4.

Step 3: Analyze each page to select those whose input
variation rates are high enough to excite system
dynamics. Hence cards containing smooth input
sequences with variation rates below a predefined
tolerance are discarded.

Step 4: Apply FFT tomatrix columns of each page to obtain
a new 3D matrix of input and output frequency
spectra. In each new card, the time vector column
is replaced by another of linearly spaced frequen-
cies. New remaining columns will correspond to the
associated input or output vectors in the frequency
domain.

Step 5: Select discrete-frequency values for which the cor-
responding frequency-domain input values are rel-
evant in order to reduce the computational burden.
The following selection criteria can be used either
in a separately or jointly way: select points of max-
ima, above a specified cutting threshold and/or
above a cutting threshold proportional to the signal
average.

Step 6: Iteratively solve the problem of computing FRM
by selecting and processing a number of discrete-
frequency pages in a sequential or a random way.
For each iteration, define and solve an SLE with at
least as many equations (pages) as the number of
system inputs, as in (4). It should be noted that the
coefficients of SLE (3) are complex numbers. We

Fig. 4 Discrete-time input/output data stored as a family of windows
in a 3D matrix

efficiently solve complex SLE by using numerical
algorithms presented in (Militaru and Popa 2012).
The basic idea is to transform the given complex
system into a real one and solve the problem by the
direct method (Strang 2006). If SLE in (4) is poorly
conditioned for a given frequency value ωi , it is
discarded.

Step 7: The procedure is repeated until the number of iter-
ations reaches a predetermined maximum value.
FRM entries are obtained by computing their aver-
age values for each selected frequency, considering
the total number of iterations.

2.3.3 MIMO Case

For MIMO systems with p inputs and q outputs, equation
(2) becomes:

This problem can be solved by decomposing it into q
MISO problems. In fact, frequency–response data compu-
tation of MIMO systems differs from MISO case only in
the number of SLE to be solved in each iteration. That is,
for each iteration, q SLE are solved rather than just one. As
there is no restriction in measuring and considering various
input–output channels simultaneously, those q SLE can also
be solved simultaneously.

2.4 TFM Identification

Once an FRM has been determined, the second step of the
method (Fig. 1) aims to tune a transfer matrix model for the
system to be identified.

2.4.1 SISO Case

For the SISO case, the n-order rational transfer function to
be estimated, Gn

e (s), can be written as:

Gn
e (s) = N (α, s)

D(β, s)
, (5)

where N (α, s) and D(β, s) are polynomials in s whose coef-
ficients are elements of vectors α and β.

Consider the error criterion J (θ), based on a quadratic
norm, also proposed by Levy (1959) and Sanathanan and
Koerner (1963):

J (θ) =
∥∥∥D(β, jω) ◦ G( jω) − N (α, jω)

∥∥∥
2
, (6)
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where N (α, jω) and D(β, jω) are the frequency responses
of numerator and denominator of the model Gn

e (s), respec-
tively, symbol ◦ means Hadamard product or element-by-
element multiplication, and θ = [αT βT ]T is the parameter
vector to be determined. Given the frequency response
G( jω), the goal is to tune the function Gn

e ( jω) by mini-
mizing criterion (6) through α and β.

The idea is to determine the model Gn
e (s) as a linear com-

bination of functions of the form presented in (7) and (8),
which consider both strictly proper and biproper rational
functions possibly having multiple complex poles:

Gn
e (θ, s) =

n∑
i=0

αi Pi (s) = N (α, s)

D(β, s)
,

= α0sn + α1sn−1 + · · · + αn−1s + αn

β0sn + β1sn−1 + · · · + βn−1s + βn
, (7)

where:

Pi (s) = sn−i

β0sn + β1sn−1 + · · · + βn−1s + βn
, (8)

α = [
α0 α1 . . . αn

]T ∈ R
n+1, (9)

β = [
β1 β2 . . . βn

]T ∈ R
n, (10)

θ = [
αT βT ]T = [

θ1 θ2 . . . θ2n+1
]T ∈ R

2n+1. (11)

For the sake of simplicity, denominator coefficient of term
sn is chosen β0 = 1 without loss of generality. For an arbi-
trarily chosen order n, the following problem of optimization
is defined, where θ ∈ R

2n+1:

min
θ

J (θ) = min
α,β

∥∥∥D(β, jω) ◦ G( jω) − N (α, jω)

∥∥∥
2
. (12)

Function J (θ) in (12) is convex, as shown in Lemma 1
and hence has a single minimum point (Bazaraa et al. 2006).
Theorem 1 shows how to compute the optimal solution of the
problem in (12).

Lemma 1 J (θ) : R2n+1 �−→ R is convex in θ .
Given an n-order approximation of the expansion of

Gn
e (θ, s), then the function (J (θ) = ‖D(β, jω) ◦ G( jω) −

N (α, jω)‖2) is convex in the parameter vector θ =
[αT βT ]T.

Proof J (θ) is convex in θ if and only if its domain is con-
vex and, for any two points, θ1 and θ2, belonging to it, the
following sentence is true ∀δ ∈ [0, 1]

J (δθ1 + (1 − δ)θ2) ≤ δ J (θ1) + (1 − δ)J (θ2). (13)

As the domainR2n+1 of J (θ) is convex, it remains to demon-
strate the inequality (13) is true. Starting from:

N ( jω) =
n∑

k=0

αk( jω)n−k,

D( jω) =
n∑

k=0

βk( jω)n−k,

β0 � 1, it is possible to write

J (δθ1 + (1 − δ)θ2) =

=
∥∥∥∥∥
{

n∑
k=0

[
δβ1k + (1 − δ)β2k

]
( jω)n−k

}
◦ G( jω)

−
n∑

k=0

[δα1k + (1 − δ)α2k ] ( jω)n−k

∥∥∥∥∥
2

=
∥∥∥∥∥δ

[
n∑

k=0

β1k( jω)n−k ◦ G( jω) −
n∑

k=0

α1k( jω)n−k

]

+ (1 − δ)

[
n∑

k=0

β2k( jω)n−k ◦ G( jω) −
n∑

k=0

α2k( jω)n−k

]∥∥∥∥∥
2

≤ δ

∥∥∥∥∥
[

n∑
k=0

β1k( jω)n−k ◦ G( jω) −
n∑

k=0

α1k( jω)n−k

]∥∥∥∥∥
2

+ (1 − δ)

∥∥∥∥∥
[

n∑
k=0

β2k( jω)n−k ◦ G( jω) −
n∑

k=0

α2k( jω)n−k

]∥∥∥∥∥
2

= δ J (θ1) + (1 − δ)J (θ2).

Theorem 1 The optimal solution of the problem defined by
(12) can be determined by solving the following system of
linear equations:

(14)

where Q j =
m∑
i=1

Re[Mj ], j ∈ {1, 2, 3, 4}, Y1 =
m∑
i=1

Re[A]

and Y2 =
m∑
i=1

Re[B], with:

M1 =

⎡
⎢⎢⎢⎣

RnR∗
n Rn R∗

n−1 . . . RnR∗
0

Rn−1R∗
n Rn−1R∗

n−1 . . . Rn−1R∗
0

...
...

...

R0R∗
n R0R∗

n−1 . . . R0R∗
0

⎤
⎥⎥⎥⎦ ,

M2 = −M1(: , 2 : n + 1)G∗,
M3 = M1(2 : n + 1 , :)G,

M4 = −M1(2 : n + 1 , 2 : n + 1)G∗G,
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A =

⎡
⎢⎢⎢⎣

RnR∗
nG

∗
Rn−1R∗

nG
∗

...

R0R∗
nG

∗

⎤
⎥⎥⎥⎦ , B =

⎡
⎢⎢⎢⎣
Rn−1R∗

nG
∗G

Rn−2R∗
nG

∗G
...

R0R∗
nG

∗G

⎤
⎥⎥⎥⎦ .

Terms M1( : , 2 : n+1) and M1(2 : n+1, : ) are submatrices
of matrix M1 excluding the first column and the first row,
respectively. Dependences on jωi , i ∈ {1, 2, . . . ,m}, were
omitted for the sake of simplicity. Besides, Rk = Rk( jωi ) �
( jωi )

k , k ∈ {0, 1, . . . , n}.
Proof From (12):

J 2(θ) =
m∑
i=1

∣∣∣D(β, jωi )G( jωi ) − N (α, jωi )

∣∣∣2

=
m∑
i=1

Ψ ( jωi )Ψ
∗( jωi ), (15)

with Ψ ( jωi ) = D(β, jωi )G( jωi ) − N (α, jωi ).
The optimal solution of the problem in (12) can be deter-

mined by means of the following condition:

∇ J 2(θ) =
(

∂ J 2

∂α0
,
∂ J 2

∂α1
, . . . ,

∂ J 2

∂αn
,
∂ J 2

∂β1
, . . . ,

∂ J 2

∂βn

)T

= [ 0 0 . . . 0 ]T. (16)

Note that, as J (θ) ≥ 0, the optimal solution for min J (θ)

is the same as min J 2(θ). Therefore, partially differentiating
(15) with respect to θ in (11):

∂ J 2

∂θp
=

m∑
i=1

(
∂Ψ ( jωi )

∂θp
Ψ ∗( jωi ) + Ψ ( jωi )

∂Ψ ∗( jωi )

∂θp

)
,

(17)

where: ∂Ψ ( jωi )
∂αk

= −( jωi )
n−k � −Rn−k,

∂Ψ ( jωi )
∂βl

= ( jωi )
n−lG( jωi ) � Rn−lG,

(18)

with k ∈ {0, 1, . . . , n}, l ∈ {1, 2, . . . , n} and Rn andG being
functions of ( jωi ).

Substituting (18) into (17), considering (16) and perform-
ing some algebraic manipulations, yields:

∂ J 2

∂αk
=

m∑
i=1

2Re[Rn−k( jωi )N
∗(α, jωi ) +

−Rn−k( jωi )G
∗( jωi )D

∗(β, jωi )] = 0, (19)

∂ J 2

∂βl
=

m∑
i=1

2Re[Rn−l( jωi )G( jωi )N
∗(α, jωi ) +

−Rn−l( jωi )G( jωi )G
∗( jωi )D

∗(β, jωi )] = 0,

(20)

where Re[ . ] represents the real part of the argument. By
making some algebraic manipulations in (19) and (20), one
can obtain a set of linear equations of the form Qθ = Y , as
in (14), where the independent term is that corresponding to
the coefficient β0 = 1. 
�

2.4.2 MIMO Case

The proposed method for SISO systems can be used suc-
cessively for each MIMO system channel to obtain a TFM.
Alternatively, a joint approach is proposed in this section
which considers a common denominator for all channels,
whose advantage is a reduced order model with a fewer num-
ber of parameters.

Formultivariable problems, we redefine the criterion (12),
as follows:

J (θ) =
∑
λ

∥∥∥D(β, jω) ◦ Gλ( jω) − N (αλ, jω)

∥∥∥2
2

(21)

where N (αλ, jω), D(β, jω) are the frequency responses,

respectively, of the numerator of λth channel Gn,λ
e (s) and of

the common denominator of Gn
e (s); and θ = [αλT βT ]T is

the parameter vector to be determined.
The identification problem for the MIMO case can then

be stated as the following optimization problem:

min
θ

J (θ) = min
θ

∑
λ

∥∥∥D(β, jω) ◦ Gλ( jω) − N (αλ, jω)

∥∥∥2
2

(22)

where θ = [αλTβT ]T ∈ R
q(n+1)p+n e Gλ( jω) is the fre-

quency response obtained for channel λ.
Following similar steps established for SISO cases, one

can obtain:

(23)

where submatrices Q1 and “0” have the same dimension.
Matrices Q1, Qλ

2, Q
λ
3 and Yλ

α
have similar structures of Q j

in (14).

3 Numerical Examples

Four numerical applications of the proposed method are pre-
sented. The first highlights important properties of FRM
computation method in Algorithm 1 when signal are noisy.
The second example is intended to simulate the application
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of the proposed general algorithm (Fig. 1), notably the steps
described in Sects. 2.3 and 2.4 . To identify a MIMO system
model, random inputs supposedly not user-manipulable were
considered. With the same objective, in third example, we
apply overall proposed algorithm to a two-degree-of-freedom
(2DOF) Helicopter. Last example consists in applying the
method introduced in Sect. 2.4.2 on a MIMO system model
of an air–air missile imposing a common denominator in all
channels. The following system error criteria is used to eval-
uate identified models:

J = ∥∥G( jω)λ − Gn,λ
e ( jω)

∥∥
2 . (24)
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Fig. 5 Frequency response diagram of G13(s)with noise. a 1 iteration,
b 500 iterations

3.1 Example 1

To illustrate the iterative frequency response computation
(steps 6 to 7 of the algorithm inFig. 3), consider the following
three-inputs one-output system:

G(s) =
[

4
s2+0.2s+1

s+5
s+0.5

100
s2+6s+25

]
. (25)

A set of input spectra was arbitrarily generated and contami-
nated with a zero mean noise, uniformly distributed such that
the module varied up to 1%. A corresponding set of output
spectra was then computed by using (2) and (25). Figure5
shows the results for channel G13( jω) for one (Fig. 5a) and
500 (Fig. 5b) iterations. Frequency response result for one
iteration is noisy and not appropriate to be used in the identi-
fication phase (Sect. 2.4). Nevertheless, after 500 iterations,
the result improved significantly, in spite of some dispersions
around 1 rad/s due to the amplification effect associated to the
complex pole in channel G11 and relative differences of the
values between channels. This dispersion can be attenuated
or even eliminated by increasing the number of iterations.

3.2 Example 2

The original TFM of this system example is given by (26).
Input signals were generated from the sum of rectangular
pulses whose amplitudes and widths vary randomly in time.
Actuator and sensor noises were considered Gaussian and
white with a signal/noise ratio of 20 dB. Input/output data
were split into a family of discrete-time windows (Step 2 of
Algorithm 1) of 500-s time interval. Each iteration used two
windows to obtain a determinate SLE. Maximum number
of iterations was chosen as 1000. Table 1 shows the system
model errors (24) for allmodels obtained for this example, for
each system channel. Considering that a goodmodel involves
both lowest cost and mathematical complexity (order) and,
in general, that these criteria tend to be conflicting, one can
choose orders corresponding to bold values in Table 1 for
each identified model channel. To validate the identified
model in time-domain, system responses to random inputs
are compared in Fig. 6.

Table 1 System model errors for Example 2

Order G11(s) G12(s) G21(s) G22(s)

1 4.8842 5.7323 0.8053 4.2295

2 0.8634 0.3614 0.2472 0.9003

3 1.5802 0.8759 0.2987 0.2952

4 0.9962 0.4709 0.2679 0.4111

5 1.4820 1.0775 0.2800 0.2506
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Fig. 6 Time responses (output y2(t)) for original and identified
models—Example 2

G(s) =
[ 1

(s+1)5
1−1.4s
(s+1)3

2(0.5s+1)e−0.1s

(s+1)(4s+1)
1

(2s+1)4

]
(26)

The identified TFM Ge(s) is:

⎡
⎢⎣

0.1291s2−0.1535s+0.1693
s2+0.5324+0.1550

0.2074s2−0.6861s+0.4073
s2+1.0709s+0.4394

−0.0236s2+0.1927s+0.4875
s2+1.2143s+0.2532

−0.0149s3+0.0132s2−0.0382s+0.0494
s3+0.9166s2+0.3931s+0.0526

⎤
⎥⎦ (27)

3.3 Example 3—2DOF Helicopter

This example consists of a real plant, the Quanser 2DOF
Helicopter (Quanser 2009). The two input reference angles
(yaw and pitch) were excited and only the pitch angle output
wasmeasured for identification purposes.Only one operating
point was taken into account corresponding to zero degree
in the two inputs. Since, for this case, the controller engineer
is allowed to manipulate the inputs, traditional approach was
initially applied for comparison purposes, by introducing a
sinusoidal signal in each input at a time. Then, 22 different
frequency values ranging between 0.125 rad/s and 18 rad/s
were used to excite the system to establish input amplitudes
such that neither nonlinearities were excited nor inadequate
signal-to-noise ratios were obtained.

Once adequate ranges of amplitudes were defined, sinu-
soidal signals were simultaneously introduced to both inputs
to obtain the FRM and an identified model by using the pro-
posed method. Six different values of amplitudes were used
for the inputs at each selected frequency. The number of iter-
ations in Step 6 of Algorithm 1 was set as 1750, were 730
iterations considered three pages and 1020 considered two
pages of same data set. Also, for each input frequency value,
a different size of time window were used to deal with the
balance between dynamic range vs random error. In fact,
this property of windowing methods is classical (Tischler
and Remple 2012). Time window size selection requires that
a compromise be made to improve the accuracy of the fre-
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Fig. 7 Calculated frequency response and identified model—Example
3. a Channel G11( jω), b channel G12( jω)

quency response at some frequencies at the expense of other
frequencies. The use of larger window size lowers the effec-
tive minimum frequency of identification, yielding data at
lower frequencies of interest. However, increasing the time
windows size reduces the number of frequency-history aver-
ages (Step 7) and thereby increases the random error. In
contrast, the use of smaller windows results in the opposite
trade-off. Then a better identification quality is obtained by
using larger windows for low frequencies and smaller win-
dows for high frequencies.

After determining the FRM average (Step 7), the iden-
tification method proposed in Sect. 2.4 can be performed.
Fig. 7 displays the computed average FR of measured data
and of the corresponding identified model data. Considering
a cost criterion and themodel complexity involved, themodel
order for the first channel, G11(s), and for the second chan-
nel, G12(s), were selected as 3 and 2, respectively. Although
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Fig. 8 Response to square wave inputs—Example 3

channelG12(s) appears to be poorly tuned, it should be noted
that, in low frequencies, its magnitude is 20 dB more attenu-
ated than that of the other channel and the excursion of inputs
is limited in amplitude for practical reasons. These facts allow
us to apply the principle of parsimony by adopting a lower
order for G12(s), which did not lead to a good frequency
fitting for this channel but has been proven effective in the
time domain as shown by results in Fig. 8.

In order to validate the identified model, the real closed-
loop system, the nonlinear closed-loop model in (Quanser
2009) and the identified model were submitted to the same
inputs which are different from those used for identifica-
tion purpose. Figure 8 presents responses to square wave
inputs. Different input amplitudes were used for each chan-
nel. The identified model behavior is closer to that of the
real system. Despite the relatively low order chosen for the
identifiedmodel, its time-domain output behavior adequately
represents the system dynamics. Similar results were found
by using chirp function inputs.

3.4 Example 4—Air-to-Air Missile

In this example, the application ofMIMO identification tech-
nique presented in Sect. 2.4.2 is illustrated for the case where
each transfer functionhas a commondenominator. The air-to-
air missile model presented in (Reichert 1992; Nichols et al.
1993) is studied. The nonlinear pitch-axis missile model rep-
resents a missile flying at an altitude of 20,000 feet at Mach

Table 2 System model errors for Example 4

Ord D(s) Cost/channel (Jλ) Total cost

1:1 2:1
(
JM = ∑

Jλ
)

2 8.1467 30.5079 38.6545

3 0.7709 2.7901 3.5611

4 2.429 × 10−11 3.911 × 10−11 6.3402 × 10−11

5 1.319 × 10−11 2.235 × 10−11 3.555 × 10−11
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Fig. 9 Frequency responses of channel 2:1: identified models (G2
e(s)

and G3
e(s)) and original model G(s)

Table 3 Coefficients of G4
e(s) for Example 4

Term Numerator Denominator

1:1 2:1

s4 0.00000 0.00000 + 1.0000

s3 0.00000 0.00000 + 2.1126 × 102

s2 − 4.5849 × 103 0.00000 + 2.3011 × 104

s1 + 2.8318 × 102 − 2.9445 × 106 + 8.0136 × 104

s0 + 5.6365 × 106 − 3.0488 × 106 + 5.5584 × 106

3. The input is the commanded tail fin deflection, and mea-
sured outputs are the normal acceleration and the pitch rate.
A fourth-order linearized model representing the missile and
actuator was obtained from the first-order Taylor expansion
around the operating condition determined by the angle of
attack equal to 15 degrees. This model was used to gener-
ate the frequency response data corresponding to 100 values
of frequency uniformly log-spaced, in a range of 0.01 rad/s
to 100 rad/s. Obtained costs are summarized in Table 2 and
FR of channel G21(s) are depicted in Fig. 9. These results
show that a third-order tuned model can represent the orig-
inal model dynamics with a good precision. Table 3 shows
the coefficients of the identified fourth-order model.

4 Conclusion

The method proposed in this paper is suitable for the multi-
variable system identification. Identifiedmodels are based on
FRMcomputed from the time input–output signalswhich can
be also measured during the normal system operation, pos-
sibly without the need of introducing special classes of input
signals. In this case, effectiveness of the method depends on
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how rich data measurements are with respect to information
about system dynamics in the frequency spectrum range of
interest.

In principle, once the time data are measured and stored,
we consider offline applications for our method. While the
first step of the algorithm (obtaining the frequency response)
can be implemented recursively, the second one (MFT Iden-
tification) cannot be. Given an estimated model order, the
solution in the latter is directly computed based on the fre-
quency response found in the former. Also, the frequency
response computed in the first step improves as new data are
considered at each iteration.

For MIMO cases, all channels of identified models share
the same dynamics, i.e., they have the same set of poles. Once
FRM is obtained, rational and proper transfer function mod-
els are estimated by computing a sequence of optimal and
analytical solutions to a convex problem based on a quadratic
criterion. Models are chosen considering a trade-off between
small cost and low complexity (small order).

Computational implementations are relatively simple,
involving, in general,matrix computations.Numerical exam-
ples evidenced some advantages and limitations of the
proposed method. Proposed procedure obtains good results
in few iterations, in cases where input–output data are noise
free. Contrarily, when signals are noisy, the increase in num-
ber of iterations works as a filtering process by computing
frequency response averages. This strategy allows this deter-
ministic method to treat stochastic signals. Finally, results
from the application of proposed method on a 2DOF heli-
copter demonstrated its effectiveness in identifying linear
models for real systems where nonlinearities and noises are
present.
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