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Abstract
This manuscript considers a class of linear systems with time-invariant uncertainties, where only the derivative of the state
vector is considered for feedback. In this scenario, the proposed strategy uses auxiliary dynamics, whose state is accessible
for feedback, to control the original plant. It is proposed a design procedure by means of linear matrix inequalities, adding
an auxiliary dynamics and subject to actuator saturation. If the conditions are feasible, they assure that the equilibrium point
of the closed-loop system is locally asymptotically stable, for all initial conditions in an ellipsoidal region, which is within
a given region defined for the plant and the new dynamics. Although the proposed design includes an auxiliary dynamics, it
ensures the stability and decay rate proprieties for the original plant. Simulations examples illustrate the effectiveness of the
proposed approach.
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1 Introduction

Derivative feedbackmaybe useful in the control of real plants
in which the state-derivative signals are easier to obtain than
the state signal. For instance, in the active automotive sus-
pension system (Reithmeier and Leitmann 2003; da Silva
et al. 2011, 2013; Assunção et al. 2007; Yazici and Sever
2017b), in the mass–spring system with damping (Moreira
et al. 2010), in the vibration control of an offshore steel
jacket platform (Yazici and Sever 2017a), in the design of
controllers for mechanical systems and vibration damping
systems (Abdelaziz and Valás̆ek 2004, 2005; Cardim et al.
2007; da Silva et al. 2012; Rossi et al. 2018), in the con-
trol of vibrations in cable-suspended bridges (Duan et al.
2005), in the optimization problem for a four-wheel-drive
front-wheel-steerable vehicle (Fallah et al. 2013) and in the
attitude control systemof refueling spacecraft in orbit (Abde-
laziz 2017).

The saturation of the actuators is present in large part of
the practical applications due to operational restrictions in
the equipments. In Hu et al. (2002), the domain of attraction
of the equilibrium point for a linear system saturated with
feedback of the state vector is estimated using a Lyapunov
function candidate of the quadratic type. The composite
quadratic Lyapunov function is used inHu and Lin (2003) for
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continuous linear systems with saturation, where the authors
show, in that case, the convex hull of a set of invariant ellip-
soids is also invariant.

To the best of the authors knowledge, there are not avail-
able in the literature papers which consider state-derivative
feedback and actuator saturation.

In view of the aforementioned scenario, we propose a
robust control structure for a class of uncertain linear system
in which only the state derivative is available for the feed-
back. The main idea is to use an auxiliary dynamic, whose
state is available for the feedback, in the control of the orig-
inal plant. For the proposed scheme, we use linear matrix
inequalities (LMIs) to design the gain from the control struc-
ture. To deal with the presence of saturation in the control
signal, we define an operating region for the control signal
where the saturation function is described by a convex com-
bination. Then, as a result of the design procedure, it finds
an invariant ellipsoidal set, and for all initial condition in
this set, the origin of the state space is an equilibrium point
locally asymptotically stable.

The rest of the manuscript is organized as follows: In
Sect. 2, we present an alternative representation of the satu-
ration of the control vector, we define the region of operation
for the auxiliary dynamics, in which the saturation repre-
sentation is valid, and present the LMIs that guarantee local
stability for the equilibrium point of the closed-loop sys-
tem. In Sect. 3, we present the relation between auxiliary
dynamics and plant dynamics. In Sect. 4, we present the
examples, where we use the MATLAB software, and the
LMILab (Gahinet et al. 1994), interfaced by YALMIP (Lof-
berg 2004), to solve the design conditions and perform the
simulations. Section 5 draws the conclusions.

Throughout this manuscript, � represents the set of real
numbers, Z+ represents the set of positive integers, �n and
�n×m denote the set of vectors n × 1 with real elements and
the set of matrices n × m with real elements, respectively.
The set Ir = {1, 2, . . . , r} , r ∈ Z+. We denote the convex
combination of vectors wi , ∀i ∈ Ir , by co = {w1, . . . ,wr }.
The block diagonal matrix formed by the matrices M1, . . . ,

Mr is indicated by diag{M1, . . . ,Mr }, M(l) represents lth
row (element) of a matrix (vector) M. ‖M‖ represents the
Euclidean norm, λmin(P) is the minimum eigenvalue of P,
and λmax(P) is the maximum eigenvalue of P.M > 0 (M <

0, M ≥ 0 and M ≤ 0) means that the matrixM is positive
definite (negative definite, positive semi-definite andnegative
semi-definite, respectively).

2 Derivative Control with Actuator
Saturation

Consider a linear system with time-invariant uncertainties,
subject to actuator saturation, given by:

ẋ(t) = A(α)x(t) + Bsat(u(t)), (1)

where A(α) ∈ �n×n and B ∈ �n×m are the matrices that
represent the dynamics of the uncertain system, x(t) ∈ �n

the state vector and u(t) ∈ �m the control vector. The matrix
A(α) is represented by the convex combination of known
matrices described byA(α) = ∑r1

i=1 αiAi (Boyd et al. 1994),
with the uncertain but constant vector α ∈ P ,

P =
{

α = [
α1 . . . αr1

]T :
r1∑

i=1

αi = 1, αi ≥ 0

}

, (2)

where r1 ∈ Z+.
The saturation of the control signal is given by

sat(u(t)) = [sat(u1(t)) . . . sat(um(t))]T ∈ �m,

sat(ul(t)) = sgn(ul(t))min {ρl , |ul(t)|} ,

with u(t) = [u1(t) . . . um(t)]T and ρl > 0 for all l ∈ Im ,
are known constants (Hu and Lin 2003; Hu et al. 2002; Alves
et al. 2016). The function sat(ul(t)) is displayed in Fig. 1.

Given the uncertain linear system (1), consider thatA(α),
for all α ∈ P , is a full rank matrix.

Then, we have

ẋ(t) = A(α)x(t) + Bsat(u(t))

⇒ A(α)x(t) = ẋ(t) − Bsat(u(t)). (3)

Once again, since the derivative of the state vector and
the saturation of the control vector are available, we have
that A(α)x(t) is also available for feedback. Now, from (3)
it is possible to define a new state vector of the system (1)
(Moreira 2015) taking:

x̂(t) = A(α)x(t). (4)

Therefore, from (3) and (4), x̂(t) is available for feedback.
Also, taking the time-derivative from (4) it follows that

˙̂x(t) = A(α)ẋ(t). (5)

Premultiplying (1) by A(α), and considering (4) and (5),

˙̂x(t) = A(α)x̂(t) + A(α)Bsat(u(t)). (6)

Remark 1 For the state-derivative feedback studied in this
paper, the assumption that the matrix A(α) is a full rank
matrix for all α defined in (2) is a necessary condition for
the stabilizability of the plant given in (1) (Abdelaziz and
Valás̆ek 2004; Assunção et al. 2007; Moreira et al. 2010;
da Silva et al. 2011, 2012).
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Fig. 1 Representation of sat(u j (t)) as a function of u j (t) and its oper-
ation region

2.1 A Convex Description for the Control Signal
Saturation

In Fig. 1, we present the graphical representation of the sat-
uration of one control signal u j (t) and the assumed limits
|u j (t)| ≤ φ j .

In order to obtain a convex combination that describes the
saturation in the control signal, we consider that there exist
φ j > 0 for all j ∈ Im , such that −φ j ≤ u j ≤ φ j . Then, an
alternative representation for the saturation of u(t) is given
by

sat(u(t)) = [
sat(u1(t)) . . . sat(um(t))

]T ∈ �m,

sat(u j (t)) = u j (t)ϕ j (t) (7)

with

ϕ j (t) =
{

1, if |u j (t))| ≤ ρ j

ρ j/|u j (t)|, if |u j (t)| > ρ j .
(8)

Therefore, max
{
ϕ j (t)

} = 1 and min
{
ϕ j (t)

} = ρ j/φ j .
Thus, we can represent the function ϕ j (t) by the following

convex combination:

ϕ j (t) = τ1( j) (t)v1( j) + τ2( j) (t)v2( j) (9)

with v1( j) = 1, v2( j) = ρ j/φ j . Observe that τ1( j) (t) +
τ2( j) (t) = 1 and τ1( j) (t) ≥ 0, τ2( j) (t) ≥ 0, for all j ∈ Im .

Lemma 1 Consider that there exist constants φ j > 0, j ∈
Im, such that −φ j ≤ u j ≤ φ j for all j ∈ Im. Define
Zs ∈ �m×m, s ∈ I2m , the diagonal matrices whose ele-
ments ( j, j) are all the possible combinations of v1( j) = 1
and v2( j) = ρ j/φ j , for all j ∈ Im. Then, from (7), (8) and
(9), the condition below holds:

sat(u(t)) = Z(λ)u(t), with Z(λ) =
2m∑

s=1

λsZs, (10)

with the uncertain vector λ ∈ L ,

L =
⎧
⎨

⎩
λ = [λ1 . . . λ2m ]

T :
2m∑

s=1

λs = 1, λs ≥ 0

⎫
⎬

⎭
,

where 2m ∈ Z+.

Proof For m = 1, note that (10) holds, from (7), (8) and (9),
for Z1 = v1(1) = 1, Z2 = v2(1) = ρ1/φ1, λ1 = τ1(1) (t) and
λ2 = τ2(1) (t).

Now, for m = 2, then u(t) = [u1(t) u2(t)]T , −φ1 ≤
u1(t) ≤ φ1,−φ2 ≤ u2(t) ≤ φ2, where φ1 and φ2 are known,
and from (7), (8) and (9),

sat(u(t)) =
[
sat(u1(t))
sat(u2(t))

]

=
[

(τ1(1) (t)v1(1) + τ2(1) (t)v2(1) )u1(t)

(τ1(2) (t)v1(2) + τ2(2) (t)v2(2) )u2(t)

]

=
[(

τ1(2) (t) + τ2(2) (t)
) (

τ1(1) (t)v1(1)

)
u1(t)

(
τ1(1) (t) + τ2(1) (t)

) (
τ1(2) (t)v1(2)

)
u2(t)

]

+
[(

τ1(2) (t) + τ2(2) (t)
) (

τ2(1) (t)v2(1)

)
u1(t)

(
τ1(1) (t) + τ2(1) (t)

) (
τ2(2) (t)v2(2)

)
u2(t)

]

= τ1(1) (t)τ1(2) (t)

[
v1(1) 0
0 v1(2)

] [
u1(t)
u2(t)

]

+τ1(2) (t)τ2(1) (t)

[
v2(1) 0
0 v1(2)

] [
u1(t)
u2(t)

]

+τ1(1) (t)τ2(2) (t)

[
v1(1) 0
0 v2(2)

] [
u1(t)
u2(t)

]

+τ2(2) (t)τ2(1) (t)

[
v2(1) 0
0 v2(2)

] [
u1(t)
u2(t)

]

= [λ1(t)Z1 + λ2(t)Z2 + λ3(t)Z3 + λ4(t)Z4]u(t).

(11)

From (10), (11) and Table 1, note that for s = 1:
j = 1 ⇒ l1 = 1, j = 2 ⇒ l2 = 1 and λ1(t) =
τl1(1)(t)τl2(1)(t) = τ1(1)(t)τ1(2) (t); s = 2: j = 1 ⇒ l1 = 2,
j = 2 ⇒ l2 = 1 and λ2(t) = τl1(1)(t) τl2(2)(t) =
τ2(1)(t)τ1(2)(t); s = 3: j = 1 ⇒ l1 = 1, j = 2 ⇒ l2 = 2
and λ3(t) = τl1(1)(t)τl2(2)(t) = τ1(1)(t) τ2(2)(t); s = 4:
j = 1 ⇒ l1 = 2, j = 2 ⇒ l2 = 2 and λ4(t) = τl1(1)(t)
τl2(2)(t) = τ2(1)(t)τ2(2)(t), Table 1 presents all combina-
tions of the these elements. Therefore, we can verify (10)
with v1(1) = v1(2) = 1, v2(1) = ρ1/φ1, v2(2) = ρ2/φ2, and

from (9),
∑4

s=1 λs = τ1(1)(t)τ1(2)(t) + τ2(1)(t)τ1(2)(t) +
τ1(1)(t)τ2(2)(t) +τ2(1)(t)τ2(2)(t) = (τ1(1)(t) + τ2(1)(t))
(τ1(2)(t) + τ2(2)(t)) = 1, in which

[Z1|Z2|Z3|Z4] =
[

v1(1) 0
0 v1(2)

∣
∣
∣
∣
v1(1) 0
0 v2(2)

∣
∣
∣
∣
v2(1) 0
0 v1(2)

∣
∣
∣
∣
v2(1) 0
0 v2(2)

]

.
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Table 1 Combinations for
variable changes in the
description of saturation by a
convex combination for m = 2

s l2|τl2 (2) l1|τl1 (1)
1 1 1

2 1 2

3 2 1

4 2 2

Table 2 Combinations for variable changes in the description of satu-
ration by a convex combination

s lm |τlm (m) lm−1|τlm−1 (m − 1) · · · l2|τl2(2) l1|τl1(1)
1 1 1 · · · 1 1

2 1 1 · · · 1 2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

2m 2 2 · · · 2 2

Thus, following the same idea, for all m ≥ 1, j ∈ Im and
s ∈ I2m one obtains (10), defining s = 1+∑m

j=1 2
( j−1)(l j −

1),λs = (
∏m

j=1 τl j ( j)(t)) = τl1(1)(t)τl2(2)(t) · · · τlm (m)(t),
l j ∈ I2 and the combinations presented in Table 2.

Observe that Table 2 is created for changing variables, the
order of the factors τl j ( j) being determined by the value of j ,
where j = 1 is the rightmost column and j = m the leftmost
column at right of s index. 	


Replacing (10) in (6), we obtain

˙̂x(t) = A(α)x̂(t) + A(α)BZ(λ)u(t), (12)

where λ = [λ1 . . . λ2m ]T , λs ≥ 0,
∑2m

s=1 λs = 1 for s ∈ I2m

and α ∈ P defined in (2). Hence, it follows from (12) that

˙̂x(t) =
2m∑

s=1

λs

r1∑

i=1

αiAi x̂(t) +
r1∑

i=1

αiAiB
2m∑

s=1

λsZsu(t).

(13)

In order to rewrite the dynamics in (13) in a single simplex,
we perform the following change of variable:μk = λsαi with
k = r1(s − 1) + (i − 1) + 1 for all i ∈ Ir1 and s ∈ I2m in
(13). Following this procedure, we get

˙̂x(t) =
2m∑

s=1

λs

r1∑

i=1

αiAi x̂(t) +
r1∑

i=1

αiAiB
2m∑

s=1

λsZsu(t)

= λ1

{
r1∑

i=1

αiAi x̂(t) +
r1∑

i=1

αiAiBZ1u(t)

}

+ · · · + λ2m

{
r1∑

i=1

αiAi x̂(t) +
r1∑

i=1

αiAiBZ2mu(t)

}

= λ1
{
α1
{
A1x̂(t) + A1BZ1u(t)

}}

+ · · · + λ1
{
αr1
{
Ar1 x̂(t) + Ar1BZ1u(t)

}}

+ · · · + λ2m
{
α1
{
A1x̂(t) + A1BZ2mu(t)

}}

+ · · · + λ2m
{
αr1
{
Ar1 x̂(t) + Ar1BZ2mu(t)

}}

= μ1
{
A1x̂(t) + A1BZ1u(t)

}

+ · · · + μr1

{
Ar1 x̂(t) + Ar1BZ1u(t)

}

+μr1+1
{
A1x̂(t) + A1BZ2u(t)

}

+ · · · + μ2r1

{
Ar1 x̂(t) + Ar1BZ2u(t)

}

+ · · · + μ(2m−1)r1+1
{
A1x̂(t) + A1BZ2mu(t)

}

+ · · · + μ2mr1

{
Ar1 x̂(t) + Ar1BZ2mu(t)

}
, (14)

with k ∈ Ir , r = 2mr1 the number of vertices of the polytopic
representation,

∑r
k=1 μk = 1 and μk ≥ 0.

In (14), we take

Â f r1+k = Ak, for all k ∈ {1, . . . , r1} and for each

f ∈ {0, 1, . . . , 2m − 1
}
,

Ẑk = Zs for k = (s − 1)r1 + 1, · · · , sr1 for each

s ∈ {1, . . . , 2m} ,

B̂k = ÂkBẐk for all k ∈ {1, . . . , r} . (15)

Then, defining μ = [μ1 . . . μr ]T , we can rewrite (14)
as

˙̂x(t) =
r∑

k=1

μk

{
Âk x̂(t) + B̂ku(t)

}
= Â(μ)x̂(t) + B̂(μ)u(t).

(16)

2.2 Robust Control of the Auxiliary Dynamic with
Actuator Saturation

Consider the uncertain linear system subject to actuator satu-
ration (1). Using the auxiliar dynamics (16), we propose the
control scheme presented in Fig. 2. Note that the control law
dynamics is given by uN (t) = u̇(t) ∈ �m presented in (17):

uN (t) = −KxN (t), with xN (t) =
[
x̂(t)T u(t)T

]T
. (17)

From (16) and (17), we have the following system:

{ ˙̂x(t) = Â(μ)x̂(t) + B̂(μ)u(t)
u̇ = uN (t) = −KxN (t),

(18)

which can also be represented by

ẋN (t) =
[
Â(μ) B̂(μ)

0m×n 0m×m

]

xN (t) +
[
0n×m

Im×m

]

uN (t)
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Fig. 2 Schematic of the proposed control law (17) for the uncertain
linear system subject to actuator saturation (1)

=
r∑

k=1

μkANkxN (t) +
r∑

k=1

μkBNuN (t), (19)

withxN (t) =
[
x̂(t)T u(t)T

]T
, BN = [

0n×m
T Im×m

]T
,

ANk =
[

Âk B̂k

0m×n 0m×m

]

, where Âk and B̂k were defined in

(15), or equivalently (Barmish 1983)

ẋN (t) = AN (μ)(t)xN (t) + BNuN (t). (20)

It is interesting to note that the control signal u(t) com-
poses the state vector xN (t). Therefore the restriction |u j (t)|
≤ φ j , used to obtain (19), can be viewed as an operation
region for the auxiliary dynamics. Thus, consider matri-
ces N = [

0m×n Im×m
] ∈ �m×(n+m), P ∈ �(n+m)×(n+m)

with P = PT > 0, vectors φ = [φ1 . . . φm]T ∈ �m ,
ρ = [ρ1 . . . ρm]T ∈ �m , Im = {1, · · · ,m}, ρ j > 0,
φ j ≥ ρ j , for all j ∈ Im .

Let X and E (P, δ) be the following sets:

X �
{
xN(t) ∈ �n+m : ∣∣N(h)xN (t)

∣
∣ ≤ φh, h ∈ Im

}
, (21)

with N = [
0m×n Im×m

]
,

E (P, δ) �
{
xN (t) ∈ �n+m : xN (t)TPxN (t) ≤ δ

}
, (22)

whereN and φ are known,N(h) represents the hth row of the
matrixN, φh , the hth element of the vector φ and a Lyapunov
function candidate V (xN (t)) = xN (t)TPxN (t).

Theorem 1 Consider a linear system subject to actuator sat-
uration described by (20) with control law given in (17) and
an operation region with xN (t) ∈ X , t ≥ 0 given in (21)
where N = [

0m×n Im×m
]
, φ > 0 ∈ �m, ρ > 0 ∈ �m, are

known. Assume that there exist a symmetric positive definite
matrix X ∈ �(n+m)×(n+m), a matrix M ∈ �m×(m+n) and a
scalar β > 0, such that

ANkX + XANk
T − BNM − MTBT

N + 2βX < 0, (23)

[
φh

2 N(h)X
XN(h)

T X

]

≥ 0, (24)

for all h ∈ Im, k ∈ Ir . Then, the control law (17), uN (t) =
−KxN (t), with K = MX−1, makes the origin of the state
space of the system (20) locally asymptotically stable with
decay rate equal to or greater than β for all xN (0) ∈ E (P, 1)
given in (22), where P = X−1.

Proof Consider a Lyapunov function candidate V (xN (t)) =
xN (t)TP xN (t), with 0 < P = PT ∈ �(n+m)×(n+m). Assume
thatX = P−1,M = KX and suppose that theLMIs described
in (23) and (24) , for all k ∈ Ir and h ∈ Im , hold.

Then, from (23) and M = KX we have

0 > ANkX + XANk
T − BNM − MTBN

T + 2βX

= ANkX + XANk
T − BNKX − XKTBN

T + 2βX. (25)

Premultiplying and postmultiplying (25) by X−1 = P =
PT > 0, it follows that

PANk + ANk
TP − PBNK − KTBN

TP + 2βP < 0. (26)

Assume xN (t) �= 0 and premultiplying and postmultiply-
ing (26) by xN (t)T and xN (t), respectively, we obtain

0 < xN (t)T
[
PANk + ANk

TP − PBNK − KTBN
TP
]
xN (t)

+2βxN (t)TPxN (t). (27)

Now, multiplying (27) by μk , where μk ≥ 0,
∑r

k=1 μk =
1 for k ∈ Ir , and taking the sum from k = 1 to r , considering
(20), we have

0 >

r∑

k=1

μkxN (t)T
[
PANk + ANk

TP − PBNK
]
xN (t)

+
r∑

k=1

μkxN (t)T
[
−KTBN

TP + 2βP
]
xN (t)

= xN (t)T
[
PAN (μ) + AN (μ)TP − PBNK

]
xN (t)

+xN (t)T
[
−KTBN

TP + 2βP
]
xN (t)

= xN (t)TPẋN (t) + ẋN (t)TPxN (t) + 2βẋN (t)TPxN (t)

= V̇ (xN (t)) + 2βV (xN (t)). (28)

Premultiplying and postmultiplying (24) by diag {1,P},
with P = X−1, it follows that

[
φh

2 N(h)

N(h)
T P

]

≥ 0. (29)
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Applying the Schur complement in (29), observe that

P − N(h)
Tφh

−2N(h) ≥ 0. (30)

Premultiplying (30) by xN (t)T and postmultiplying by
xN (t) �= 0, respectively, note that

xN (t)TPxN (t) ≥ xN (t)TN(h)
Tφh

−2N(h)xN (t). (31)

If xN (t) ∈ E (P, 1) given in (22), then xN (t)TPxN (t) ≤ 1,
and from (31),

φh
2 ≥ xN (t)TN(h)

TN(h)xN (t) = ∣
∣N(h)xN (t)

∣
∣2 ,

∣
∣N(h)xN (t)

∣
∣ ≤ φh ∀ h ∈ Im . (32)

Note that for N = [
0m×n Im×m

]
,

NxN (t) = [
0m×n Im×m

]
[
x̂(t)
u(t)

]

= u(t).

Hence,
∣
∣N(h)xN (t)

∣
∣ = |uh(t)| ≤ φh for all h ∈ Im . These

conditions allow the use of the results from Lemma 1, for
representing the plant (6) by (16) and the plant with auxiliary
dynamics by (20).

Then, if (24) is feasible, for all xN (t) ∈ E (P, 1) we have
E (P, 1) ⊂ X . In view of (28), for xN (t) �= 0, V̇ (xN (t)) <

0, from (22) if xN (0) ∈ E (P, 1) then, as long as (24) hold
for all h ∈ Im , xN (t) ∈ E (P, 1) for all t ≥ 0.

Therefore, for xN (t) �= 0, V̇ (xN (t)) < −2βV (xN (t)),
and the closed-loop system (20) and (17) is locally asymp-
totically stable with decay rate equal to or greater than β

(Boyd et al. 1994). 	

The sufficient conditions presented in Theorem 1 guaran-

tee the local stability with restriction in the decay rate for the
controlled system (17) and (20). The existence of matrices
X andM satisfying (23) and (24) is a sufficient condition for
the proposed controller design. The search for these matri-
ces can be done computationally. In this work, we use the
MATLAB software and the LMILab (Gahinet et al. 1994),
interfaced by YALMIP (Lofberg 2004) in the search of such
matrices.

Theorem 1 guarantees the local asymptotic stability, with
decay rate β, of the uncertain linear system (20) in closed
loop,with the control law (17), for any initial condition xN (0)
∈ E (P, 1). In the sameway as inAlves et al. (2016), given the
initial conditions polytope, the plant state vector x(0) ∈ X0,
where X0 = co

{
x01 , . . . , x0q

}
, x0e ∈ �n for all e ∈ Iq ,

x(0) =∑q
e=1 ηex0e , ηe ≥ 0 and

∑q
e=1 ηe = 1, which is the

convex hull of known vectors x01 , . . . , x0q . From X0, we
define the sets of initial conditions of interest for the state vec-
tor x(t) and for xN (t) = [(A(α)x(t))t u(t)T ]T , respectively,
as ŵX0 and ŵW ∈ E (P, 1), with ŵ > 0, u(0) = 0m×1,

whereW = co

{[
A(α)x01
0m×1

]

, . . . ,

[
A(α)x0q
0m×1

]}

is a convex

hull of vectors

[
A(α)x01
0m×1

]

, . . . ,

[
A(α)x0q
0m×1

]

, with
∑q

e=1 ηe
[
A(α)x0e
0m×1

]

∈ W ,
∑q

e=1 ηe = 1, ηe ≥ 0 for all e ∈ Iq , with

the uncertain but constant vector α ∈ P (2).

Lemma 2 The condition ŵW ⊂ E (P, 1) holds if

⎡

⎢
⎢
⎣

ŵ−2
[
Aix0e
0m×1

]T

[
Aix0e
0m×1

]

X

⎤

⎥
⎥
⎦ > 0, (33)

for all e ∈ Iq and i ∈ Ir1 , where ŵ is a positive constant, with
∑q

e=1 ηe = 1, ηe ≥ 0. Thus, ŵ can be used as a variable to
obtain a less conservative condition for the attraction domain
in the search for the largest ellipsoid E (P, 1) (Alves et al.
2016; Hu et al. 2002; Cao and Lin 2003).

Proof Let us define an initial condition xN (0) =
[
x̂(0)
0m×1

]

=
[
A(α)x0(η)

0m×1

]

and multiplying (33) by αi and ηe, with
∑r1

i=1 αi = 1,
∑q

e=1 ηe = 1, αi ≥ 0 and ηe ≥ 0 we have

⎡

⎢
⎢
⎣

ŵ−2
[∑r1

i=1 αiAi
∑q

e=1 ηex0e
0m×1

]T

[∑r1
i=1 αiAi

∑q
e=1 ηex0e

0m×1

]

X

⎤

⎥
⎥
⎦ > 0.

⎡

⎢
⎢
⎣

ŵ−2
[
A(α)x0(η)

0m×1

]T

[
A(α)x0(η)

0m×1

]

X

⎤

⎥
⎥
⎦ > 0. (34)

Applying the Schur complement (Boyd et al. 1994) to (34)
with P = X−1

ŵ−2 −
[
A(α)x0(η)

0m×1

]T
P
[
A(α)x0(η)

0m×1

]

> 0, (35)

multiplying (35) by −ŵ2

ŵ

[
A(α)x0(η)

0m×1

]T
Pŵ

[
A(α)x0(η)

0m×1

]

< 1. (36)

Therefore, from (36) and (22) it follows that ŵxN (0) ∈
E (P, 1). 	


Note that in (33), ŵ is a scaling factor of the set W =
co

{[
A(α)x01
0m×1

]

, . . . ,

[
A(α)x0q
0m×1

]}

(Boyd et al. 1994; Hu

et al. 2002; Cao and Lin 2003; Alves et al. 2016). Hence, ŵ
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can be used as a variable to be maximized (ŵ−2 minimiza-
tion) in order to obtain a less conservative estimate of the set
of initial conditions E (P, 1).

3 Relation Between the Auxiliary Dynamics
and the Plant Dynamics

In Theorem 1, we guarantee that the system (20) with the
control law (17) is locally asymptotically stable with decay
rate equal to or greater than β for all xN (0) ∈ E (P, 1) given
in (22). We need to ensure that there is a decay rate for the
system (1) for the state vector x(t). For this, we will use the
following result that can be found in Boyd et al. (1994).

The decay rate of the system (20) (or largest Lyapunov
exponent) is defined to be the largest β such that

lim
t→∞ eβt ‖xN (t)‖ = 0 holds for all trajectories xN (t).

Consider a Lyapunov function candidate V (xN (t)) with
V (xN (t)) = xN (t)TP xN (t). If

V̇ (xN (t)) ≤ −2βV (xN (t)) (37)

is satisfied, for all xN (t) �= 0, we have (Slotine et al. 1991)

V (xN (t)) ≤ V (xN (0))e−2βt , ∀ t > 0 and furthermore,

‖xN (t)‖ ≤ e−βt
√

λmax(P)/λmin(P) ‖xN (0)‖ , (38)

for every trajectory xN (t). This fact guarantees that the sys-
tem (20) has a decay rate greater than or equal to β (Boyd
et al. 1994).

In fact, xN (t) =
[
x̂(t)T u(t)T

]T
and

‖xN (t)‖2 = xN (t)T xN (t) = x̂(t)T x̂(t) + u(t)Tu(t). (39)

Then, from (38) it follows that

‖xN (t)‖2 ≤ e−2βt (λmax(P)/λmin(P)) ‖xN (0)‖2 . (40)

Now, from (39), (40) and considering u(0) = 0 (note
that from Fig. 2 one can implement the control system with
u(0) = 0) we have

x̂(t)T x̂(t) ≤ e−2βt (λmax(P)/λmin(P)) ‖xN (0)‖2 − u(t)Tu(t)

≤ e−2βt (λmax(P)/λmin(P)) ‖xN (0)‖2
= e−2βt (λmax(P)/λmin(P))

∥
∥x̂(0)

∥
∥2 . (41)

Thus,

∥
∥x̂(t)

∥
∥ ≤ e−βt

√
λmax(P)/λmin(P)

∥
∥x̂(0)

∥
∥ . (42)

It is assumed that A(α) is non-singular; therefore,
A(α)TA(α) is symmetric definite positive, for all α ∈ P
(2), then,

λmin(A(α)TA(α)) ‖x(t)‖2 ≤ x(t)TA(α)TA(α)x(t)

= x̂(t)T x̂(t)

≤ λmax(A(α)TA(α)) ‖x(t)‖2 .

(43)

From (43), we obtain

λmin(A(α)TA(α)) ‖x(0)‖2 ≤ x(0)TA(α)TA(α)x(0)

≤ λmax(A(α)TA(α)) ‖x(0)‖2 .

(44)

Note that consideringκ(P) = (λmax(P)/λmin(P)),κ(A) =
(λmax(A(α)TA(α))/(λmin(A(α)TA(α)), from (42), (43) and
(44) it follows that

λmin(A(α)TA(α)) ‖x(t)‖2 ≤ x̂(t)T x̂(t)

≤ e−2βtκ(P) ‖A(α)x(0)‖2
≤ e−2βtκ(P)λmax(A(α)TA(α))

‖x(0)‖2 . (45)

Hence, from (45),

‖x(t)‖ ≤ e−βt
√

κ(P)
√

κ(A) ‖x(0)‖ . (46)

Then, ‖x(t)‖ is bounded for t ≥ 0 and for every trajectory
x(t), we guarantee that there is a decay rate greater than or
equal to β.

It is important to note that xN (t)T = [x̂(t)T u(t)T ]; thus,
once xN (t) → 0 for t → ∞, it follows that x̂(t) → 0 for
t → ∞. Therefore, because x̂(t) = A(α)x(t) and A(α) is a
full rank matrix for all α ∈ P given in (2), if x̂(t) → 0, then
x(t) → 0.

4 Examples

In this section, we provide simulation examples to illustrate
the effectiveness of our approach. In Sect. 4.1, we consider an
academic example. In Sect. 4.2, we will examine the vibra-
tion damping system (Abdelaziz 2012) considering damper
failures and actuator saturation.

4.1 Example 1

Consider the uncertain linear system (1) with polytopic ver-
tices:
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A(α) =
[
ǎ −100
10 b̌

]

, B =
[
10
10

]

(47)

with −1 ≤ ǎ ≤ a and b ≤ b̌ ≤ 110. The vertices of the
polytope related to A(α) are given by:

[A1|A2|A3|A4] =
[−1 −100
10 110

∣
∣
∣
∣
a −100
10 110

∣
∣
∣
∣
−1 −100
10 b

∣
∣
∣
∣
a −100
10 b

]

.

(48)

In this case, solving the conditions from Theorem 1 and
Lemma 2,

ANk =
[

Âk Âk BZ1

01×2 01×1

]

k = 1, . . . , 4,

ANk =
[

Âk Âk BZ2

01×2 01×1

]

k = 5, . . . , 8,

with BN = [
0 0 1

]T
, xN (t) =

[
x̂(t)T u(t)T

]T
, Z1 = 1,

Z2 = ρ
φ
, Â5 = Â1 = A1, Â6 = Â2 = A2, Â7 = Â3 = A3

and Â8 = Â4 = A4, the decay rate specification β = 2.44,
φ = 1.2, ρ = 1, (a, b) = (60, 50) and N = [

01×2 I1×1
]
.

In Lemma 2, we minimize w̄ with w̄ = ŵ−2 and consider
the initial conditions: −0.1 ≤ x1(0) ≤ 0.1 and −0.01 ≤
x2(0) ≤ 0.01. Therefore, the initial conditions polytope has
four vertices.

In order for system (1) to be in the proper form for the use
of Theorem 1 and Lemma 2, we obtain ŵ = 0.3350,

K = 108

⎡

⎣
−1.7658
1.6874
9.9911

⎤

⎦

T

, P =
⎡

⎣
0.1798 −0.0704 −0.3505

−0.0704 0.0921 0.3350
−0.3505 0.3350 1.9834

⎤

⎦ .

(49)

It is possible to reduce the norm of the gain matrix K ,
adding new LMIs in Theorem 1 (Alves et al. 2016; Assunção
et al. 2007). However, observe that from Fig. 4 the control
input u(t) is bounded, due to the specification of the actuator
saturation.

For the simulations, we consider the initial condition
x(0) = ŵx04 = [0.0335 − 0.0034]T ∈ ŵX0, xN (0) =
[(A4x04)

T 0]T = [2.3452 0.1675 0]T . Then, as discussed
before, V (xN (0)) = xN (0)TPxN (0) ≤ 1 and xN (0) ∈
E (P, 1).

In Figs. 3, 4 and 5, the curves represent the simulations of
the system (1), (47), (48), with control law (17) and (49).

Note that xN3(t) = u(t) (17), oncewe have no restraint for
the control signal. In this case, the system is locally asymptot-
ically stablewith decay rate greater than or equal toβ = 2.44.

4.2 Example 2

This example is based on the vibration absorption system
shown in Fig. 6 and given in Abdelaziz (2012). The dynamic

Fig. 3 State variables and auxiliary state variables from the simulation
of the system (1), (47), (48), with control law (17) and (49)

Fig. 4 Lyapunov function V (xN (t)), control input u(t) = xN3 and
signal uN (t) from the simulation of the system (1) , (47), (48), with
control law (17) and (49)

Fig. 5 The ellipsoidal region for xN (t) with u(0) = 0 for xN (0) =
[(x̂(0))T u(0)T ]T , the set of initial condition of interest ŵW and the 16
initial conditions in ŵW represented by ◦. The curve T1 is the trajectory
for the initial condition x(0) = ŵx04 = [0.0335 − 0.0034]T and
xN (0) = [(A4ŵx04 )

T 0]T = [2.3452 0.1675 0]T

equation of the system can be described by a state space
form, with state vector x(t) = [x1(t) x2(t) ẋ1(t) ẋ2(t)]T ,
considering actuator saturation and the possibility of dampers
failures, as follows:

ẋ(t) =

⎡

⎢
⎢
⎣

0 0 1 0
0 0 0 1

−k1c1 −k2c2 − f1b1c1 − f2b2c2
−k1c2 −k2c1 − f1b1c2 − f2b2c1

⎤

⎥
⎥
⎦ x(t)

+

⎡

⎢
⎢
⎣

0 0
0 0
c1 c2
c2 c1

⎤

⎥
⎥
⎦ sat(u(t)) (50)
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where c1 = 1
m + L2

I , c2 = 1
m − L2

I , m and I represent the
mass and inertia, k1 and k2 are the constants of the springs,
b1 and b2 are the constants of the dampers, x1 and x2 are the
mass displacement of both sides, ϕ is the angle of inclination
of the mass with the horizontal, 2L is the distance between
two support points and u1 and u2 are the control inputs.
We consider the following system parameters: m = 10 kg,
I = 1 Kg m2, L = 1 m, k1 = 500 N/m, k2 = 600 N/m,
b1 = 10N s/m and b2 = 15N s/m.We represent the dampers
failures using the uncertain parameters f1 and f2 as follows:
f1 = 0 and f2 = 0 mean that the dampers have a total
failure, if f1 = 1 and f2 = 1 it means that there are no
failures in the dampers, and 0 < f1 < 1 and 0 < f2 < 1
mean that there are partial failures in the dampers. Then, a
damping failure can be represented as a parametric uncer-
tainty, obtaining an uncertain matrix A(α) and the constant
matrix B, necessaries for this approach. For the solution, in
Theorem 1 we consider the decay rate β = 4.9152, φ =
[100.2 100.2]T , ρ = [100 100]T and N = [

02×4 I2×2
]
.

In Lemma 2, we minimize w̄ with w̄ = ŵ−2 and consider
the initial conditions: −0.01 ≤ x1(0), x2(0) ≤ 0.01 and
−0.02 ≤ x3(0), x4(0) ≤ 0.02. Therefore, the initial condi-
tions polytope has sixteen vertices. Let us assume failures
( f1, f2) = (0.6, 0.2) on the dampers. In order for system (1)
to be in the proper form for the use of Theorem 1, we have
the following vertices:

[A1|A2] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0

0 0 0 1

−550 540 −7.7 13.5

450 −660 6.3 −16.5

0 0 0 0

0 0 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 1 0

0 0 0 1

−550 540 −11 12.825

450 −660 9 −15.675

0 0 0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

[A3|A4] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 1 0

0 0 0 1

−550 540 −7.7 12.825

450 −660 6.3 −15.675

0 0 0 0

0 0 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 1 0

0 0 0 1

−550 540 −11 13.5

450 −660 9 −16.5

0 0 0 0

0 0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Â5 = Â9 = Â13 = Â1 = A1, Â6 = Â10 = Â14 = Â2 = A2,

Â7 = Â11 = Â15 = Â3 = A3, Â8 = Â12 = Â16 = Â4 = A4,

[Z1|Z2|Z3] =
[
1 0

0 1

∣
∣
∣
∣
∣

0.9980 0

0 1.0000

∣
∣
∣
∣
∣

1.0000 0

0 0.9980

]

,

[Z4|BN
T ] =

[
0.9980 0

0 0.9980

∣
∣
∣
∣
∣

0 0 0 0 1 0

0 0 0 0 0 1

]

,

Ẑ1 = Ẑ2 = Ẑ3 = Ẑ4 = Z1, Ẑ13 = Ẑ14 = Ẑ15 = Ẑ16 = Z4,

Ẑ5 = Ẑ6 = Ẑ7 = Ẑ8 = Z2, Ẑ9 = Ẑ10 = Ẑ11 = Ẑ12 = Z3. (51)

In this case, solving the conditions from Theorem 1 and
Lemma 2, we obtain ŵ = 15.6438

K = 107
[

1.0010 −0.8542 0.0003 0.0003 0.5082 −0.4996
−0.8301 0.9987 0.0009 0.0009 −0.4995 0.4984

]

,

Fig. 6 Vibration absorber system (Abdelaziz 2012)

Fig. 7 Auxiliary state variables from the simulation of the system (1),
(50), (51), with control law (17) and (52)

Fig. 8 State variables from the simulation of the system (1), (50), (51),
with control law (17) and (52)

P =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0.8215 0.2956 0.0008 0.0009 0.1427 −0.1184
0.2956 0.7671 0.0017 0.0018 −0.1218 0.1424
0.0008 0.0017 0.0007 0.0007 0.0000 0.0001
0.0009 0.0018 0.0007 0.0007 0.0000 0.0001
0.1427 −0.1218 0.0000 0.0000 0.0725 −0.0712

−0.1184 0.1424 0.0001 0.0001 −0.0712 0.0711

⎤

⎥
⎥
⎥
⎥
⎥
⎦

.

(52)

It is possible to reduce the norm of the gain matrix K ,
adding new LMIs in Theorem 1 (Alves et al. 2016; Assunção
et al. 2007). However, observe that from Fig. 9 the control
input u(t) is bounded, due to the specification of the actuator
saturation.

For the simulations, we consider the initial condition
x(0) = ŵx014 = [−0.1564 0.1564 − 0.3129 0.3129]T ,
xN (0) = [(A4x014)

T 0 0]T = [−0.3129 0.3129 177.3376
−180.5915 0 0]T . Then, as discussed before, V (xN (0)) =
xN (0)TPxN (0) ≤ 1 and xN (0) ∈ E (P, 1).
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Fig. 9 Control input u(t) = [xN5 xN6 ]T and signal uN (t) from the
simulation of the system (1), (50), (51), with control law (17) and (52)

Fig. 10 Lyapunov function V (xN (t)) = xN (t)TPxN (t) from the sim-
ulation of the system (1), (50), (51), with control law (17) and (52)

In Figs. 7, 8, 9 and 10, the curves represent the simulations
of the system (1), (50), (51), with control law (17) and (52).

Note that xN5(t) = u1(t), xN6(t) = u2(t) in (17), once we
have no restraint for the control signal. In this case, the system
is locally asymptotically stable with decay rate greater than
or equal to β = 4.9152.

5 Conclusions

The derivative feedback is adequate to practical implementa-
tions where the derivative of the system state vector is easier
to measure than the state vector of the system. In real imple-
mentations, usually the control signal is subject to actuator
saturation. This manuscript investigated the derivative con-
trol design for time-invariant linear systems with polytopic
uncertainties and subject to actuator saturation.We proposed
control structures and design procedures based in an auxiliary
dynamic, for plants given in (1) and (2), where A(α) must
be a full rank matrix and B a constant matrix, which allowed
us to use a convex description for the actuator saturation. It
is important to note that this description for the saturation is
valid in an operating region of the auxiliary dynamics and it
is guaranteed for all initial condition in an ellipsoidal set that
the state remains in this operation region for all t ≥ 0. Using
the proposed strategy, it is possible to guarantee adequate
decay rate for the closed-loop system and the effectiveness
of the approach was shown by means of examples.
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