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Abstract

This paper deals with data-driven control design in a model reference framework for multivariable systems. Based on a single
batch of input—output data collected from the process, a fixed structure controller is estimated without using a process model,
by embedding the control design problem in the prediction error identification of an optimal controller. This is an extension
of optimal controller identification (OCI) for multivariable systems. Even though the multiple-input multiple-output (MIMO)
formulation is extended from its single-input single-output version in a natural way, the solution of the optimization problem
is rather complex due to the special structure the inverse of the controller assumes in its MIMO version. Comparisons between
the OCI and the virtual reference feedback tuning—a well-known data-driven control method—are provided, showing the
efficiency of the OCI controller estimate. We also explore the case where the batch of design data is collected in closed loop.

Simulated and experimental results show the efficiency of the proposed methodology.

Keywords Data-driven control - Multivariable systems - OCI - System identification

1 Introduction

Tight constraints on performance due to energy saving and
quality standards make impossible to neglect interactions
among process variables in several control systems. For
example, heat exchangers, distillation columns and chemical
reactors will only provide an adequate outcome if the control
of their variables takes into account the presence of distur-
bances in the process due to other variables, which makes
the control design a difficult task. There are several method-
ologies to design a multiple-input multiple-output (MIMO)
controller, most of them based on a mathematical model of
the process, which can be obtained from an identification
procedure.
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However, as it happens to MIMO control, MIMO iden-
tification is definitely not an easy task, usually involving
time and money consumption, and a simple controller is
commonly dependent on a simple process model. An alter-
native to that is MIMO data-driven control (Bazanella et al.
2012), an approach that estimates a controller without using
amodel for the plant. Thus, a fixed structure controller can be
designed directly from data, without deriving a process model
either through the identification of such model or by a sim-
plification of a complex and/or nonlinear model. In so doing,
the drawbacks of system identification and model reduction
are avoided.

There are several data-driven methods developed for
single-input single-output (SISO) control problems in the
literature. However, since SISO methods are not tailored to
be used when interactions between variables are significant,
some effort has been put in developing the extensions of these
methods for the MIMO case: some are iterative (Jansson and
Hjalmarsson 2004; Miskovic et al. 2005) whereas others are
one-shot (Formentin et al. 2012; Campestrini et al. 2016),
based only on one experiment (or sometimes two when the
collected data are corrupted by noise). Although some meth-
ods, like virtual reference feedback tuning (VRFT) (Campi
et al. 2002; Campestrini et al. 2016), are extended to multi-
variable systems in a rather natural way, it is often the case
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a higher number of experiments on the plant is needed. In
Yubai et al. (2009), for instance, the proposed method, even
though being considered one-shot, requires n, batches of
data, where n, is the dimension of the plant input. Another
example is found in Hjalmarsson (1999), where nyn, + 1
experiments per iteration are necessary, with n, being the
number of outputs.

Among the one-shot methods, both correlation-based tun-
ing (CbT) (Karimi et al. 2007; Yubai et al. 2009) and VRFT
use instrumental variables (IV) to obtain unbiased controller
estimates when signals are corrupted by noise, and it is often
the case that these instruments are constructed based on a
second experiment on the plant repeating the input signal
(Campi et al. 2002), which may be a difficulty under pro-
cess operation. Besides, it is well known that IV estimates,
although being consistent, are significantly less efficient than
prediction error ones (Soderstrom 2007), which may result
in even unstable closed loops when the collected data present
a low signal-to-noise ratio (SNR) (Boeira and Eckhard 2018;
Rallo et al. 2016). The OCI method on the other hand uses
only one batch of input—output data to perform an identifica-
tion of the controller through the prediction error approach,
resulting in an unbiased estimate without the need of instru-
mental variables (Campestrini et al. 2017). The main idea of
OCI methodology is to write the plant as a function of the
user-defined reference model and the controller to be identi-
fied and then perform the identification of the controller and
the noise model.

We present in this paper a MIMO version of the OCI
method (Campestrini et al. 2017). The extension to the mul-
tivariable case results in an optimization problem that cannot
be dealt with as in the SISO case, due to the structure of the
MIMO controller inverse, which has to be identified. Com-
mercial tools (like ident from Matlab) cannot be applied
in this case, and a dedicated optimization solution is neces-
sary in order to obtain the optimal controller. The developed
algorithm is presented in the paper.

With only one batch of open-loop data collected on the
process, an unbiased estimate of the controller is obtained if
the chosen controller class is of full order. The case where
data are collected in closed loop is also explored in the paper,
which is of high interest in industrial applications. In this
case, we perform the identification of the controller and of
a noise model for the process in order to obtain a consistent
estimate of the controller parameters. We also compare our
methodology with the instrumental variable method when
data are highly corrupted by noise. Simulated and experi-
mental results show the OCI estimate is more efficient than
the IV one.

The paper is organized as follows. Section 2 presents def-
initions and problem formulation. The OCI MIMO formula-
tion is presented in Sect. 3. Section 4 shows some illustrative
simulated examples, where the statistical properties of the
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methodology concerning open-loop and closed-loop experi-
ments are presented and compared to I'V estimates. Section 5
presents experimental results concerning a level plant, and
Conclusions are presented at the end of paper.

2 Preliminaries

Consider a linear time-invariant discrete-time MIMO process

y(t) = Golq)u(t) + Ho(q)w(), ey

where ¢ is the forward-shift operator, u(¢) and y(t) are
n-vectors representing the process’ input and output, respec-
tively, and w(t) is a sequence of independent random
n-dimensional vectors with zero mean values, covariance
matrix E[w(t)w? ()] = A and bounded fourth moments.
The transfer matrix Go(g) and the noise model Hy(q) are
square n X n matrices whose elements are proper rational
transfer functions and Hy(oco) = 1.

The design task is to tune the parameter vector P € R"?
of a linear time-invariant controller C(g, P) in order to
achieve a desired closed-loop response. We assume that
this controller belongs to a given user-specified controller
class C such that all elements of the loop transfer matrix
L(g, P) = Go(q)C(q, P) have positive relative degree for
all C(g, P) € C. The control action u(¢) can be written as

u(t) =C(q, P)e(r) = C(q, P)(rt) — y(1)), (2
where r(t) is the reference signal, which is assumed to be

quasi-stationary and uncorrelated with the noise w(#), that
is, E [r()w’ (t — 7)] = 0 V1, where

i} T
ELf0) = lim —3 ELf()]
t=1

with E[-] denoting expectation (Ljung 1999). The system
(1)—(2) in closed loop becomes

y(t, P)=T(q, P)r(t) +[I —T(q, P)]Ho(q)w(r), (3)
T(q, P) =[I + Go(9)C(g, P)I"'Go(q)C(q, P). “

The controller class C is defined as
C:{C(q,P):PergR"P},

where Dp is a set of admissible parameters and C (g, P) is
invertible for all P € Dp. The structure of the controller to
be designed is defined as
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Cii(g, p11)  C12(g, p12) Cin(g. p12)
Cg.P)=|": : :
Cu1(q, pn1)  Cn2(q, pn2) Cnn(q, Pnn)
5
where P = [,olT1 ,osz ,onT1 ,onTn]T. A particu-

larly relevant class, which will be used in the case studies to
be presented in this paper, is that of proportional-integral—
derivative (PID) controllers. In such PID controllers, each
element of the controller matrix C(g, P) in (5) has the fol-
lowing parametrized structure when the derivative pole is
fixed at zero:

aijqz + bijq + cij
q(g —1)

Cij(q, pij) = (6)

where Pij = [aij b,‘j C,’j]T.

In the Model Reference approach to the design, the
closed-loop performance is specified through the desired
closed-loop transfer matrix 7;(q), also known as the ref-
erence model. The controller parameters are then tuned as
the solution of the problem

PMR — arg min JMR(p), 7
P
JMR(PY 2 E||(Tu(q) — T (g, P)r()lI3 ®)

where r(t) is the reference signal of interest.

The ideal controller C4(g) is the one that allows the
closed-loop system behavior to match exactly the one pre-
scribed by Ty4(g) and is given by

Ca(q) = Go(@) ' Tu(lI — Ta(g)1 ™" )

If (9) was used in the closed loop, then the objective func-
tion (7) would evaluate to zero. For our further analysis, we
will sometimes consider the situation where C;(g) € C, in
which case we shall say that the following assumption holds.

Assumption 1 Matching condition of the controller
3 P; € Dp suchthat C(g, Py) = Cy(q).

However, this ideal controller may not correspond to any
controller in the controller set C; actually in most practical
applications, it will not belong to C. In this case, we would like
to estimate a controller that resembles the ideal controller,
making the closed-loop response as close as possible to the
desired T;(q).

Notice that (8) depends on the process model Go(gq). Data-
driven control methods aim to minimize JMR(P) without

using the model of the plant. As a result, these methods min-
imize other cost functions that, under some ideal conditions,
present the same minimum as the model based J MR (py.
VRFT and CbT are one-shot data-driven methods which
solve quadratic functions and therefore are very appealing
for computational aspects. However, when the collected data
are corrupted with noise, unbiased controller parameters are
estimated by both methods only with the use of instrumental
variables (IV), which are known to provide estimates with
large variance compared to the prediction error approach
(Soderstrom and Stoica 1989).

In the sequel, we present a data-driven method that solves
the reference model control problem for MIMO systems
using only one batch of input—output data, even when using
noisy signals. It differs from other one-shot methods (VRFT
and CbT) by how it deals with the noise. Since it solves
a prediction error (PE) identification problem, an unbiased
estimate of the controller parameters can be obtained without
using an IV, and the estimates present lower variance.

3 Optimal Controller Identification

Using the concept of the ideal controller, it is possible to turn
the model reference control design problem into an identifi-
cation problem of the controller, without using a model for
the process. This data-driven design method was presented
in Campestrini et al. (2017) for SISO systems and introduced
in Huff et al. (2018), where it was applied to a benchmark
control problem. However, the benchmark system was not
corrupted by noise, and in this paper, we explore the proper-
ties of the method to deal with noisy signals.

The core idea of the OCI method is to rewrite the input—
output system (1) in terms of the ideal controller C4(q),
which is done by inverting the relation (9), i.e.,

Go(g) = Talq) I — Ta(@)) ™' C; ' (@) (10)

Then, a model for the plant can be written in terms of the
controller parameters as

G(g, P) 2 Tu(q) (I — Ta(g) "' C ™\ (q, P), (1D
where
G(q, P) = Go(q) & C(q, P) = Cu(q)- (12)

The task will then be to identify an estimate C (g, f’) of
the ideal controller C;(q) within the parametrized controller
class defined by C. In other words, this corresponds to an iden-
tification of a plant model G (¢, P) with a fixed part, which is
a function of the reference model 7, (g), and a parametrized
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part, which is a function of the controller inverse. Thus, (1)
can be rewritten as

y(t, ) =G(gq, Pu(r) + H(g, O)w(t) (13)

where 6 € Dy C R is an additional parameter vector that
appears in the noise model and ® = [PT GT]T € Do =
Dp x Dg.

From N measured input—output data, the parameter vector
estimate @N = [ﬁlg é;]T is defined as (Campestrini et al.
2017):

Oy = arg min V(O) (14)
@ED@
where
a1l al
oy & 2
Ve = ;ne(r, o)l3, (15)
€(t, ®) is the prediction error
t,0) 2 y(t) — $tlt — 1, 0) (16)
and
vt —1,0)
=H g, 0)Ti(q) (I — Tu(q)) ' C (g, P)u(t)
+|1-H"@ o]y (17)

is the one-step-ahead predictor for model (13), where
G(q, P) has been replaced by (11). The predictor is now
a function of the noise model H (¢, ®) and the inverse of the
controller C~! (g, P).

Instead of minimizing JMR(P), which depends on the
unknown plant Go(g), now the design can be made by
minimizing the cost function V(®), which is purely data
dependent and no model of the plant Go(g) is used. Since the
estimation of the optimal MR controller has been transformed
into a PE identification problem, all statistical properties of
PE identification theory apply (Ljung 1999; Soderstrom and
Stoica 1989).

Specifically, if the model structure satisfies some mild con-
ditions, the estimate in (14) converges with probability one
(w.p. 1) as N — oo to the vector ©* = [ P*T Q*T]T defined
as follows:

Oy — ©* = arg min V(O) (18)
®eDp

where

V(©)=E e, 0)]3. (19)

@ Springer

Taking into account (18)—(19) and (12), two consistency
results follow. The first one concerns identification in open
loop.

Lemma 1 (Soderstrom and Stoica 1989) If Assumption 1 is
satisfied, an informative enough data set is collected in open
loop and C(q, P) and H(q, ®) are parametrized indepen-
dently (that is, % = 0) then, for N — oo:
Cg, Py) = Calq) wp. 1 (20)
If data are not necessarily collected in open loop, we have
the following result.

Lemma 2 (Soderstrom and Stoica 1989) If an informative
enough data set is collected in open or closed loop, then
(20) holds provided that 30, = [PI 6T]" € Do such that
C(q, Py) = Cq4(q) and H(q, ®4) = Hy(g). We also have
for N — oo:

H(q,On) — Hol(g) wp. 1. (1)
Notice that % = 0 is not necessary in this case.

Considering Lemma 2, let us define the following assump-
tion, which is an extension of Assumption 1:

Assumption 2 Matching condition of the controller and the
noise model

10, =(P] 651" € Do such that
C(g, Pa) = Ca(q) and H(q, ©q) = Ho(q)

When neither one of those sets of conditions is satisfied
(related to Lemmas 1 and 2), the controller parameters related
to the minima of V(®) and JMR(P) are distinct. So, let
us define the bias and the variance errors of the controller
estimate as follows:

Ca(q) — C(q, Py) = Ca(q) — C(q, P¥)

BIAS
+ C(g. P*) — C(q. Py) (22)
VARIANCE

where the bias error is zero when the ideal controller belongs
to the chosen controller class and the other conditions above
are satisfied. These metrics are going to be used in the exam-
ples in order to study the statistical properties of the proposed
methodology compared to the IV solution.

When choosing the controller structure, it is often the case
that one imposes some fixed part in the controller, the most
common instance of this fact probably being the imposition
of a pole at ¢ = 1 to guarantee zero steady-state error for
constant reference tracking and disturbance rejection. This
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fixed part does not need to be identified. So, we call Cr(q)
this fixed part and rewrite the controller transfer function as

Clg, P)=Ci(q, P)CFr(q). (23)

For instance, consider a 2 x 2 PI controller. Then,

1
Crl@g)=—1 (24)
qg—1
ailq +biy  ang + b2
Ci(qg, P) = 25
14, P) |:c1216] + by axng + bzz} (25)

where P = [ay1 bi1aix ... ax1 ... an bzz]T. In this
example, Cr(q) is just a scalar times the identity matrix,
but it does not actually need to be this way.

However, it is important to mention that (16), which
appears in the cost function, is, by nature, nonlinear in ®
even if the controller is linear in P. That is, there is no rea-
son to restrict ourselves to linearly parametrized controllers
from an optimization viewpoint (as it happens in methods
that solve least squares problems) and we can work with
quite general controller structures. In Huff et al. (2018), for
instance, the derivative pole of a PID controller structure is
let free to be identified, resulting in a closed loop closer to
the desired one compared to a classical PID structure.

Using (23) and (11), (13) can be written as

Y(t,0) = Ta(q) (I = Ta(@) "' Ci' (@) C; ' (g, PYu()

F(q) C(q,P)
+ H(q, @)w(t) (26)

where F'(q) is a fixed transfer matrix formed by the fixed part
of G(q, P). Itis assumed that the reference model T, (¢) and
the controller structure are chosen in such a way that F(q)
and F (q)é (g, P) are causal. Notice that in the SISO case
(and also in the MIMO case when both T;(g) and Cr(q)
can be written as scalars times the identity matrix), F(q)
commutes with C (g, P) and (26) can be written as

y(t,0) =C; (g, P) x Tu(q) I — Ta(@)) ™ Crl(@u(t)

C(q,P) u(t)
+ H(g, ®)w(t)
2 C(q, Pyii(t) + H(q, ©)w(1). 27)

In the SISO case, the solution for the identification prob-
lem can be easily obtained through available toolboxes like
Matlab® ident (Ljung 1991) because of the special form
assumed by (27). We show that in the next simple example.

Example 1 Suppose the user chooses the following reference
model and controller class, where the controller is already

written as Cr(q) and C;(q):

0.16¢g

Tu(q) = m,

1 34+aq® +bg+c
Criq)= —, Ci(q.py=1 2T T2
qg—1 dg*+eq+ f

The transfer function to be identified is the inverse of
Ci(g, P), given by

~ dg* +eq+ f
Clg.P)= 51—
q°> +aq®+bg+c
using
~ 0.16¢q
u(t) = ————ul(t)
qg —0.36

as input signal, according to (27). Notice that H (¢, @) can
also be identified to enhance the controller estimate prop-
erties, even though one may not be interested in the model
H(q, @N) per se. O

However, filters F(g) and C(g, P) in (26) do not usu-
ally commute in the MIMO case. So, it is not possible to
rewrite (26) asin (27). And even if it were possible, the matrix
C (g, P) possesses a rather unusual structure, as shown in the
next example.

Example 2 Consider a noise-free system given by

0.095¢ 0.04¢
(¢—0.92)(¢—0.8)  (¢—0.9)(¢—0.85)
Go(g) = —0.034 0.05¢ (28)

(g—=0.92)(¢—0.8)  (¢—0.9)(¢—-0.85)

where C (g, P)is given by (24)—(25) and the chosen reference
model is

0.2
-0.8

Ty(g) = I (29)
q

that is, we are specifying a decoupled closed-loop system
with the same performance for both outputs. In this case,

C(q, P) = cof’ (C;(q, P)) (30)

1
det (C;(q, P))

where det(-) is the determinant and cof(-) is the cofactor
matrix. The transpose of the cofactor matrix is

axq + b

) - —(a12q + b12)
cof’ (Ci(q, P)) = |:_ (a21q + b21) :|

ang + b
31

@ Springer
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and the determinant is given by

det (Cr(g, P)) = (a11q + b11) (az2q + b22)
—(a12q + b12) (a21q + ba1) (32)

Notice that even when the controller is linearly parametrized,
its inverse is not. We can see the controller inverse C’(q, P)
as a MIMO gray-box system to be identified.

In this proposed example, F(g) and C (g, P) in (26) do
commute. However, it is still not possible to use, for instance,
the ident toolbox, because of the special form assumed by
C(q. P). Let us see, then, what happens if we attempt to
re-parametrize C (g, P) as shown below:

) 1
= = q-+dig+d 0
C(g, P) =
@ P) I 0 ¢® +dsq +ds
% c1q +c2 c3q+cy
¢sq +c6 c19 +c3
clqg +c c3q +ca
. g>+dig+dy q*+dig+do (33)
- cs5q + co 19 + cg
| q> +dsq +ds  q*+dsqg +ds
where P = [c¢] ... cgd ... ds]¥. This model structure

is standard (compare with the diagonal form presented in
Soderstrom and Stoica (1989), for instance), being covered
by ident. However, itis also more flexible than (30) for two
reasons. First of all, the coefficients that appear in the denomi-
nators of the elements of (33) should actually be related to the
numerators’ coefficients. Besides that, all elements of (33)
should have the same denominator (independently of the cor-
responding row).

If we apply a sequence of steps as inputs to the open-loop
system and perform the identification of C(g, P) through
ident, we obtain

0.461(q-+0.008)
(@—0.810)(g—0.917)

—0.118(¢+0.208)
(q—0.837)(q—0.907)

0.262(¢—0.198)
(q—0.810)(g—0.917)

0.262(¢—0.031)
(q—0.837)(g—0.907)

Clq. Py) = (34)

resulting in the following controller:

C(q. Py)
|: 1.727(¢—0.917)(¢—0.810)(¢—0.031)

(+0.085)(¢q—0.101)(g—1)

0.778(4—0.917) (¢—0.810) (g +0.208)
(+0.085)(¢q—0.101)(g—1)

(q+0.085)(g—0.101)(g—1)

3.045(¢—0.907) (g —0.837) (g+0.008)
(q+0.085)(g—0.101) (g—1)

—1.729(¢—0.907) (¢ —0.837) (¢ —0.198) i|

(35)

which is not a PI controller as we would like, because we
solved the design problem using more degrees of freedom
than we actually have, as explained above.

@ Springer

Now, if we identify the structure (30) by our proposed
methodology (using the optimization algorithm presented in

the sequel), we get

1751 0.801

A 7—0941 3-0939

Clq. Pn) = |: —0.543 1.037 (36)
7—094] 3-0939

Iresulting in:

0.461(¢—0.942)

—0.356(¢—0.941)

A . q—1 g—1
C(q’ Py) = 0.241(¢—0.938) 0.778(¢—0.939) (37
g—1 gq—1

which is, in fact, a PI controller.

An important remark is that costs (8) and (15) related
to (35) are actually smaller than the ones corresponding
to (37), at the price of using a more complex controller struc-
ture, which is not always possible/suitable in a real-world
application. O

So, due to the particular and unfamiliar parametrization of
model (26), it is not in general possible to employ any stan-
dard identification toolbox in the MIMO case and a dedicated
optimization solution must be used in order to minimize (15).
In this work, we propose to apply the steepest descent and
the Levenberg—Marquardt methods. These methods require
an initial parameter vector Py of the controller, and for this
purpose, we use a MIMO version of VRFT (Campestrini
et al. 2016). When the noise model H (g, ®) is also identi-
fied, we consider % = 0 and use as initial condition
H(q,60) = 1.

More specifically, we employ first the steepest descent
method because of its large region of attraction to a local
minimum. In this case, the recursion formula is given
by Bazanella et al. (2012)

Oky1 = O — i VV(6y), (38)

where for each iteration &, yy is a positive scalar and VV (&)
is the gradient of the cost function V(-) evaluated at the
parameter vector ®y. Quantity y; is increased by 1% if
V(Or+1) < V(Oy). Otherwise, it is decreased by 1% and
one has O = Ok. As stopping criterion, we verify at each
iteration if the relative decrease in the gradient is less than
1%.

In the second step, the Levenberg—Marquardt method
(Fletcher 1987), whose convergence is faster, is applied. Its
search direction is a cross between the Gauss—Newton and
the steepest descent directions, and is given by

! Notice that the denominators of (36) are all equal before we carry out
the cancellations of the common factors between the numerators and
denominators (considering three significant digits).
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-1
Ot = Ok — (V2V(©0) + 4l ) VV(Op), (39)

where V2V () is an approximation of the Hessian of V (©)
at the point ®;. When X is zero, the search direction cor-
responds to that of Gauss—Newton method. As Ay — oo,
the direction tends toward the steepest descent one, and the
magnitude of the step tends to zero. Then, for some suffi-
ciently large Ag, the relation V(®k11) < V() holds true.
The term A; can therefore be controlled to ensure (a fast)
descent. In this work, we set Ax+1 = Ar/10 when the iter-
ation is successful (lower function value found). Otherwise,
the algorithm sets Ax+; = 10X and Oy = O. The stop-
ping criterion is equal to the steepest descent one but with
tolerance 0.01%.

In general, the minimization of the cost function requires
approximately 2000 iterations of the steepest descent method
and 50-100 iterations of the Levenberg—Marquardt one. The
algorithm takes about 5 s to run on a computer with a proces-
sor Intel(R) Core(TM) i7 and 12 GB of RAM. Moreover, in
order to calculate the derivatives of V (), we employ in our
code some functions from the symbolic math toolbox of
Matlab®.

We now present numerical and experimental results to
show the efficiency of the OCI methodology when the col-
lected data are corrupted with noise.

4 Numerical Examples

Consider a plant whose model is given by (28) with respective
noise model given by

(g §O'4)qo 9 O'S(Sq 70'2(; 9
_ | @-0.8)(@-0.9)  (¢—-0.8)(¢—0.9)
Ho@) = | “454-05) (q=0.6)¢ (40)

(¢—0.8)(¢—0.9)  (¢—0.8)(9—0.9)

The noise sequence w(?) in (1) has covariance matrix A =
0.0021, and the sampling time is Ty = I s.
We choose a reference model given by

2 0
Ta(q) = ["‘O' 04 } : (41)

q—0.6

which specifies a decoupled closed-loop system, with zero
steady-state error for step references and with loop 2 faster
than loop 1.

In this case, the ideal controller (9) is given by

1.6807(¢—0.8)(¢—0.92) —2.6891(9—0.8)(¢—0.92)

Cy(q) = q(qg—1) q(g—1)
a\q) = 1.0084(¢ —0.85)(¢—0.9) 6.3866(¢—0.85)(q—0.9) |’
q(g—1) q(g—1)

(42)

which will be used only for comparison purposes with
the obtained controllers through our data-driven approach.
Notice that the desired closed-loop behavior can be achieved
by means of a centralized PID controller, so we can analyze
the cases where the ideal controller belongs to the chosen
class and where it does not, i.e., whether Assumption 1 is
satisfied or not.

In all examples, results will be evaluated through the esti-
mation of the Model Reference cost (8) using collected noisy
data as

. 1 Y
PP £ S ITaq)r) = (. P (43)
=1

Besides, an error measure, denoted by E., will be com-
puted for each controller as

qg—1

E.(P) = 7 [C(g. P) = Cu(q)]

(44)
2

where || - ||2 denotes the H norm of the transfer function.
We have removed the unstable modes from the controller in
order to obtain a finite value.

We first present a comparison between the estimates of a
MIMO controller obtained through the proposed prediction
error approach and an instrumental variable one. The second
numerical result explores closed-loop data and the estimation
of the noise model.

4.1 Prediction Error Versus Instrumental Variable
Approaches

We will compare the OCI with the VRFT method when the
latter one uses instrumental variables (IVs) in order to deal
with noisy data when estimating the controller parameters.
As suggested in Campestrini et al. (2016), the IV is obtained
from an additional experiment on the plant using the same
input signal and corresponds to the resulting output signal,
which depends on a different realization of the process noise.
The procedure can be described as follows. Perform one
experiment on the plant; with data from this single exper-
iment, use the standard VRFT to tune an initial (biased)
controller estimate. Using the same batch of data and the ini-
tial controller, tune a controller using our OCI methodology.
Perform a second experiment on the plant; with data from the
first and the second experiment, tune a new controller using
the VRFT with I'V. Compare the obtained controllers via OCI
and VRFT-IV.

The system (28)—(40) is excited in open loop with a square
wave of amplitude A = 0.7 and period of 200 samples. Fig-
ure 1 shows the outputs, which are affected by filtered white
noise, and the applied inputs. The signal-to-noise ratio (SNR)
is around 15 dB in both channels.
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Fig.1 Open-loop responses of system (28)—(40) to a square wave

Table 1 Medians of JMR and E, obtained for an open-loop batch of
data when C4(q) € C

Controller JMR E.
C(q, Pv) 2.0025 15.9981
C(q. Pocr) 0.07971 4.1200

Recall that if data are collected in open loop, then there is
no need to identify H (g, @) when applying the OCI in order
to obtain a consistent estimate of the controller. Thus, in the
following, we consider H (g, ®) = I and use this batch of
data to tune the parameters of different controller structures.

4.1.1 Theldeal Case: C4(q) € C

In order to satisfy Assumption 1, a centralized PID controller
is designed. To analyze the estimate properties, two hundred
Monte Carlo runs considering different realizations of the
batch of open-loop data were performed and one hundred dif-
ferent controllers were designed using both the OCI and IV
methods.? Inorder to compute Model Reference cost (43), we
performed a closed-loop experiment for each obtained con-
troller where the reference is a sequence of steps of amplitude
10, so the closed-loop output has a SNR of approximately
25 dB, which is higher than the open-loop one in order to
facilitate the comparison of the results. For each case, we
also computed the corresponding error measure (44).

The medians of JMR as well as of E. obtained from the
Monte Carlo runs are shown in Table 1. Notice that the values
related to the IV approach are considerably greater than the
corresponding OCI ones. In fact, several designed IV con-
trollers (around 35%) do not even stabilize the plant in closed

2 Only half of the batches were used for OCI estimations.
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Fig.2 Closed-loop responses of system (28)—(40) with controllers (46)
and (47)

loop. That is, even though both controller estimates do not
present bias error in this case [recall (22)], OCI provides a
smaller variance error. At least from a qualitative viewpoint,
this observation makes sense, since the prediction error esti-
mate Oy is (under some ideal conditions) asymptotically
statistically efficient (Soderstrom and Stoica 1989).

Next, we consider a single run (out of 100) of the simu-
lations above. The initial controller used by the OCI method
obtained using the standard VRFT method is

C(q, Po)
0.441(g—0.942)(¢—0.210)
q(g—1)
0.039(¢2—1.123g+0.385)
q(g—1)

—0.281(¢—0.955)(q+1.374)
q(g—1)
0.271(q—0.892)(g+0.201)
q(g—1)

(45)
whereas the resulting OCI controller is given by
C(q, Pocn
1.722(q—0.917)(¢—0.812)  —3.252(¢—0.917)(g—0.841)
_ q(qg=1) q(qg=1)
| 1.348(g—0.923)(¢—0.854) 6.837(¢%—1.7984+0.813)
q(qg=1) q(q—=1) ’
(46)

The controller estimated through VRFT using IV is given by

C(q, Pv)
1.612(g—0.914)(q—0.796)  —3.074(q—0.928)(q—0.807)
_ q(q—1) q(qg—1)
T | —4.829(g2—1.9464+0.954) 11.087(¢%—1.8884+0.901)
q(g—1) q(g—1)

47

Figure 2 shows the closed-loop responses with controllers
(46) and (47), where the reference signal is the same as the
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Table2 Medians of /MR and “MR

E obtained for an open-loop Controller J Ec

batch of data when Cy(q) ¢ C Clq. P 07381 13333
C(g. Pocr) 07375 13.391

one used to compute (43). Notice that, in one hand, the IV
controller presents tracking and decoupling problems. The
OCI one, on the other hand, provides a closed-loop response
almost equal to the reference model, disregarding the effect
of the noise on the outputs.

4.1.2 The Nonideal Case: C4(q) ¢ C

Consider now the design of a centralized PI controller, that
is, C4(q) ¢ C. Again, one hundred different controllers were
found considering the collected data used in the previous
example.

Table 2 is analogous to Table 1. Notice that in this case
the medians related to the two methods are almost equal, but
very different from the ones shown in the previous table. In
particular, the controllers of both methods are biased now,
explaining why the OCI medians have greatly increased.
Despite of the bias error, the IV medians have decreased.

For a single Monte Carlo run (out of 100), the initial con-
troller is given in this case by

0.342(g—0.945)  —0.659(q—0.944)

D\ qg—1 g—1
Clg, Po) = 0.040(g—0.781) 0.294(g—0.872) (48)
g—1 q—1

whereas the OCI methodology yields

0.542(¢—0.953) —0.743(¢—0.960)

q—1 q—1
0.238(g—0.941) 1.404(¢—0.926) | (49)

q—1 q—1

C(q, Pocr) =

The IV method results in

0.474(g—0.957)  —0.799(q—0.972)

~ _ q—1 qg—1
Clq. Pv) = 0263(g—1.012)  2.708(g—0.983) | ° (50)

q—1 g—1

Closed-loop responses with controllers (49) and (50) are
shown in Fig. 3. In this case, since Assumption 1 is not sat-
isfied, both responses are (significantly) different from the
reference model, presenting overshoot problems and also
coupling when the second reference changes its value.

At last, Fig. 4 shows the estimated cost JMR through box
plots3 considering the case Cy(g) ¢ C but also Cy(g) €

3 On each box, the central mark is the median, the edges of the box are
the 25th and 75th percentiles, the whiskers extend to the most extreme
data points not considered outliers, and outliers are plotted individually.
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Fig.3 Closed-loop responses of system (28)—(40) with controllers (49)
and (50)
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Fig. 4 Distribution of the estimated cost JMR considering 100 Monte

Carlo runs for the OCI and IV controllers considering an open-loop
batch of data

C (the IV cost was omitted when C;(q) € C because the
resulting box plot is too large). Notice that, when C;(q) ¢ C,
the variance of the OCI cost is smaller than the IV one, as it
also happened when C;(gq) € C.

4.2 Collecting Closed-Loop Data

As pointed out in Sect. 3, when data are collected in closed-
loop, it is necessary to identify a (flexible enough) noise
model H (g, ®) in order to obtain a consistent controller esti-
mate. So, let us assume that the system (28)—(40) operates
with the following initial stabilizing PI controller:

@ Springer
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q—1 q—1

Data {u(t), y(z)} are collected in closed-loop where the ref-
erence is set as a PRBS (pseudo random binary signal) with
a fundamental clock period of T = 30 s and duration of
2000 s. We consider two different amplitudes for the PRBS,
5 and 1, which correspond, respectively, to SNRs of 20 dB
and 5 dB at the system’s outputs, allowing the analysis of the
proposed methodology for a low SNR. Figure 5 shows (part
of) the batch of collected data in the second case, where the
SNR is low.

Different PID controller designs are made (Assumption 1
is satisfied), using different parametrizations for H (g, ®) =
H(q,0):

Hi(q,0) =1, (52)
_q2+91q+02 0
2
+ 03qg + 6.
Hyg.o)=| T TR . 53)
0 q° + 0s5q + 65
L q% + 679 + 63
g + 01 0>
q+6s q+06s
Hs(g,0) = , 54
3(q,0) 05 g+ (54)
Lg+60s q+06s
0 q2+91q + 6> 03q + 64
2 2
+ O9g + 0 + O9g + 6
Hi(q,0) = q 9q 10 612 9q 10 (55)
05q + 66 q° + 679 + 63
| g%+ 6119 + 612 %> +611g + 612
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Fig. 6 Distribution of the estimated cost /MR for 100 Monte Carlo
runs considering models (52), (53), (54) and (55) for the noise and
SNR = 20 dB
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Fig. 7 Distribution of the estimated cost JMR for 100 Monte Carlo
runs considering models (52), (53), (54) and (55) for the noise and
SNR =5dB

Notice that only Hs(g, 0) is capable of representing the
“true” noise model. That is, only in the fourth case, Assump-
tion 2 is satisfied and the controller estimate is consistent.

One hundred Monte Carlo runs were performed. But,
when the SNR is low, the controller obtained through least
squares (and even the instrumental variable) approach does
not even stabilize the plant (in all 100 runs), so we used (51)
as initial condition for the OCI algorithm.

The cost JMR was calculated considering step references
of amplitude 10, as in Sect. 4.1. The resulting box plots
related to the high and low SNRs are shown, respectively,
in Figs. 6 and 7.

Notice that when SNR is 20 dB, the choice of the noise
model structure does not make much difference in the cal-
culated cost and one could just fix H(g,8) = I (compare
with Fig. 4). However, when the SNR is low, this is not true.
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Fig.8 Closed-loop responses of system (28)—(40) with PID controllers
designed considering the models (52) and (55) for the noise when
SNR =5dB

In particular, in this case, it is not advantageous to use a
decoupled noise model, since Hy(q) is not. The closed-loop
performance with the designed controller is improved if we
choose structures H3(q, 0) or Hi(q, 0) instead of Hy (g, 9).
In fact, results with model structure H3(gq, 0) is almost as
“good” as with Hs(g, 6) in this example, even though it is
underparametrized.

Figure 8 shows the closed-loop responses when choosing
structures Hi(q, 0) and Hs(q, 6) for a single realization of
the design when the SNR is low, where the designed con-
trollers are, respectively:

Ci(qg, Pn)
2.757(¢%—1.811¢g+0.821)
q(q—1)
5.944(g%—1.932¢+0.936)

—2.514(q—0.918)(¢—0.785)
q(g—1)
8.200(¢—0.921)(¢—0.853)

q(g—1) q(g—1)
(56)
Cs(q, Py)
1.855(g—0.905)(q—0.845)  —2.621(q—0.926)(¢—0.775)
_ q(qg—1) q(g—1)
| 1.736(42—1.8464+0.857) 6.759(q%—1.767q+0.781)
q(g—1) q(g—1)

(57)

Notice that the closed-loop response related to the choice
Hy (g, 0) (and hence to (57)) is indeed closer to T;(g) than
the one provided by (56), specially when the value of the
reference of loop 1 changes.

The medians of JMR from Figs. 6 and 7 and also the ones
of E. are shown in Table 3. Notice that the pattern of E, is
not equal to the one of JMR, but its values lead to the same
conclusion: it is advantageous to identify a noise model as
the SNR decreases.

Table3 Medians of JMR and E, obtained considering the models (52),

(53), (54) and (55) for the noise

SNR 20 dB 20 dB 5dB 5dB

Model JMR E. JMR E.

Hi(q,0) 0.029250 0.99725 0.19135 9.4594

H(q,0) 0.028116 0.72686 0.29601 7.4962

Hi(q,0) 0.027914 0.78107 0.080046 3.6975

Hi(q,0) 0.028312 0.60645 0.061248 2.8712
T 5

- g N VW

& - 6

V2 X{]
, Tank 1 | Tank 3 ,

Fig.9 Schematic diagram of the pilot plant

At last, notice the identified noise model

(g—0.391)(g—0.009)
(q—0.793)(¢—0.899)
0.502(q—0.494)
(@—0.792)(¢g—0.897)

0.502(q—0.196)
(q—0.793)(¢—0.899)

(¢—0.590)(¢—0.003) |’
(q—0.792)(¢—0.897)

Hi(q,0n) =

where Oy is the mean value of éN obtained from the Monte
Carlo runs (when SNR = 5 dB), is indeed similar to (40).

5 Experimental Results

The OCI methodology presented in this paper was applied
to the level control of a pilot plant, which is also the objec-
tive of study of Boeira et al. (2018). Its schematic diagram is
presented in Fig. 9 and describes the process, which is built
with of-the-shelf industrial equipment (pumps, valves, sen-
sors and tanks). Tanks 1 and 2 have 70 liters each, whereas
tank 3 is a 250 liters reservoir. The goal is to control the level
of the two first tanks.

Communication between devices is made up via a Foun-
dation Fieldbus HI network. The pumps are driven by
frequency inverters, and the valves are sliding stem pneu-
matic with embedded PID positioners. Level measurement
is carried out by pressure sensors at the bottom of each tank,
and plant control and data acquisition are done in a super-
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Fig. 10 Input signals of the level plant in the open-loop experiment

visory software Elipse SCADA which communicates via an
OPC server with a sampling time of 1s.

During all the experiments, the frequencies of the invert-
ers that drive the pumps are kept at a constant value, while
control is performed by valves V1 and V2. The system’s
multivariable behavior is represented by

|:y1(l)] _ [Gll(Q) Gn(é])} |:M1(l)] (58)
y2(1) G21(q) Gn(q) | |u2() ]’

where yi(z) and y,(¢) are the tanks’ levels, and u(z) and
uy(t) are the valves’ openings.

5.1 Data Acquisition

Before conducting the experiments, openings of 72.4% and
28.4% were applied to valves 1 and 2, respectively, in order
to stabilize the level of tanks 1 and 2 at 20 cm and 35 cm,
respectively. Then, square waves of small amplitude were
applied to the system in open loop in order to collect data
from it, as shown in Fig. 10. Figure 11 in turn shows the
corresponding outputs of the system, which are affected by
noise. Notice the inputs’ variations were chosen so as to have
asmall SNR, a typical situation in some real-life applications.

5.2 Controller Design

Besides the experimental data, designing the controller
requires the definition of its structure as well as the choice of
the reference model, as stated earlier.

Though it is not always possible, it is useful and even
recommended to use some prior knowledge of the system in
the choice of the reference model. This allows the designer
to be realistic with respect to the closed-loop performance
criteria chosen. In the case treated here, it is known from
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Fig. 11 Output signals of the level plant in the open-loop experiment
Campestrini et al. (2016) that the settling times of the tanks 1

and 2 are roughly 900 s and 700 s, respectively. Considering
that, the reference model was chosen as

0.03 0
Ta(q) = q_8‘97 0.02 (59)
7-0.08

where the desired settling times of tanks 1 and 2 are,
respectively, 128s and 193s. Besides, it was proposed the
decoupling of the system dynamics as it can be seen from
the fact that there are nonzero elements only in the main
diagonal of the matrix.

The defined controller structure is that of a centralized PL
First of all, let us apply the least-squares method, which gives
the following controller:

0.1247(¢g—1.024) 0.2323(¢—0.9677)

I o gq—1 g—1
Clq. Ps) = —0.7519(g—0.9602)  0.2369(g—0.9205) | (60)
q—1 q—1

Then, we obtain the OCI one:

7.2651(g—0.9949) 5.7126(qg—1.001)
q—1 q—1

—9.0917(¢—0.9939)  —0.2961(g—1.121)
g—1 q—1

C(q, Pocr) =

(61)

A second open-loop experiment was performed on the plant
with exactly the same input in order to obtain an instrumental
variable for the VRFT method. The resulting controller is:

13.629(¢—0.9946) 9.1391(¢—1.003)

g—1 qg—1
—7.1033(q—0.9939)  —0.1432(q—1.214) |- (62)

g—1 q—1

C(q, Pv)=
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Fig. 13 Input signals of the level plant in the closed-loop experiment

5.3 Closed-Loop Experiment

Controllers (60)—(62) were applied to the closed-loop plant,
producing the results shown in Figs. 12 and 13. The
MR-calculated costs (43) are JMR(Pg) = 3.384 cm?,
JMR(Pry) = 0.26827 cm? and JMR(Pocr) = 0.04401 cm?,
the last one being the smallest one, as it also happened in the
simulated example presented in the previous section.

Notice in Fig. 12 that the response of the system using (61)
is almost equal to the reference model (MR), indicating that
Assumption 1 was not greatly violated. The levels of tanks are
almost decoupled. Moreover, there is no overshoot and, apart
from the noise, the tracking error is zero in steady state for
step references. On the other hand, the performance attained
with controller (62) is clearly worse, presenting tracking and
decoupling problems. Controller (60), in turn, is not suitable
for practical use.

6 Conclusions

A multivariable formulation of the OCI method was pre-
sented, where the controller estimate is consistent under ideal
conditions. Numerical results have shown that OCI performs
well when the collected data are corrupted by noise, even if
the signal-to-noise ratio is not high, unlike the instrumental
variables approach, which is used in other direct data-driven
methods. Simulations also show that it is advantageous to
identify the noise model in order to improve the controller
estimate, specially if data are collected in closed-loop and
the SNR is low.

Moreover, an experiment was conducted in a level plant,
where the goal is to control the level of two tanks through
the opening of two pneumatic valves. Both OCI and VRFT
methods were applied using an open-loop batch of data, and
the resulting OCI controller provided a closed-loop response
considerably closer to the reference model than the VRFT
one, even when the latter uses instrumental variables (and
thus an extra batch of data).
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