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Abstract

In past years, the system identification area has emphasized the identification of nonlinear dynamic systems. In this field,
polynomial nonlinear autoregressive with exogenous (NARX) models are widely used due to flexibility and prominent rep-
resentation capabilities. However, the traditional identification algorithms used for model selection and parameter estimation
with NARX models have some limitation in the presence of non-Gaussian noise, since they are based on second-order statis-
tics that tightly depend on the assumption of Gaussianity. In order to solve this dependence, a novel identification method
called simulation correntropy maximization with pruning (SCMP) based on information theoretic learning is introduced by
this paper. Results obtained in non-Gaussian noise environment in three experiments (numerical, benchmark data set and
measured data from a real plant) are presented to validate the performance of the proposed approach when compared to other
similar algorithms previously reported in the literature, e.g., forward regression with orthogonal least squares and simulation
error minimization with pruning. The proposed SCMP method has shown increased accuracy and robustness for three different
experiments.

Keywords Nonlinear system identification - Polynomial NARX models - Model structure selection - Non-Gaussian noise -
Maximum correntropy criterion

1 Introduction
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mathematical model capable of representing its main char-
acteristics through observations.

In black-box system identification, the polynomial non-
linear autoregressive moving average with exogenous input
(NARMAX) (Leontaritis and Billings 1985a,b) represen-
tation has a great performance in their ability to represent
nonlinear input—output relations (Yan and Deller 2016; Zhao
et al. 2018) as a functional expansion of lagged input, output
and noise data. In cases where the deterministic input—output
relationship is the focus, a nonlinear autoregressive with
exogenous input (NARX) model can be employed, using
a simplification of the disturbance model (Zhao and Chen
2012). This class of representation can be used in control
problems when the main goal is to find a simple, but func-
tional, description of the system.

In practical applications, the experimental data set used
in the identification procedure is often corrupted with out-
liers (Liu and Chen 2013; Linhares et al. 2015). Usually,
the NARX parameters are estimated using the least squares
(LS), which are non-optimal in the presence of noise with
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non-Gaussian distributions (Santamaria et al. 2006; Liu et al.
2007). Although there are many outlier detection methods,
many approaches are not able to eliminate all of them, and the
resulting data obtained after the application of such methods
may still be contaminated (Liu and Chen 2013; Linhares et al.
2015). Also, regarding the NARX model structure selection
(MSS), the number of candidate regressors increases rapidly
along with the model order and maximum delays of the input
and output signals (Cheng et al. 2009). Aguirre and Billings
(1995) present examples of dynamic systems to illustrate that
the models that best fit the estimation data are not necessarily
models that capture the underlying dynamics appropriately.
The authors also show that, despite the predictive capacity of
the estimation data of superparametrized models, if a NARX
model is unnecessarily complex, the model can induce spu-
rious dynamics.

Recently, a similarity measure called correntropy was
introduced (Liu et al. 2006, 2007; Santamaria et al. 20006).
The correntropy idea has extended the concept of mean
square error (MSE) adaptation to include descriptors of
entropy and divergence, so useful in information theory. It
preserves the nonparametric nature of MSE but extracts more
information from the data structure and yields, therefore,
solutions that are more accurate than MSE for non-Gaussian
processes. Correntropy can be applied as a cost function for
system identification with the advantage that it is a local cri-
terion of similarity. Correntropy has been used in several
applications including system identification problems (Liu
and Chen 2013; Linhares et al. 2015; Guimaraes et al. 2016;
Peng et al. 2017; Kulikova 2017; Fontes et al. 2015, 2017),
with good performance in non-Gaussian noise environments.

This paper proposes an algorithm capable of estimat-
ing parameters and selecting the NARX model structure
in the presence of non-Gaussian distribution noise. The
proposed algorithm is called simulation correntropy max-
imization with pruning (SCMP), which uses correntropy
as a similarity measure in order to select the structure of
the mathematical NARX model and the maximum corren-
tropy criteria (MCC) to estimate the parameters. To ensure
a better performance of the MCC gradient solution, it was
employed a variable kernel width (VKW-MCC) (Huang et al.
2017a) method to iteratively determine the value of the ker-
nel width. The results obtained in non-Gaussian environment
are presented to validate the advantages of the proposed
approach.

The performance of SCMP has shown increased accuracy
and robustness in different dynamic systems, when compared
to a traditional algorithm such as the forward regression with
orthogonal least squares (FROLS) and simulation error min-
imization with pruning (SEMP) algorithm.

The paper is organized as follows. Section 2 provides the
basic framework and notation for nonlinear system iden-
tification of NARX models and briefly reviews the main
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approaches in the literature. Section 3 discusses the cor-
rentropy criterion and its importance in the presence of
non-Gaussian noise. The proposed method is illustrated in
Sect. 4 and then tested in three experiments in Sect. 5. Finally,
some concluding remarks are drawn in Sect. 6.

2 NARX Models

NARX models (Leontaritis and Billings 1985a) are discrete-
time representations that evidence the output value y (k) as a
function of previous values for the output and input signals
according to Eq. (1)

y(k) = F'lytk = 1), ..., y(k — n,),
utk—d,...,utk—d—ny)] (1)

where F! is a nonlinear function with nonlinearity degree [,
y(k) is the output signal at an instant &, u is the input signal,
d is the delay time and ny and n, are the maximum lags for
the output and the input, respectively, and n = ny + ny.

The polynomial approximation of nonlinearity degree /
for model (1) has the following structure (Chen and Billings
1989)

Yy =00+ Y O xi (k) + D> D Oiyipxiy (k)xiy (k)

i1=1 i1=1ix=iy

+Z Z 9i1-~<i/xi1(k)"'xi/(k)+e(k) (2)

i1=1 1=l

where

xy(k) = ytk — 1), xa(k) = y(k = 2), ...,
Xny+1 = utk—d),... s Xnytn, = utk —d—ny)

withn = ny +n,.

Equation (2) is a general model structure. The matrix for-
mulation represented in Eq. (3) is used for the estimation
problem.

where ¥ = [1ﬁ11ﬁ2~~1ﬁn] is the matrix of regressors
(independent variables) with column size N (number of
observations), ¥;, with i = 1, ..., n being the regressors
columns, which corresponds to the different terms in the
polynome, € is the vector with the respective parameters,
and e is the system noise and modeling error.

The maximum number of candidate regressors (1) grows
with the increase in the degree of nonlinearity (/) and the
maximum output and input delays (n, and n,) (and n,, for
NARMAX models).
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Typical solutions for structure selection problems are
the forward regression orthogonal least squares algorithm
(FROLS) which uses an importance index, the error reduc-
tionratio (ERR) (Billings et al. 1988), and also the simulation
error minimization with pruning (SEMP) method associated
with the simulation error reduction ratio (SRR) (Piroddi and
Spinelli 2003) and its variants.

In the FROLS method, a new regressor is included in the
model for each algorithm iteration according to ERR, which
evaluates the improvement that can be gained by adding the
regressor to the current model. The method also exploits
orthogonal least squares (OLS) to decouple the estimation of
the various regressors. Several variants of this method have
been introduced in the literature (Falsone et al. 2015).

Instead of the prediction error minimization (PEM)
paradigm, the SEMP algorithm uses simulation error min-
imization (SEM) paradigm, and it provides more accurate
and robust identification. However, this method has a much
larger computational cost, compared to FROLS method.

Despite their distinct performances regarding accuracy
and computational cost, both methods do not provide good
results in the presence of non-Gaussian noise since they are
based on second-order moments, e.g., MSE (Principe 2010).

3 Correntropy

Correntropy is a generalized similarity measure between two
arbitrary scalar random variables X and Y and defined by
(Santamaria et al. 20006) as:

Vo (X, Y) = E(ko[X,Y]) “)
where E[.] denotes the expectation operator and k4 (., .)

corresponds to any positive-definite symmetric kernel. This
work employs a Gaussian kernel G, (x, y) defined as:

1 (x —y)?
G(r (X, y) = \/EO’ exp <_ 262 > (5)

where o is kernel width parameter (or kernel width), which
is a free parameter. Then, one could estimate the correntropy
V, between two random variables X, Y as:

A 1 (i) — y())?
Va(X,Y)—ﬁﬁgeXP<_T> (6)

Some interesting properties were presented in Santamaria
et al. (2006) and Liu et al. (2007) when the Gaussian kernel
is used. It makes correntropy symmetric, positive, bounded,
and able to extract high-order statistical information from
data. To illustrate this last and important property, one can

use the Taylor series expansion of the Gaussian function in
(4) to obtain the following representation:

Vo (X, Y) = E[Gs(x, y)]

]

1 (—=DF
= N Z 2ko-2kk!E[(X - Y)Zk] N
k=0

As shown in Eq. (7), the Gaussian kernel makes cor-
rentropy a weighted sum of all the even moments from
the random variable (X — Y). The kernel width o appears
as a weighting parameter that controls which moments are
used, being an effective mechanism to reject outliers in non-
Gaussian noise environments. Increasing the kernel width
value makes correntropy tend to correlation (Principe 2010).

3.1 Maximum Correntropy Criteria

In order to take advantage of robustness provided by corren-
tropy in non-Gaussian environments, it is possible to define
the cost function J as the correntropy between the real output
signal y and the estimated output signal y.

IR NOERIO)R
«/ﬂoNZeXp (_( 202 ) ) ®)

i=1

J=Vo(y,9) =

One could maximize V; (v, ), and consequently, the sim-
ilarity between the desired signal and the system output,
which will minimize the error ¢ = y — 3. This approach
is called maximum correntropy criteria.

Since § = ¥, one could make

0k+1)=6k)+nVJ )
where

aJ N ~
VJ = 29 =V,(Y,Y)=E[Gs(Y,¥0)] (10)

Then, a simple iterative gradient solution can be used to
determine the update rule for 6

n
- x
N 2ro3

k

2
> [exp (-%) e(i)lIlT(i):| (11)

i=k—N+1

Ok +1)=0(k) +

where W (i) is the ith line of regressor matrix ¥ which cor-
responds to the ith observation.

It is also possible to approximate the sum to the current
value (N = 1) inspired by the stochastic gradient as in Singh
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and Principe (2010).

k 2
%) e(¥ 7 (0

12)

Ui
0k+1)=0(k _— —
e (”Nmas“p(

The practical consequence of the use of correntropy to
treat non-Gaussian cases (in general, since its expansion
contains all the even statistical moments, etc) is not to cap-
ture nonlinearities in the generating model. Rather due to
the exponential decaying of the kernel, outliers in the noise
are naturally discarded by the cost function. Bimodal and
alpha-stable noise types are very harmful to mean square
cost functions.

The kernel width o appears as a free parameter. According
to (7), it can be stated that o affects directly the convergence
rate, robustness, and steady-state performance of the adaptive
filtering (Principe 2010).

Due to the importance of the kernel width, this free param-
eter must be properly chosen to ensure good performance.
The definition of a fixed and optimal value for the kernel
width is not a trivial task, once it changes according to data
and application nature (Huang et al. 2017b; Santamaria et al.
2006). In order to overcome this drawback, an adaptive ker-
nel width algorithm is used to properly determine the value
for the kernel width iteratively.

The kernel width acts as a zoom lens controlling the obser-
vation window which the similarity between two random
variables is assessed. The kernel width plays a key role in the
MCC performance, since this parameter affects the stability
of weight tracks, convergence speed, and presence of local
optima (Singh 2010). A good option to deal with the selec-
tion of the kernel width is to use an adaptive method to make
its adjustment.

Several adaptive kernel width methods can be found in
the literature. They are based on the fact that the statistics
of the error changes continuously during the model param-
eters estimation. Therefore, the main goal is to improve the
identification method by adapting the kernel width to best
suit the error signal at each iteration (Singh and Principe
2011). The adaptive kernel width MCC (AMCC) algorithm
was proposed in Wang et al. (2015a) aiming to improve the
convergence speed, mainly when the initial model param-
eter vector is far from being optimal The switch kernel
width method of correntropy (SMCC) updates the kernel
width based on the instantaneous error between the esti-
mated and the desired signal in order to adjust such parameter
for each iteration (Wang et al. 2015b). Recently, the tech-
nique developed in Huang et al. (2017b) called variable
kernel width-maximum correntropy criterion (VKW-MCC)
has been suggested as a solution capable of searching for the
best kernel width at each iteration, thus implying reduced
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error. This strategy is able to provide fast convergence rate
and stable steady-state performance. The choice of this
method is justified by its superior performance when com-
pared to others adaptive kernel methods found in the literature
(Huang et al. 2017a).

3.1.1 Variable Kernel Width MCC (VKW-MCC)

The VKW-MCC algorithm calculates the kernel width at
each iteration by maximizing exp(—e?/202) with respect
to the kernel width o (Huang et al. 2017b). For this pur-
pose, the authors employ a modified cost function to reduce
the interference of the kernel width. Instead of making
J(k) = E[Gs ()], the following statement is considered:

Jk) = E [ong(e)] . (13)

Using the gradient ascent approach, the modified MCC
algorithm is given as:

0k +1)=0(k) + u exp (—%’2) e()wT (k) (14)

with u = ﬁ The choice of the u value is performed

empirically because the cost function is nonlinear and not
convex. However, since the gradient expression is always
less than the gradient of a convex function, the choice of ©
is not difficult to do empirically. It may even be estimated, in
critical cases, as a proportion of the greater self-value of the
e’

Assuming that the noise is not impulsive, the work devel-
oped in Huang et al. (2017b) has also shown that the optimal
kernel width in the kth iteration is given by:

where k, is a positive constant. In order to ensure a robust
response to impulsive noise (Huang et al. 2017c¢), the VKW-
MCC method computes E[|e(k)|] instead of |e(k)| in (15),
ie.,

e(k) = te(k — 1)+ (1 — Dmin (Acx) - (16)

where 7 is a smoothing factor that can assume any value
between O and 1 and A,  is a set of values |e(k)| in the form:

Ack =[le()] etk = D] --- [e(k =Ny +DI]. (A7)

being N, the length of the estimation window. Then, Eq. (15)
can be rewritten as:

o (k) = kse(k). (18)
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The authors in Huang et al. (2017b) also mention that the
VKW-MCC algorithm lacks of robustness when oy is too
large. To prevent this from happening, the kernel width must
be within an interval [0, og].

4 Simulation Correntropy Maximization with
Pruning (SCMP)

Similarly to FROLS and SEMP methods for MSS problem,
the SCMP adds a new regressor at each iteration and it selects
the one that best fits the data.

Initially, it is considered a matrix that has all the candi-
date regressors ¥ s with dimension N x ng, where N is
the number of observations and ng is the number of regres-
sors. The matrix P = [p; P j], with j < ng, represents
the set of candidate regressors that are in the current model
of iteration j, and is initialized as P = {}. The matrix
0=1Iq, q,,— j] represents the set of candidate regres-
sors that are outside the current model during iteration j. Q
is initialized as Q = W ;.

At each iteration, a term j of matrix Q is sequentially
added to matrix P. For each term added to the model, the
algorithm finds the parameters # € R¥ using an estimator.
At the end of the j < ny iterations, the matrix P is a subset
of ¥, with the best set of regressors.

The FROLS and SEMP methods use LS-based estimators.
The SCMP uses the iterative gradient solution for maximiz-
ing the correntropy, as described in (12). In this step, the
equation of the estimator is represented by

0(n+1)=0n) + pexp (—%’2) em)P(n), (19)

e

where y is the estimated output and n = 1,..., N and
P (n);es: s the nth line of the current matrix regressor.

The model with structure characterized by the regressor
matrix P ; and @ ; can be evaluated in terms of its prediction
or simulation performance. The SCMP algorithm uses the
correntropy cost function (8) in the prediction and simulation
performance (similar to the SEMP method) of the current
model to evaluate each candidate regressor. In this case, the
goal is to maximize the similarity between the data set and
the model. For this to happen, the SCMP uses the simulation
similarity maximization rate (SSMR), which has robustness
to non-Gaussian noise, and it is described by the following
expression:

‘,}O‘ (y’j\’MH_])_‘,}U (y’j}Ml)

[SSMR]; =
i ¥ (k)

(20)

where M; is the current model and M, is the model with
the regressor under test and ‘70 is the MCC described in (8).
This expression indicates the portion of the output variance
explained by the addition of a new term to the model (simi-
larity to ERR and SRR).

After the regressor addition, a recursive test for redun-
dant terms is performed, and terms are eliminated as long
as the combined addition and pruning function improves the
model accuracy. A complete iteration of the SCMP is thus
guaranteed to maximize the SSMR. The pseudo-algorithm is
described in (1).

Algorithm 1 SCMP

Initialization: o, W, p

1. P=[]

2: Q =¥y

3:fori=1:ngdo

4 for j = 1: size of Q do

5: Piesi =[P q;]

6: Calculation of @ ; using 19
7 Calculation of J; using 20
8:  end for

9: [ = position of argmax J

10: if J; > Ji,,, &|J1,,, — Jil > p then
11: P =[P ql

12: q, =11

13:  else

14: END

15:  endif

16:  for k =1 : size of P do

17: R = P without py

18: Calculation of 8 using 19
19: Calculation of Jpy using 20
20:  end for

21:  m = position of argmax Jp
22:  if Jpy > Ji,, then

23: P =[P without p,,]
24: GOTO 16

25:  else

26: GOTO 4

27:  endif

28: end for

In Algorithm 1, it is possible to observe that the identifica-
tion process is divided into two steps: the estimation process
and the choosing of the best candidate model that fits the data.
To highlight, Fig. 1 shows the proposed method components
diagram.

The SCMP algorithm, as described in Algorithm 1, uses
two kernel size values. The first one (o) is used in the param-
eter estimation step, which uses (19). The second one (o)
is used to verify the quality of the model being evaluated
during the current iteration, according to (8). It is interest-
ing to note that the values of o, and oy are not necessarily
equal. Thus, to reduce the amount of free parameters, SCMP
uses the adaptive kernel methodology during the parameter
estimation step.

@ Springer



458

Journal of Control, Automation and Electrical Systems (2019) 30:453-464

Additive noise

l v(k)

u(k) Dynamical | y'(k)
System
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pmmmm e e(k)
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| 1
: (SCMP) (MGC) |
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! Correntropy Kernel Size | |
: 'y (VKW) i
: A 1
! I

1

' i
i I
| 1

Proposed method

Fig.1 Proposed identification architecture used in this paper. The cor-
rentropy function is used to select the structure while the maximum
correntropy criteria is used to estimate the parameters of the NARX
model. The output of the dynamic system is polluted with impulsive
noise

5 Non-Gaussian Noise

To evaluate the performance of the proposed algorithm in a
non-Gaussian noise environment, this paper uses three dif-
ferent strategies to create impulsive noise. The first approach
is achieved from the summation

T (o0, 1,01, n2,02) = (1 — N (i1, 01) + oN (2, 02)
2D

where oV (i, o) is a Gaussian distribution with mean p and
variance o. The o represents the percentage of the samples
concentrated in that mode, i.e., T (0 = 0.1, u; = 0,01 =
1, o = 2,07 = 1), 90 % from the data is concentrated in
the mode with 0 mean and variance 1 while 10 % is in the
mode with mean 2 and variance 1.

The second approach is by using a stable distribution
(Shao and Nikias 1993) to model the noise. The paper (Weron
and Weron 1995) highlights that Lévy «-stable random vari-
ables can be achieved by their characteristic function

. T
—o%|t|{1 — j,Bmgn(t)tanT} + jvt, a#1
—oltl{1+ jBsign(t)  log|t|} + jut, o =1
(22)

logp(t) =

@ Springer

where « is an index of stability in (22) and may vary as
(0 < a < 2). The smaller the value of alpha, the longer the
distribution tail will be, controlling how impulsive it is. On
the other hand, using « = 2 makes it equivalent to a Gaussian
distribution. The 8 € [—1, 1] is a skewness parameter, and
v > 0 is a scale parameter. & € R is a location parameter
while j is the imaginary unit. Lastly, sign is the sign function,
which is defined as

-1 u<l
sign(u) =40 u=20 (23)
1 u>1

In this paper, all the simulations use 8 = 0 and u = 0.
The generalized signal-to-noise error (GSNR) (Nikias and
Shao 1995) is used to calculate the y parameter, which is
given by

P
GSNR = 101log;, <—S> 24)
y

where Pg is the power of the clean signal and y = v¥, mea-
suring the dispersion from the noise. Then, in the second
approach, the impulsiveness of the noise is controlled by the
o parameter while the general strength is selected by the
GSNR value.

The third and last approach simulates an intermittent con-
nection resulted from a faulty wiring, which could bring the
value from a sensor to 0 from time to time. Given L sam-
ples from a signal, this method would make a percentage of
this signal to 0. All positions could be selected with equal
probability.

6 Experimental Results

In this section, three experiments are discussed to demon-
strate the performance of the SCMP algorithm. The first is
an experiment with a numerical system described in Billings
(2013). The second is an experiment using data from a
benchmark (Wigren and Schoukens 2013). The third and last
experiment consists in using a real plant (Quanser 2011b) to
evaluate the proposed method

In order to analyze the quality of the obtained models
from each method, the root-mean-square error (RMSE) is
computed for a validation set as follows (Kulikova 2017):

(y(i)) = $)7)° (25)

1 M
RMSE = | —
MNZ. ;

N
]:1 i=

The experiment was repeated M = 400 times (where M is
the number of Monte Carlo trials) with a number of observa-
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tions (or discrete points) N = 500. The error was calculated
using the actual output y and the estimated output y.

6.1 Experiment 1
To illustrate the performance of the proposed SCMP algo-
rithm, consider the following numerical system described by

Eq. (26), which was proposed by Billings (2013)

y(k) = 0.605y(k — 1) — 0.163y(k — 2)?
+0.588u(k — 1) — 0.240u(k — 2) + ¢ (26)

where ¢ is a additive noise (bimodal or «-stable) used for this

experiment.
In this experiment, the matrix of candidate regressors has
the following characteristics: output delay n, = 3, input

delay n,, = 3; and nonlinearity degree [ = 3.

The input used to estimate the parameters is a sinusoidal
signal described by Eq. (27). The input used to validate the
data through a free simulation is described by Eq. (28).

u(t) = 0.5sin(0.7¢) 4+ 0.25sin(1.4¢) + 0.5 sin(0.35¢)
(27)
Uy (1) = 0.25sin(0.7¢) + 0.1 sin(1.4¢)
+0.55in(0.35¢) 4+ 0.2 sin(¢) + 0.4 sin(0.5¢) (28)

This sinusoid has a frequency approximately equal to the
cutoff frequency of the system added to a sinusoid with the
frequency equal to the half cutoff frequency plus one sinusoid
with a frequency equal to twice the frequency of court.

The stopping criterion in all algorithms occurs when the
improvement drops below a threshold value p. In FROLS

1L |—System “o—FROLS —=—SEMP ——SCMP| |
Q)

Output amplitude

200 220 240 260 280 300
Samples

Fig.2 Experiment 1: Typical simulation from the numerical system of
Eq. 26 with bimodal noise following the parameters V' (o = 0.1, u) =
0,01 =0.1, up =2,0, =0.1)

15| |—System ~o—FROLS —=—SEMP —#—SCMP| |

Output amplitude

200 220 240 260 280 300
Samples

Fig.3 Experiment 1: Typical simulation from the numerical system of
Eq. 26 with «-stable noise with GSNR =5dB and o = 1

0.8

——FROLS —&—-SEMP —#—SCMP

e ©
o N
:

¢ ©
o
: :

Error amplitude
o
i

o o
N w
=l
= =
E (o
e
=
==
s
C W —
e
~—r
=5
=
—=
—
g
—
e —
=
AN~
= ——

e ¢
-—
‘ ‘

o
o

0 100 200 300 400 500
Samples

Fig. 4 Experiment 1: Mean from 400 trials of the error between the
system output and algorithms for in the presence of bimodal noise with
parameters Y (0 = 0.1, u1 = 0,01 = 1, up =2, 02 = 1) in numerical
experiment of Eq. 26

algorithm, p = 0.5.In SEMP and SCMP, p = 5e~*. Besides,
in the results for this experiment, SCMP employs the step size
© = 0.1 from the gradient ascendant method and oy = 0.1
as free parameters.

To simulate the presence of additive noises with non-
Gaussian distributions, two configurations described in
Sect. 5 were used. The first one is described by Eq. (21) with
parameters V(0 = 0.1, u; = 0,01 = L, u2 = 2,00 = 1).
Figure 2 shows a typical validation using this kind of noise,
while Fig. 3 shows the results using an «-stable distribution
with o = 1 and GSNR =5 dB to model the noise. In all cases,
it is possible to state that SCMP presents better fitting than
other methods.
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expected, using correntropy makes the SCMP more accurate
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Fig. 5 Experiment 1: Mean from 400 trials of the error between the
system output and algorithms in the presence of «a-stable noise with
GSNR =5dB and « = 1 in numerical experiment of Eq. 26
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Fig. 6 Experiment 1: Mean from 400 trials of the mean error in the
presence of a growing outlier percentage in numerical experiment of
Eq. 26

FROLS and SEMP.

This SCMP outlier rejection capability is highlighted in
Fig. 6. The average error from 400 trials is presented together
with the percentage of outliers, o, which varies from 0 to 0.2:

As the number of outliers increases, the performance
of both the FROLS and the SEMP algorithms deteriorates
since they are based in second-order statistics. The proposed
SCMP algorithm was able to keep the error amplitude stable
during all the o tested range.

Table 1 summarizes the comparison between SCMP,
FROLS, and SEMP. It is possible to notice that SCMP has
superior performance in experiment 1. The SCMP maintains
the structure selection capability, even in the presence of non-
Gaussian noises, as can be observed by the reduced number
of parameters and by the lower RMSE values for all cases
where the kernel is well adjusted. Also in Table 1, it is pos-
sible to observe the standard deviation of the MSE from the
validation data and the average number of model parameters
obtained by each method.

Regarding the presence of noise with non-Gaussian dis-
tributions, the addition of the correntropy as a cost function,
both for parameter estimation and for the selection of the
regressors, adds two free parameters, the kernel width of the
estimator and the cost function, which needs to be adjusted.
Simulations were performed in order to demonstrate the
problem of a poor fit of such parameter with variations of
the kernel values, and the results are given in Table 1. In case
with o, being too small (o, = 0.001), the algorithm tends to
diverge from a solution. On the other hand, using a large ker-
nel width for parameter estimation (o, = 5), as point out by
Eq. (7), makes correntropy tend to correlation, which makes
the algorithm have similar performance than the second-
order methods. By proper tuning the kernel width (o, = 0.1),
the SCMP was able to achieve better results. Since this is not
always a simple task, this paper implements the VKW adap-
tive kernel width strategy, which was described by Sect. 3.1.1.

Table 1 Experiment 1: RMSE

R . Method Noise distribution

of validation, standard deviation

(Std) of the MSE of the Gaussian Bimodal a-stable

validation data and number of RMSE  Std ng RMSE  Std ng RMSE Std ng

terms (n¢) used in the numerical

experiment of Eq. 26 FROLS 0.0850  0.0022 2 0.4106 0.1219 84 0.2440 0.0323 52
SEMP 0.0545 0.0016 4 0.2484  0.0206 7 04770 0.7454 9
SCMP (o, = 0.001) 0.3602 24e—04 10 0.3602 2.4e—04 11 0.3602 2e—04 7
SCMP (0, = 0.1) 0.1090  0.0035 25 0.1129  0.0042 19 0.0685 0.0039 18
SCMP (0, = 5) 0.1314  0.0014 1 0.1526  0.0126 1 0.1352  0.0039 1
SCMP (VKW) 0.0798  0.0154 8 0.0908 0.0147 9 0.1023  0.0292 9
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Fig. 7 Experiment 2: Typical simulation from the Silver Box bench-
mark

Table 2 Experiment 2: RMSE of validation, standard deviation (Std)
of the MSE of the validation data and number of terms (14 ) used in the
Benchmark Silver Box experiment with Gaussian noise
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Fig. 8 Experiment 2: Mean from 100 trials of the error between the
system output and algorithms in the presence of bimodal noise with
parameters T (o0 = 0.1, u; = 0,01 = 0.05, o = 1,02 = 0.05) for
Silver Box benchmark experiment

Table 3 Experiment 2: RMSE of validation, standard deviation (Std)
of the MSE of the validation data and number of terms () used in the
Silver Box benchmark with bimodal noise

Method Noise distribution

Gaussian

RMSE Std ng
FROLS 1.7377e—4 0.0113 84
SEMP 9.4502e—7 6.6261e—04 33
SCMP(VKW) 9.6388e—4 0.0271 22

Method Noise distribution

Bimodal

RMSE Std ng
FROLS 0.1474 0.0199 84
SEMP 0.1172 8.88e—04 45
SCMP(VKW) 0.0683 0.0023 17

The SCMP using the VKW strategy has achieved similar per-
formance to the best kernel width selection overcoming this
free parameter issue.

6.2 Experiment 2

The second case study and benchmark considered in this
paper concern an electronic implementation of a nonlinear
system, denoted as Silver Box (Wigren and Schoukens 2013).
This system simulates a second-order mass—spring—damper
mechanical system, with a nonlinear spring constant with the
purpose of relating the displacement y(¢) to the force u ().

The matrix of candidate regressors ¥, has an output delay
ny = 3,inputdelay n,, = 3, and nonlinearity degree/ = 3.In
all algorithms, the threshold stopping criterion is p = 1078,
The SCMP parameters for this experiment are £ = 1 and
o, = 1.

Figure 7 shows the output of the system and the outputs
of the models obtained by the methods covered in this paper.
The MSE obtained by each method is described in Table 2.

Table 2 shows that SCMP performance is similar to
FROLS and SEMP in this benchmark case.

Figure 8 shows the average error signal from 100 exper-
iments with a simulated bimodal noise with parameters
T =0.1,u; = 0,01 = 0.05, up = 1,00 = 0.05). As
expected, correntropy makes the SCMP more accurate in the
presence of non-Gaussian noise when compared to FROLS
and SEMP. Table 3 shows the results with this non-Gaussian
noise presence.

6.3 Experiment 3

This experiment consists in a real plant, the Quanser Servor
Base Unit (Quanser 2011b). The input signal is the voltage
applied to the system, and the output is the position of the
motor.

The matrix of candidate regressors ¥, has an output delay
ny = 2, input delay n,, = 2 and nonlinearity degree [ = 2.
The FROLS threshold stopping criterion is 1072, and for
SEMP and SCMP it is 10~*. The SCMP parameters in this
experiment are © = 0.2 and oy = 1.0.
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Fig.9 Experiment 3: Typical simulation from the Quaser Servo system

Table 4 Experiment 3: RMSE of validation, standard deviation (Std)
of the MSE of the validation data and number of terms (ng) used in
Quanser Servor experiment with Gaussian noise

Method Noise distribution

Gaussian

RMSE Std ng
FROLS 7.4112¢—4 0.0039 2
SEMP 4.4723e—4 0.0039 2
SCMP(VKW) 2.6784e—2 0.0066 2

0.5
——FROLS —+&SEMP —=*—SCMP b

Error amplitude

O L L
0 0.05 0.1 0.15 0.2

Percentual of outliers

Fig. 10 Experiment 3: Mean from 400 trials of the mean error in the
presence of a growing outlier percentage in real case Quanser Servo

Figure 9 illustrates an output of the measured data from
the system. The MSE obtained by each method is described
in Table 4.
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Fig. 11 Experiment 3: Mean from 100 trials of the error between the
system output and algorithms in the presence of bimodal noise with
10% of outliers resulted from a faulty wiring for Quanser Servo Base
Unit

Table5 Experiment 3: RMSE of validation, standard deviation (Std) of
the MSE of the validation data and number of terms (7¢) used Quanser
Servo Base Unit experiment

Method Noise distribution

Bimodal

RMSE Std ng
FROLS 0.4870 0.2776 15
SEMP 0.2217 0.0128 5
SCMP(VKW) 0.1524 0.0112

In this experiment, as described in Sect. 5, the non-
Gaussian noise can be interpreted as an intermittent connec-
tion resulted from a faulty wiring, which brings the sensor
value to 0. With no outliers, FROLS and SEMP had a better
performance than SCMP proposed method, as can be seen in
Table 4. But, the increment of outliers percentage, o, in the
output signal makes the FROLS and SEMP methods lose its
capabilities of identify the system while the SCMP maintains
its identification capacity. Figure 10 shows this behavior.

Figure 11 shows the average error signal from 400 exper-
iments of this system. Table 5 shows the results of this
experiment.

In the presence of Gaussian noise, all the methods used
found linear models with few parameters. This makes sense,
because the system, according to Quanser (2011a), can be
represented by a linear second-order model. However, in
the presence of non-Gaussian noises, only SCMP presented
models with few parameters, which shows its natural ability
to reject outliers.
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7 Conclusion

This paper has presented a novel algorithm for nonlinear
system identification called simulation correntropy maxi-
mization with pruning-SCMP, which uses correntropy as a
cost function to both select the structure and estimate the
parameters of NARX models in non-Gaussian noise envi-
ronment.

The proposed method was able to achieve better perfor-
mance when compared to other methods such as FROLS and
SEMP in three different system identification tasks.

One of the drawbacks of using correntropy and, conse-
quently, the SCMP, is a free parameter called kernel width
that influences the convergence rate and robustness of the pro-
posed method. This paper addresses this issue by employing
a variable kernel width strategy denominated VKW, which
was able to achieve good results.

Future work includes the application of the proposed
algorithm to NARX MIMO (multiple-input multiple-output)
models. Moreover, the presented algorithm may be extended
to other nonlinear model representations.
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