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Abstract
Advances in communications technologies, data processing and storage benefit power distribution utilities, allowing them to
enhance the use of data provided by field monitors, remote-controlled switches and smart meters. Today, utilities can gather
a variety of data regarding the power grid operation, such as customers demands, alarms and measurements, taking steps
toward the Smart Grids. An interoperability bus (IB) can provide those data to any other corporate system, allowing one to
develop power grid operational tools executed by distribution management systems (DMS). In this context, the present paper
proposes a new fault location methodology for real power distribution networks, that resorts to data provided by an IB, such as
alarms from protection relays and fault indicator sensors, and measurements from power quality monitors and smart meters.
The methodology can be implemented in the DMS level and is based on evolutionary strategies, which is responsible for
estimating the exact location of faults in the MV level of power distribution networks. The effect of the availability of data as
alarms and measurements is assessed, considering a real 319-km-long power distribution feeder. Test results obtained from
113 short-circuit cases have indicated that the locating error is inferior to 2.9%.

Keywords Fault location · Smart grids · Power quality · Distribution automation

1 Introduction

1.1 Faults in Distribution Systems

Overhead electric power distribution systems are usually sub-
ject to animal and vegetation contact, vehicle collisions, bad
weather conditions. The resulting short-circuit condition is
extinguished by protection devices operation, which affects
many customers with power outage. It causes discomfort,
economic and material losses (Cordova and Faruque 2015).
Such reality demands tools and methodologies for efficient
and effective FL, fault isolation, repair and service restora-
tion, in order to improve the PQ.
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1.2 Fault Location in Traditional Power Distribution
Grids

Initial frameworks designed for FL addressed the location
of electric faults in transmission systems (Saha et al. 2002).
For instance, Girgis and Fallon (1992) proposes the use of
DFR (Digital Fault Recorders) to register voltages and cur-
rents waveforms at the beginning of a power distribution
feeder. The FL methodology described in Zhu et al. (1997)
aims at distribution systems and employs similar mathemat-
ical approach as Girgis and Fallon (1992), but considering a
database for the grid modeling and iteratively computing the
fault distance for each section of a power distribution feeder.
Such approach overcomes the problem of phase imbalance;
however, it may lead to multiple possible locations, when
only the measurements from one position in the power grid
is available during the occurrence of a fault.

Based onZhu et al. (1997), the authors of reference Senger
et al. (2005) have proposed a comprehensive framework for
FL in distribution systems, based on waveforms recorded by
protection IEDs allocated at the substation for each power
distribution feeder. This work brought contributions to the
subject as it automates the FL procedure, proposing an opti-
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mal data flow, accurate systemmodeling and simple firmware
updates. On the other hand, the system does not update the
networkmodel (such as switches states) automatically. Then,
it may not match the real power grid states and lead to wrong
results.

Different Artificial Intelligence (AI) techniques for FL
have been considered such as Artificial Neural Networks
(ANN), FuzzyLogic, GeneticAlgorithms, among others. Al-
shaher et al. (2003) proposes the use of ANN for FL, which
should bepreviously trainedwith someof the power grid vari-
ables. In Farias et al. (2016), however, the authors propose
a FL technique attempting to avoid time consuming training
sessions, with on-line training. In Guerra and Kagan (2009),
the authors propose a FL methodology based on voltage and
current quantities recorded by PQmonitors deployed along a
power transmission system. Those distributedmeasurements
are integrated in an Evolutionary Strategy.

The authors of Manassero et al. (2017) propose a FL
methodology based on heuristics. A Patter Search method
implementation estimates the fault distance and type. Among
the inputs, however,measurements at the power feeder begin-
ning are the only updated information. Considering fixed
switches states may yield to wrong fault location results.

1.3 Fault Location in Smart Grids

Technical operation levels of power distribution network
establish losses reduction, voltage levels improvement and
increase in grid availability and reliability. Remote switching
and monitoring allow decision-making for an efficient grid
operation. Capacitor banks, on-load tap changers and voltage
regulators provide flexible operation as it automates voltage
and reactive power adjustments remotely and on real-time.
Smart Meters connected through communication systems
enable remote metering, checking meter operational status
and notifying power outages. The deployment of intelligent
devices throughout the distribution power grid has allowed
utilities to accurately measure its electric quantities in real
time.

The aforementioned Smart Grid environment represents
a real opportunity for the development of tools such as fault
location algorithms. Some works have contributed toward
this research field. In Trindade et al. (2014), the authors pro-
pose the use of Smart Meters for FL, based on voltage sags
recording, which is a functionality available in some meters.
Such proposal assumes a fully functional communication
infrastructure, which may limit the use of FL algorithms
to situations where there is no loss on the data transmitted.
Another drawback is the heavy data flow caused by all the
affected customers.

Toward the use of sensors, Džafić et al. (2018) presents a
FL methodology based on telemetered Fault Indicators (FI)
deployed along the power feeder. However, many FI devices

are needed and a heavy data flow is caused. Moreover, topo-
logical data are not updated in real time, which may cause
the fault location results to be inaccurate. Reference Parker
and McCollough (2011) indicates that the utilization of cur-
rent sensors throughout power distribution feeders improves
the FL accuracy and yields a more efficient operation of the
distribution system.
The herein paper proposes an innovative FL methodology,
addressing the problem through data integration in the a
Smart Grid context. Its main innovation consists of locating
faults based on real-time information, provided by a com-
prehensive set of field equipment and corporate systems,
supported by data integration. Considering the data provided
by such field equipment, the paper quantifies how one may
locate faults more accurately in real power distribution net-
works through a meta-heuristic approach.

In terms of IT systems, Supervisory Control and Data
Acquisition System (SCADA) and protection systems are
responsible for gathering alarms and real-timemeasurements
from field equipment, such as protection IEDs, fault indica-
tors and smart meters. The alarms work as the FL trigger,
whereas the real-time measurements are the main FL input,
supporting the search for the fault position.

Systems focused on database, such as Meter Data Man-
agement (MDM) andGeographic Information System (GIS),
gather detailed and accurate power grid modeling infor-
mation, providing updated power grid topology, customers
demands and switches statuses. That information increases
the FL algorithm accuracy, as the digital model attempts to
match the real distribution power grid.

2 Methodology

2.1 Assumptions

The FL methodology locates faults only in Medium Voltage
(MV) level and considers all the Low Voltage (LV) loads
connected to the MV/LV transformer’s secondary terminal.
Distribution utilities continuity indexes (SAIDI and SAIFI,
for instance) are mostly impacted by faults in MV level.

For the FL algorithm, the methodology works with load
blocks. Load blocks are portions of the power distribu-
tion grid delimited by NO or NC switches, such as fuses,
reclosers, secctionalizers, regular switches, etc. Thus, a load
block groups line sections, buses, MV/LV transformers,
loads, capacitor banks, voltage regulators, etc. This grouping
process facilitates the search for the fault location in power
distribution grids with many branches. Concerning the smart
meters power outage alarms, the FL methodology associates
the set of LV customers alarms with a unique alarm attached
to the transformer MV bus.
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The fault indicators provide the fault event alarm and the
fault current magnitude. The PQ monitors measure voltages
and currents magnitudes, which may also be measured by
protection relays.

2.2 FL Process

To accomplish the FL based on up-to-date information from
the utility corporate systems, it is necessary to follow the
steps presented by Fig. 1. The FL process is initiated by
the arrival of data regarding alarms from corporate systems.
Then, it allows a first search area restriction. This is followed
by the fault type determination, through a phase currents
analysis. An Evolutionary Strategy (ES) algorithm provides
an accurate determination of the fault characteristics (fault
resistance and location).

Data Inputs

Search Area

Fault Type

Initial Population

ES Operations
(Mutation,

Crossover and
Selection)

Evaluation

Stop
criterion
satisfied?

End

N

Y

ES

Fig. 1 Fault location overall process

MDM

Protection Systems

GIS

SCADA

FL Methodology

IB

Fig. 2 Data flow supporting the FL methodology

2.3 Data Inputs

The utility corporate systems gather a great variety of the
distribution power grid data. These systems are supposed to
support the FL methodology with the following data:

– SCADA Up-to-date information about field equipment
status, such as remotely controlled switches, current sen-
sors (currents recordings) and PQmonitors (voltages and
currents recordings);

– GIS Customers georeferenced data, supporting digital
modeling of the power grid;

– Protection systems data Protection relays parameters and
waveforms records;

– MDM Customers readouts and power outages alarms;

An IB should integrate those systems data with the FL
methodology. Figure 2 illustrates the resulting data flow.

The FL application is intended to be executed in a distri-
bution management system (DMS), aimed at dealing with
complex algorithms for grid operations optimization and
decision-making support. The FL is based on relays wave-
forms, alarms from MV current sensors and protection
schemes tripping alarms. The SCADA system is likely to
contain those data.

The GIS system is responsible for providing data to build
an up-to-date power grid digital model. The FL application
also utilizes smart meters power outage alarms, which can be
obtained from theMDMsystem. Themethodology considers
an integrated environment, in such a way that data may be
exchanged seamlessly.

2.4 Defining the Search Area

The search area determination is based on incoming data,
such as power outage alarms, alarmed fault current sensors
and tripped remotely controlled protection devices. The anal-
ysis of those datamay lead to twomain situations, as follows.
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Fig. 3 Situations in determining the search area

– Situation 1 The fault happens downstream a fuse switch.
When this occurs, no remotely controlled protection
device is alarmed. In the Fig. 3 scheme, this situation hap-
penswith fault F1. The smartmeters (small black dots) of
the affected customers detect the fault event and send out
power outage alarms. The Sensor SR is the most down-
stream to be alarmed by the fault current. Fuse switchFU
trips and no remotely controlled protection operates. The
smart meters power outage alarms information yields to
search areaA1.Meanwhile, the sensor information yields
to search area A2. Area A1 is considered the search area,
because it is smaller than A2.

– Situation 2 The fault happens downstream a recloser
switch and upstream the fuses, causing the former to trip.
This tripping event is sent to SCADA. Sensors informa-
tion may also support the search area determination. In
the Fig. 3 scheme, this situation occurs with fault F2. The
most downstream alarmed sensor is SR, which yields to
a candidate search area A2. Meanwhile, the recloser RE
tripping operation leads to a candidate search area A3.
AreaA2 is considered the search area because it is smaller
than A3.

The search area carries out a division process, in such
a way that each line section is represented by a real inter-
val [L(1)

% , L(2)
% ], belonging to [0%, 100%]. Such process is

necessary because it allows the algorithm to refer to each
particular line section.

For a line section i , with length Li , the calculation of L
(1)
%i

and L(2)
%i

is based on the accumulated line lengths (Laccum
i ),
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Fig. 4 Dividing the search area

Table 1 Line segments division

Segment i Li (km) Laccum
i L(1)

%i
L(2)
%i

1–2 18 18 0 17.1

2–3 10 28 17.1 26.7

3–4 20 48 26.7 45.7

2–5 12 60 45.7 57.1

5–6 25 85 57.1 80.9

6–7 10 95 80.9 90.5

6–8 10 105 90.5 100

as detailed by Eqs. 1, 2 and 3, where L total is the distribution
feeder total length.

Laccum
i =

i−1∑

k=1

Lk (1)

L(1)
%i

= 100 · Laccum
i /L total (2)

L(2)
%i

= 100 · (
Laccum
i + Li

)
/L total (3)

For the line sections of the distribution power grid inFig. 4,
the line segments division is presented by Table 1.

2.5 Fault Type Determination

Prior to the FL process, the FL application should estimate
the fault type, determining the affected phases by the fault
event. An assumption ismade: onlyMV faults are considered
and there are no line transformers along the feeder.

In order to proceed the fault type determination, some
quantities are defined and computed, based on the phase cur-
rentsmeasurements during the fault. Equations 4 and 5 define
the average current Iav and the phase currents deviations dIph,
with ph = a, b or c.
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Iav = | İ faulta | + | İ faultb | + | İ f ault
c |

3
(4)

dIph =
( | İ faultph | − Iav

Iav

)
· 100(%) (5)

The possible outputs for the fault classification considered
in this paper are: ABC (three-phase fault), AG (phase A to
ground fault), ABG (phase A and phase B to ground fault)
and AB (phase A to phase B fault). The fault classification
logical reasoning considered is:

– Three-phase fault (3Ph):
If (|dIa | < max1And |dIb| < max1And |dIc| < max1)
Then: ABC.

– Single-phase fault (1Ph):
If (dIa > 0 And |dIa | > min1 And dIb < 0 And
dIc < 0) Then: AG.
Else, if (dIb > 0 And |dIb| > min1 And dIa < 0 And
dIc < 0) Then: BG.
Else, if (dIc > 0 And |dIc| > min1 And dIa < 0 And
dIb < 0) Then: CG.

– Phase-to-phase fault (2Ph or 2Phg):
If (dIa > 0 And dIb > 0 And dIc < 0) Then:
If |I0/I1| > min2 Then: ABG.
Else, if |I0/I1| ≤ min2 Then: AB.

If (dIb > 0 And dIc > 0 And dIa < 0) Then:
If |I0/I1| > min2 Then: BCG.
Else, if |I0/I1| ≤ min2 Then: BC.

If (dIc > 0 And dIa > 0 And dIb < 0) Then:
If |I0/I1| > min2 Then: ACG.
Else, if |I0/I1| ≤ min2 Then: AC.

where

– max1 Maximum deviation of a phase current (dIph) for
a three-phase fault.

– min1 Minimum deviation of a phase current (dIph) for a
phase-to-ground fault.

– min2 Minimum rate of the zero sequence fault current
with respect to the positive sequence fault current (I0/I1)
for a double phase-to-ground fault.

The parameters max1, min1 and min2 have to be deter-
mined empirically, based on historical records fault currents
measurements. Those parameters should be unique for a par-
ticular power feeder.

2.6 Fault Location Determination with Evolutionary
Strategy

The fault location determination is effectively accomplished
with an ES algorithm, (details regarding ES algorithm are
available in “Appendix”). The codification of the individuals
considers two parameter vectors (x, Rf) and their standard
deviations (σx , σRf ). A particular individual represents a
solution for the FL problem, with a fault location x , in
the range [0, 100], and a fault resistance Rf in the range
[0, Rfmax ], with Rfmax the maximum considered fault resis-
tance.

An individual (representing a particular fault) is evaluated
through a fault simulation, using OpenDSS software. The
resulting quantities (calculated voltages and currents during
the fault) are considered by the FL algorithm to calculate
errors between the fault simulation and the fault event.

The individual’s evaluation leads to the error indices εV
(for voltages errors) and εI (for current errors), which may
be calculated through Eqs. 6 and 7. In those equations, NV

and NI are the numbers of voltage and current measurements
available, respectively. |V̇ comp

j | and | İ comp
j | are the calculated

values for the voltage and current magnitudes at the measur-
ing points and |V̇meas

j | and | İmeas
j | are the voltage and current

magnitudes actually measured. Such values are normalized
by the rated phase voltage Vrated and the rated current Irated,
respectively. Based on εV and εI, the individual’s error is
computed as defined by Eq. 8, where KV and KI are the volt-
age and current weights, which may vary from 0 to 1 each
and their sum must result in 1.

εV =
⎛

⎜⎝

√√√√ 1

NV

∑NV

j=1

( |V̇ comp
j | − |V̇meas

j |
Vrated

)2
⎞

⎟⎠ (6)

εI =
⎛

⎜⎝

√√√√ 1

NI

∑NI

j=1

( | İ comp
j | − | İmeas

j |
Irated

)2
⎞

⎟⎠ (7)

ε = KV · εV + KI · εI

KV + KI
(8)

Ultimately, the individuals evaluation function feval is
defined as feval = 1 − ε.

3 Tests and Results

3.1 Tests Description

An application supported by OpenDSS was developed to
simulate fault events. The user enters the fault data (type, fault
resistance and location) and the application returnsmeasured
voltages and currents and customer power outage, which are
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Fault Simulation
Area (FSA)

(Tot. length: 21.7km)

Substation

Current Sensor 1

Current Sensor 2

Fig. 5 Power distribution grid and some of the simulated short-circuit points

forwarded to the FL application, that attempts to locate the
fault.

A Brazilian MV power distribution feeder, shown by
Fig. 5, was utilized for the simulations. Its maximum exten-
sion from the substation is 40.4km, and summing all its line
sections lengths totals 319km. The distribution feeder has
three voltage regulators equally spaced along its length, but
they were disabled for the tests. There are 651MV/LV trans-
formers and one substation transformer.

For each of the fault types—abc (Three-phase), abg
(Phase–phase–ground), ab (Phase–phase), and a (Phase–
ground)—a number of faults were simulated, with fault
resistance and location manually chosen in the fault simula-
tion area (FSA). It is a 21.7-kilometer-long area, highlighted
in the mentioned figure. The faults simulations are numbered
from 1 to 113 and the actual location of some of them are
shown in Fig. 6.

The FSA was selected because it gathers interesting char-
acteristics in terms of topology and field equipment. First
of all, it is started with a recloser switch. Its remotely con-
trolled relay may provide electric quantities readouts during
the fault. As shown by Fig. 6, its beginning has few laterals,
but its final part is highly branched. The FSA topology allows
testing the contribution of monitoring equipment, such as
PQ monitors 1 and 2. Those equipment may distinguish, for
instance, faults 1 and 11 (see Fig. 6).

Three scenarios were considered for the conducted sim-
ulations. The electrical quantities are measured during the
short-circuit events and thementionedmonitoring equipment
are depicted in Figs. 5 and 6.

Switch

PQ monitor 1

PQ monitor 2

104

102

99
96

14

1

26

9

81
55

50
100

59

11

84

Fig. 6 Power distribution grid and some of the simulated short-circuit
points

– Scenario 1 Circuit breaker relay measures voltages and
currents and sensors 1 and 2measure currents (see Fig. 5).

– Scenario 2 The PQ Monitors 1 and 2 (see Fig. 6) volt-
ages measurements are considered, along with those of
Scenario 1.

– Scenario 3 The faults are applied to the dark gray region
of the fault simulation area (see Fig. 6). The affected
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Table 2 ES settings for the conducted simulations

Parameter Value

No. of initial individuals 40

Max. No. of individual per generation 10

Mutation probability 0.8

Descendants per individual in mutation 6

Crossover probability 0.5

Selection affected individuals Parents and children

Selection criterion Best individuals

Initial σx (x SD) 15 m

Initial σRf (Rf SD) 10�

Maximum Rf 15�

smart meters send out power outage alarms, which are
considered along with the data of Scenarios 1 and 2.

The ES settings for the conducted simulations are listed
in Table 2.

3.2 Results by Fault Scenario

For Scenarios 1, 2 and 3, the corresponding tables (Tables 3, 4
and 5, respectively) present the simulated faults settings and
its corresponding locating errors, which are given in meters
and percentage of the search area total length (21.7km). In
Fig. 6, the black dots represent some of the faults actual
locations.

Calculating the average and standard deviation values of
X and Rf , one may notice that Scenario 2 had improvements
with respect to Scenario 1: the average location error dropped
from 629.76m to 180.59m, a decrease of 71.32%, due to the
insertion of PQ Monitors 1 and 2. As expected, measuring
voltage at different points captures the global effects of short
circuits in those locations. This approach reduces the number
of possible solutions, increasing the FL methodology accu-
racy.

Scenario 3 presented improvements with respect to Sce-
nario 2:Therewas reduction in the average location error, that
dropped from 180.59m to 63.75m, i.e., a further reduction
of 64.70%. The improvement was provided by the utilization
of customers power outage information, which may further
restrict the search area. A smart meter outage alarm indicates
that the customer belongs to the faulted line section or to its
surrounding areas. Moreover, in cases that only a fuse switch
operates to clear the fault, outage alarms may trigger the FL
methodology and the line sections downstream the fuse is
considered the search area.

Another important aspect is the drop of maximum loca-
tion error, dropping from 2732m (Scenario 1) to 1120.62m
(Scenario 2), reduction of 59%. That maximum error also

Table 3 FL Results—Scenario 1

Simulated faults Fault location results

No. Fault type Rf (�) Error (m) Error (%)

1 abc 0 167.44 0.77

2 0 1793 8.26

3 0 220.51 1.02

4 0 1056 4.87

5 0 275.71 1.27

6 0 2732 12.59

7 0 160.03 0.74

8 0 285.31 1.31

9 0 12.38 0.06

10 0 13.45 0.06

11 abg 2.75 1717.5 7.91

12 1.9 1033.24 4.76

13 0.75 1043.5 4.81

14 1.42 1589.2 7.32

15 7.2 1374.64 6.33

16 0.01 125.78 0.58

17 2 128.2 0.59

18 4.5 112.14 0.52

19 1.3 1472 6.78

20 1.25 453.4 2.09

21 0.25 85.92 0.40

22 0.25 186.88 0.86

23 ab 0.5 12.75 0.06

24 0.01 436.07 2.01

25 0.01 2.18 0.01

26 0.01 63.07 0.29

27 1.5 1813.19 8.36

28 1 1581.31 7.29

29 0.01 6.63 0.03

30 0.01 59.23 0.27

31 1.45 97.17 0.45

32 0.01 85.46 0.39

33 0.01 6.59 0.03

34 0.7 1228.8 5.66

35 a 0.01 1890.65 8.71

36 2.5 175.44 0.81

37 1.25 19.63 0.09

38 3.75 126.19 0.58

39 0.5 1554.29 7.16

40 0.75 2167.85 9.99

41 0.45 1507.3 6.95

42 1.5 126.41 0.58

43 3.2 228.2 1.05

44 7.5 102.65 0.47

45 12 1.9 0.01

46 5.3 242.18 1.12
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Table 3 continued

Simulated faults Fault location results

No. Fault type Rf (�) Error (m) Error (%)

47 1.21 25.2 0.12

Maximum 2732.00 12.59

Minimum 1.90 0.01

Average 629.76 2.90

SD 744.55 3.43

Table 4 FL results—Scenario 2

Simulated faults Fault location results

No. Fault type Rf (�) Error (m) Error (%)

48 abc 0 13.32 0.06

49 0 10.38 0.05

50 0 9.61 0.04

51 0 27.06 0.12

52 0 9.98 0.05

53 0 16.16 0.07

54 0 15.44 0.07

55 0 10.1 0.05

56 0 3.15 0.01

57 0 9.57 0.04

58 abg 2.75 394.94 1.82

59 1.9 178.79 0.82

60 0.75 216.84 1.00

61 1.42 174 0.80

62 7.2 35.3 0.16

63 0.01 309.32 1.43

64 2 4.83 0.02

65 4.5 231.04 1.06

66 1.3 34.33 0.16

67 1.25 193.09 0.89

68 0.25 101.51 0.47

69 0.25 307.43 1.42

70 ab 0.5 50.15 0.23

71 0.01 283.59 1.31

72 0.01 4.44 0.02

73 0.01 16.74 0.08

74 1.5 1120.62 5.16

75 1 94.53 0.44

76 0.01 103.57 0.48

77 0.01 16.91 0.08

78 1.45 53.61 0.25

79 0.01 40.93 0.19

80 0.01 50.66 0.23

81 0.7 1059 4.88

82 a 0.01 445.32 2.05

Table 4 continued

Simulated faults Fault location results

No. Fault type Rf (�) Error (m) Error (%)

83 2.5 110.94 0.51

84 1.25 588.63 2.71

85 3.75 26.8 0.12

86 0.5 926.18 4.27

87 0.75 118.37 0.55

88 0.45 283.09 1.30

89 1.5 194.16 0.89

90 3.2 424.1 1.95

91 7.5 66.45 0.31

92 12 0.13 0.00

93 1.21 70.56 0.33

94 1.21 32.21 0.15

Maximum 1120.62 5.16

Minimum 0.13 0

Average 180.59 0.83

SD 263.09 1.21

Table 5 FL results—Scenario 3

Simulated faults Fault location results

No. Fault type Rf (�) Error (m) Error (%)

95 abc 0 6.13 0.03

96 0 0.24 0.00

97 0 1.19 0.01

98 0 28.63 0.13

99 0 0.33 0.00

100 abg 0.5 61.39 0.28

101 0.5 0.53 0.00

102 2 50.71 0.23

103 1.5 45.34 0.21

104 1.5 398.07 1.83

105 ab 0.1 118.09 0.54

106 0.01 55.79 0.26

107 0.5 39.23 0.18

108 0.75 76.72 0.35

109 0.01 35.58 0.16

110 a 1.87 222.25 1.02

111 4.65 0.23 0.00

112 5.5 41.55 0.19

113 3.2 29.22 0.13

Maximum 398.07 1.83

Minimum 0.23 0

Average 63.75 0.29

SD 94.10 0.43

123



648 Journal of Control, Automation and Electrical Systems (2018) 29:640–649

decreased from 1120.62m (Scenario 2) to 398.07m (Sce-
nario 3), representing a further reduction of 64.5%. Those
results lead to the assumption that fault location conducted
under Scenario 3 are likely to exhibit location error below
400m, that may be considered a good FL result.

Special comment should be made with respect to the per-
centage values of the average FL errors. Scenario 1 presented
an average location error of 629.76m, which represents only
2.90% of the 21.7 km total length. That percentage value
dropped to 0.83% for the results of Scenario 2. The average
location error in Scenario 3was even lower: 0.29%. The error
percentage analysis is a more realistic manner to analyze the
actual benefits of increasing monitoring for the proposed FL
methodology, because it takes into consideration the global
benefits of deploying a FL methodology which would sup-
port the operational activities when locating any type of fault
in real power distribution networks.

In Scenario 1, some FL tests presented errors larger than
1500m. They occurred due to the existence of branches. In
these cases, some combinations of fault locations and resis-
tances may lead to the same measurements. Then, multiple
solutionsmaymatch thosemeasurements. Inserting two volt-
age monitors in some of the branches allowed the multiple
solutions problem to be relieved, as shown by the results of
Scenario 2 simulations.

The conducted simulations allow inferring that increasing
the amount of grid monitors improves the FL scheme pro-
posed in the herein paper. In particular, the employment of
PQ monitors is a key step for reducing multiple solutions, as
the “Faults Area” exhibits many branches.

4 Conclusions

The Smart Grids should be considered the most appropri-
ate environment for the development of operational tools,
such as FL algorithms. Such environment provides utilities
with multiple data about the various power grid monitored
devices, through an IB. The FL algorithm may be executed
based on up-to-date power grid model, real-time alarms and
field equipment measurements during the fault.

In this paper, short-circuit events were simulated consid-
ering a real power distribution feeder and the outcomes are
forwarded to the devised FL application. The initial step of
determining the search area significantly reduces the overall
FL process, because it limits the region under investigation.
The challenges of fault location in branched systems with
unknown fault resistance are overcome with an Evolution-
ary Strategy implementation. It allows determination of both
fault resistance and location, as they are assessed simultane-
ously.

Considering the three proposed monitoring scenarios, it
was possible to infer that increasing the power grid monitor-

ing provides benefits to the proposed FLmethodology. Those
improvements are even clearer as one analyses the locating
errors in terms of percentage values, with respect to the entire
search area. It is a more realistic manner to capture the actual
benefits of increasing monitoring.

In actual utility outage management, with the increase
of distribution power grid monitoring, the FL methodology
should avoid multiple solutions. It means directing repair-
ing crew to the most probable fault location, reducing the
restoration time.

In cases that only a fuse switch operates to clear the fault,
the operations center is not aware of the defect, because fuse
switches are not remotely controlled. Then, customers smart
meters outage alarms may trigger the FL methodology and
the line sections downstream the fuse (usually few line sec-
tions) constitute the search area. In these cases, customers
power outage information improves greatly the FLalgorithm,
due to the deep restriction of search area, which only contains
the areas that are close to the power outage alarms notifica-
tions sources.

As field equipment provides valuable data for increasing
FL accuracy, one may notice that such accuracy depends on
the location of the field equipment to be installed along the
power grid. Thus, future works should consider addressing
the optimal allocation problem of fault sensors and PQmoni-
tors, estimating the optimal amount of such devices and their
respective positions, in order to minimize the FL errors.

The field equipment data and IT systems information
follow different protocols, according to their respective man-
ufacturers. Locating faults based on those resources demands
proper data integration, which should be addressed by future
works aiming at overcoming such specific obstacles.

Based on this research, the authors are involved in an
actual FL system implementation, considering some field
equipment alarms and readouts as the FL inputs. It will be
possible to validate the proposed FL methodology and iden-
tify practical challenges regarding the equipment recordings
accuracy, availability and data acquisition.

5 Appendix

5.1 Evolutionary Algorithms Principles

The evolutionary algorithms are inspired by biological evo-
lutionary theory. According to that theory, the individuals in
nature interact with each other and with their environment.
The fittest ones to the environment are more likely to survive,
reproduce and then generate descendants (Von Zuben 2000).

The main idea of evolutionary computation algorithms is
to regard the solution of a complex problem as the evolu-
tion process presented by sets of individuals, in which each
individual represents a particular solution for the problem.
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t = 0
initialize P(t)
evaluate P(t)
While (Stop criterion not satisfied) do

P’(t) = variation P(t)
evaluate P’(t)
Q(t) = f[P(t)]
P(t+1) = selection [P’(t) U Q(t)]
t = t + 1

End

Fig. 7 Evolutionary strategy steps

The steps for the individuals evolution, which are con-
ducted by computational implementation, are show by Fig. 7.
According to the steps description, a population P(t) with
individuals of generation t suffers variations, generating pop-
ulation P ′, whose individuals are then evaluated. A subset
Q(t) of individuals from P(t) and those from P ′ are selected
for the following generation. The whole process is repeated,
until the stop criterion is satisfied.

In evolutionary strategies (ES), each individual is char-
acterized by a vector of parameters x = (x1, . . . , xn),
which varies according to the standard deviations vector
σ = (σx1, . . . , σxn ), where n is the amount of parame-
ters. Within a population, the individuals are affected by the
ES operators, which will be described later. An individual
x = (x1, . . . , xn) is evaluated through an evaluation func-
tion feval(x1, . . . , xn).

5.2 Operators

Froman individual characterized by (x,σ ),mutation operator
generates descendants whose parameters (x′, σ ′) are calcu-
lated according to Eqs. 9 and 10.

σ ′
i = σi · exp(τ ′ · N (0, 1) + τ · Ni (0, 1)) (9)

x ′
i = xi + σ ′

i · Ni (0, 1) (10)

where

σi : parameter xi mutation step
σ ′
i : new value of σi
Ni (0, 1): random from normal distribution with (μ = 0,
σ = 1)
N (0, 1): same of Ni (0, 1), but constant for the individual
τ ′
i : learning rate of xi . Usually, τ ′

i = 1√
2β
, with β = 2

τi : learning rate of xi . Usually, τi = 1√
2
√

β
, with β = 2

The Crossover operator generates a single descendant
from individuals A (xA, σA) and B (xB, σB), generating a

single descendant with parameters (xC, σC), where a is a
random number in the range (0, 1) and i is the parameter
index (Kagan et al. 2009).

xCi = a · xAi + (1 − a) · xBi (11)

σCi = a · σAi + (1 − a) · σBi (12)

The Selection operator defines which individuals will
move to the following generation. Firstly, all the individu-
als are ordered in terms of value obtained by the evaluation
function. The first Nmax individuals are selected for the fol-
lowing generation, where Nmax is the maximum number of
individuals in a generation.
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