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Abstract

In this paper, a maximum likelihood (ML) estimator is applied for the estimation of power system oscillation modes. A
regularization term is used in order to improve the estimation. An index is proposed to rank the modes and separate spurious
from real modes. The ML estimator is compared with Prony method, and its advantages and limitations are discussed. Both
methods are applied to synthetic systems and to real Phasor Measurement Unit (PMU) data acquired from the Brazilian Inter-
connected Power System (BIPS). The results show that the proposed maximum likelihood estimator is useful to complement

and validate the results obtained by Prony analysis.
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1 Introduction

Power system controllers, such as Power System Stabilizers
(PSSs), keep the small-signal stability, ensuring that oscil-
lation modes are well damped. Controllers tuning is usually
performed using a model obtained by the linearization of the
system equations around one or a set of operating points.
Model-based controller design and evaluation are inher-
ently limited, since only a subset of operating conditions is
employed, which does not cover the wide range of topologies,
load and generation dispatch in which power systems operate.
The measurement-based estimation of the oscillation
modes allows the evaluation of the performance of power
system controllers in a wide range of operating condi-
tions. Wide Area Monitoring System (WAMS), based on
the use of synchronized measurements, provides system-
wide measurements, allowing the identification of the system
oscillation modes. These measurements can be obtained after
large disturbances, originating transient (or ringdown) data,
or in the normal system operating conditions, generating
ambient data (Zhou et al. 2012; Leandro et al. 2015).
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Large disturbances excite several oscillation modes, mak-
ing their identification easier. Therefore, the damping of the
oscillations modes and the effect of PSS can be clearly eval-
uated. The identified oscillation modes can also be used for
system-wide model validation (Decker et al. 2010).

Prony method has been widely used for the identification
of oscillation modes using transient data, although several
estimation methods can be applied (Lu et al. 2012; Kamwa
et al. 2011; Bronzini et al. 2007; Messina and Vittal 2006).
However, it presents several shortcomings specially for noisy
signals. Variants were proposed to improve its performance
but usually the noise is dealt with by increasing the model
order, which introduces spurious modes that must be sepa-
rated from the system modes.

Identification methods based on ML take noise into
account and theoretically can asymptotically achieve the
Cramer-Rao lower bound (CRLB) (Kay 1993), which is not
the case of linear estimators like Prony method. ML has found
few applications for the identification of oscillation modes in
power systems.

In this paper, a ML estimator is proposed for the iden-
tification of oscillation modes using data from the power
system transient data. An index is proposed to rank the oscil-
lation modes and to separate spurious modes from the real
modes. A regularization term is used in order to improve
the performance. The ML estimator is compared with Prony
method and its advantages and limitations are discussed. Both
methods are applied to synthetic systems and to real Phasor
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Measurement Unit (PMU) data acquired from the Brazilian
Interconnected Power System (BIPS). The results show that
the proposed maximum likelihood estimator is useful to com-
plement and validate the results obtained by Prony analysis.
This paper is organized as follows. In Sect. 2, the formulation
of the ML estimator is introduced and the solution method is
described. In Sect. 3, the Prony method is reviewed. In Sect. 4,
results for data generated by simulation of two synthetic sys-
tems are presented. In Sect. 5, the identification is performed
using real data, acquired by a low voltage WAMS installed
in the BIPS. The conclusions are presented in Sect. 6.

2 ML Estimator

If the estimator does not attain the CRLB in all situations
or it is impossible to achieve the CRLB, then, there is not
a minimum variance unbiased (MVU) estimator. This situa-
tion is common and, in many cases, linear estimators are not
achoice either, because the estimator can be highly nonlinear
on data. Therefore, ML estimators become a viable alterna-
tive in many occasions (Kay 1993). The ML estimator is
asymptotically Gaussian, unbiased and efficient.

In order to apply the ML to power systems, the transient
response is modeled as a sum of exponentials:

N
salnl =) (ai + jbi) (i + jv))"
i=1

. M
=Y Rz}, n=0,1,...,N—1
i=1

where R; = a; + jb; is the i-th complex residue associated
with the i-th discrete complex eigenvalue z; = u; + jv; and
N, is the model order.
The i-th continuous eigenvalue is:
Inz;

li—TZOli‘i‘jwi (2)

where T is the sampling period.

The observation model is:
x[n] =s4[n; 0]+ wln], n=0,1,...,N —1 3)
where x is the observed data, 6 is a vector of parameters
and w, in this case, is modeled as a White Gaussian Noise
(WGN), with distribution A/ (0, o2).

The ML method is based on the maximization of the like-
lihood function (Kay 1993):

N—1
1 1 2
px;0) = ———=exp| —— x[n] —s4ln; 0]
(zﬂgz)N/Z |: 202 ,122(:)( d ) :|
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In order to maximize (4), the following cost function can
be used:

N-1

min Jyz () = Y (x[n] - sqln: 61)* Q)

n=0
sq[n; 0] is rewritten in the following form:

N m

sqln; 0] = Z e""'”T(KL,- cos(w;nT) ©
i=1

+ K> i sin(winT))

where 0 = [Kl/ Ky o w’]/ and Ky, K», a and @ are the
vectors formed by K ;, K7 ;, @; and w;. This ensures that the
time response will be a real vector, grouping together com-
plex conjugate eigenvalues. In the case of real eigenvalues,
K> ;i and w; are set to 0.

After adding together the complex conjugate eigenvalues,
(6) relates to (1) by:

Ky =2a;

’ (N
K> = —2b;

The main advantage of the ML estimator is its statistical
properties, specially the asymptotic optimality. It is also easy
to formulate, resulting in a least square problem when the
noise is modeled as WGN, but it is a difficult problem to
solve, due to the attributes of the cost function described in
Sect. 2.2. This can potentially result in high computing time.
However, ML works well even in low signal-to-noise ratio
(SNR) conditions. In addition, it results in low order models
with few to none spurious modes.

There are some implementations of the ML criterion, in
general, resorting to ARMA and ARMAX models. Bresler
and Macovski (1986) addresses the estimation problem with
an ARMA model and a recursive algorithm, separating the
computation of eigenvalues, which are nonlinear, and the
computation of residues, which are linear. Tufts and Kumare-
san (1980) and other works have a similar approach. These
methods have been applied to acoustics, speech and signal
processing but have not been explored deeply for power sys-
tem applications, except for Dosiek et al. (2013), which uses a
ML algorithm for the estimation of oscillation modes using
ambient data. An ARMAX model and a Recursive Maxi-
mum Likelihood algorithm are employed while in this paper,
transient data are used with the model given by a sum of
exponentials.

2.1 Regularization Term

The chance of the model over-fitting the data increases with
the number of degrees of freedom of the model. This gener-
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ates spurious modes as some modes are used to accommodate
noise, specially when low energy modes must be estimated
and in case of low SNR signals, when the cost function
decreases more due to fitting to the noise than to those low
energy states (Bishop 1995).

If the signal generated by the identified model fits to the
noise, it oscillates more rapidly resulting in regions with
high curvature (second derivative). This can be prevented
by penalizing the integral of the second derivative of the
estimated response (Bishop 1995), using a regularization
term. The regularization term, if well tuned, can reduce the
computing time or help to find modes that are difficult to
estimate.

The regularization function §2 is added to the cost function
as a penalty function in order to control the effective com-
plexity of the chosen model, enabling s;[n; 0] to fit more
easily to the data x and reducing the effects of noise:

jML = JyrL +v8§2 (8)

and is given by:

Q= / sa’ dt ©)
B dr?

wheret = nT and v is the weight of the penalty function. The

choice of the penalty weight is not straightforward, but sev-

eral experiments for the test systems have shown that values
around v = 0.1/N usually lead to good results.

2.2 Optimization Method

The cost function in (8) is nonconvex with various local min-
ima (Bresler and Macovski 1986). In Tufts and Kumaresan
(1980), some example plots of the objective function of the
ML problem are shown and analyzed. This requires changes
in the formulation that makes it easier to solve or more sophis-
ticated optimization tools must be employed. In this paper,
the optimization is performed by SolvOpt, an implementa-
tion by Kuntsevich of Shor’s r-algorithm (Shor et al. 1985;
Kappel and Kuntsevich 2000).

2.3 Spurious Modes Detection

In order to rank and detect spurious modes, a modified
information criterion based on Trudnowski (1994), called
Geometric Mean Information Criterion (GIC), is used with
the Prony method and with the ML estimator. The method is
described in Algorithm 1.

If the weights « and B in (15) are tuned equally (which
is usually the case), it results in the geometric mean of y7 ;
and yr; raised to an arbitrary power, hence the name of the
criterion.

@ Springer

Algorithm 1 Iterative GIC

Require: Estimated residues and eigenvalues.

Ensure: Reduced order model.

1: Calculate the model response to an impulse in time domain from the
residues and eigenvalues:

N,
Smodet KT) = > Riek™ k=0,1,....N 1 (10)
i=1
where N is the number of samples. The frequency domain response
is determined through Fourier transform:

Gmodel (Jok) = F (8model (1)) (1 1)

The frequency interval Aw and the number of intervals N,, are cho-
sen accordingly to the bandwidth characteristics of the system.

2: Compute the impulse responses in time and frequency domains for
each of the N, pairs of residue/eigenvalue (R;, A;):

gikT) = Ri™ k=0,1,...,N—1 (12)
Gi(jor) = F(gi(kT))
fori =1,2,..., Ny.

3: Compute a time norm and a frequency norm for each pair (R;, A;)
defined as:

llgmoder — gill*
vri=|———--— (13)
’ ( N llgmoder I
G - Gi|?
Vi = M (14)
Nw ”Gmodelll

4: Compute GIC:

i =y vE, (15)

where o and B are nonnegative constants tuned to weight time and
frequency domain responses.

5: The residue/eigenvalue pair with lowest I'; is denoted (Ry (1), Am(1))
and its GIC is 'y (1.

6: The values 8model (kT) and Gpoder (jwk) are updated remOVing
(Rin(1y> Am(1)):

gmudel(kT) = gmodel(kT) - Rm(l)elkkmm (16)
k=0,1,...,.N—1

Gmodel(jwk) = ]:(gmodel (kT))

7: The steps 3, 4, 5 and 6 are repeated for each N, — 1 remaining
residue/eigenvalue pair.

8: The procedure is repeated for a total of N, times, until the required
order of the system model is achieved or all the modes are removed.
The conjugate complex eigenvalues are evaluated and removed
together.

9: The reduced order model is determined as:

Ny

G5 = Y o (17

pri G
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In Sects. 4 and 5, Algorithm 1 is used to sort out
the eigenvalues of the models obtained with Prony analy-
sis and the ML method, indicating which ones are more
important for the responses of each model, according to
(15).

The same metric can be used to measure the relative qual-
ity of a model as:

2
| gmeasure — &subll
YT ,sub =

N ”gmeasure”2

VE.sub = ”Gmeasure - Gsub”2 (]8)
,sub =
No» |G measure I

. B
Lsub =VT,subVF,sub

where gmeasure corresponds to the noisy observations,
G measure 18 F (gmeasure)> gsub 18 the time response of a model
to be assessed, composed by a subset of the estimated model
residues/eigenvalues pairs, and Ggyp = F(gsub)-

3 Conventional Prony Method

This method is found in many references such as Hauer et al.
(1990) and Bos (2007). The advantages of the conventional
Prony method include low computing times, even for high
order models, and easy implementation. It is a simplification
of the ML criteria (Bresler and Macovski 1986; Kumaresan
et al. 1984) and assumes that the observations are an exact
description of an exponential sum model, and the noise is not
modeled (Bos 2007). Ideally, it should be used with noiseless
signals, but in most cases it works well with noise, provid-
ing a good fit to the data, specially in high SNR scenarios.
The drawbacks are the spurious modes that can be numerous
when a high order model is used to accommodate noise. For
low SNR, the performance of the method can be impaired.
Several variants tackle these issues. In Trudnowski et al.
(1999), the accuracy of the method is improved, by using
multiple input signals. Trudnowski (1994) and Zhou et al.
(2012) propose methods for spurious modes detection and
order reduction. In Zhou et al. (2010), the issue of real-time
mode estimation with PMU data is tackled with a recursive
algorithm.

4 Results: Synthetic Data

In this section, synthetic data from two test systems are
used to evaluate the ML method and compare it with Prony
method. For the synthetic data, the eigenvalues and residues
are known for the output signals.

|*Test System 1---Prony N=6 -- ML N:4\

Amplitude

5 10 15 20 25 30 35 40
Time [s]

Fig.1 Test System 1—Case 1 comparison

4.1 Test System 1

The first test system is a fourth-order system (Hauer et al.
1990). Although this is not a power system model, it is used
for an initial assessment of the ML method, as compared with
Prony method, and the performance of the GIC.

1 1

Gri(s) = 2+ 21/1.5)2 + 524+ (2m/1.4)2

(19)

The system has two pairs of modes with zero damping, with
frequencies of 0.67 Hz and 0.71 Hz. Three cases are consid-
ered:

— Case 1 noiseless signal with sampling time 7 = 0.01s
and a data time window of 40s

— Case 2 SNR of 25 dB with sampling time 7 = 0.01 s and
a data time window of 40

— Case 3 SNR of 10dB with reduced sampling time 7 =
0.001 s and a data time window of 25s

The SNR is measured by function awgn in MATLAB.
4.1.1 Test System 1: Case 1

InFig. 1, the time responses from Test System 1 and the mod-
els obtained with the ML method, with order four, and with
Prony method, with order six, are presented. These orders
ensure that Prony and ML models have a time response that
approximates the system time response.

In Table 1, the most significant eigenvalues, as given by the
GIC, for each model, are presented. Prony method selected
order led to two spurious eigenvalues. In the ML model, there
are no spurious modes.

The GIC, I'gyp,;, was calculated for each individual mode
using (18), with gep ; equal to the response of the individual
mode i. The objective is to compare the discrepancy indexes
obtained with the Prony method and the ML method with the
indexes of the individual modes of the original Test System 1,
using the known eigenvalues and residues. The results are
shown in Table 2. The GICs of each estimated mode from
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Table 1 Test System 1: noiseless—eigenvalues

Table 3 Test System 1: 25dB SNR-eigenvalues

Mode Test System 1 Prony ML Mode Test System 1 Prony ML
1 +4.488; +4.488; +4.488; +4.488; +4.488; +4.488;
2 +4.189; +4.189; +4.189; 2 +4.189; +4.189; +4.189;
Table2 Test System 1: noiseless—GIC Table4 Test System 1: 25dB SNR-GIC
GIC Test System 1 Prony ML GIC Test System 1 Prony ML
—6 —6 —6
Fsub,l 3.9954 x 10 3.9954 x 10 4.0214 x 10 Fsub,l 4.0238 x 1076 4.0495 x 1076 4.0781 x 1076
Fgub'Q 4.5869 x 1076 4.5869 x 1076 4.5650 x 1076 Fsub,2 4.5687 x 10—6 4.5756 x 10—6 4.5591 x 10—6
0.5
—Data
3
g 3
2 £
<
70.5 L L L L L ! !
0 5 10 15 20 25 30 35 40
Time [s]
(@)
[—Test System 1---Prony N=90 - - ML N=4|
0.5 T T T T T
)
=] Q
£ E
I s
< z
—0.5 . . L ! L . .
5 10 15 20 25 30 35 40
Time [s]
(b)

Fig.2 Test System 1—Case 2. a Test System 1 impulse response with
25dB SNR. b Test System 1—Case 2 comparison

Prony and ML models are close to the original, from Test
System 1. Thus, the methods estimate the modes accurately.

4.1.2 Test System 1: Case 2

In Fig. 2a, the noisy system output is shown. In Fig. 2b, time
responses of the models obtained by the ML method, with
order four, and Prony method, with order 90, are presented.
These orders give a close approximation of the real-time
response. In this case, the same sample time, the same
time window and approximately the same noise are used as
in Hauer et al. (1990).

In Table 3, the main eigenvalues of each model are pre-
sented. In this case, there are 86 spurious eigenvalues in the

@ Springer

Fig. 3 Test System 1—Case 3. a Test System I—impulse response
with 10dB SNR. b Test System 1—Case 3 comparison

90th-order Prony model. In the ML model, there are no spu-
rious modes.

The GICs calculated for each individual mode are shown
in Table 4. The GICs of the estimated modes are close to the
GICs of the modes of Test System 1.

4.1.3 Test System 1: Case 3

In Fig. 3a, the system output, contaminated with a 10 dB
SNR noise, is presented. In Fig. 3b, time responses of the
models obtained by the ML method, with order four, and
Prony method, with order 3000, are presented. These orders
give a close approximation of the real-time response.
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Table 5 Test System 1: 10dB SNR-eigenvalues Table 8 Test System 1: GIC
Mode Test System 1 Prony ML Case Test System 1 Prony ML
1 +4.488 ) —0.006 & 4.488; +4.488j  Noiseless 0 1.2711 x 10712 2.5493 x 10~12
2 +4.189; —0.003 & 4.189; +4.189; 25dB 74363 x 10711 6.9298 x 10~ 7.5923 x 10~ 1!
10dB 24148 x 1071 37152 x 107'1 2.3612 x 107!
Table 6 Test System 1: 10dB SNR-GIC
GIC Test System 1 Prony ML . 107 ‘ |*Test Sys‘tem 2'"Pro‘ny N=200 - ‘ ML N=1 8|‘
Csub.1 9.3795 x 10~3 9.2712 x 10~8 9.3855 x 1078
o
Csub.2 1.1384 x 1077 1.1471 x 1077 1.1349 x 1077 '5
5
e
Table 7 Test System 1: model orders and computing times
Case Order Computing time (s) 45 5 10 i3 20 73 30
Prony ML Prony ML Time [s]
Noiseless 6 4 0.0036 0.1571 Fig.4 Test System 2—Case 1 comparison
25dB 90 4 0.0234 0.1347
10dB 3000 4 303.19 2.1947

In the Prony method, the selected order of the model
results in 2996 spurious eigenvalues. In the ML model, there
are no spurious modes.

A comparison of the four most significant eigenvalues,
indicated by the GIC, for both methods, is shown in Table 5.

In Table 6, the GICs for each individual mode are shown.
Again, the estimated modes are relatively close to modes of
Test System 1, using the GIC metric.

4.1.4 Test System 1: Conclusions

The model orders and computing times for each case with
Prony and ML methods are shown in Table 7.

Both the methods performed well, except for Prony
method in the third case. For T = 0.001 s, even for higher
SNR such as 25 dB, Prony method still performs poorly.

The algorithms were tested in a Windows 10 machine
with Intel Core i5-3210M, 2.50 GHz and MATLAB. In the
first and second cases, Prony method outperformed the ML
method. In the last case, Prony method takes a longer time
to find the solution.

The GICs of the individual modes estimated for Prony
and ML methods, presented in Tables 2, 4 and 6, are close to
those from the original system. Since the criterion also takes
into account the residues, it is an indication that the methods
could find the modes of Test System 1 accurately.

The GIC, relative to the observation data, given by Equa-
tion (18), was calculated for the Test System 1, the 4th-order
Prony and the 4th-order ML estimations. In this case, ggup in
(18) is determined using four eigenvalues, that is, all signif-
icant modes are considered. In Table 8, the GICs calculated

for each case is shown. In Cases 2 and 3, the indexes for Test
System 1 are different from O because the noiseless response
is being compared with the noisy data. If the estimated model
has an index close to index of Test System 1, it is assumed
that it is a good estimate.

While in the noiseless case (Case 1), the GIC is closer to
the GIC of Test System 1 for the Prony model, for the cases
with noise (Cases 2 and 3), the ML model gives a closer GIC.

4.2 Test System 2

Test System 2 is the New England-New York system (Pal and
Chaudhuri 2005). The system has 95 states and two unstable
modes.

Three data sets are used:

— Case 1 noiseless signal with 7 = 1/60s and data time
window of 30s

— Case 2 SNR of 25dB with T = 1/60s and a data time
window of 30

— Case 3 SNR of 10dB with 7 = 0.001 s and a data time
window of 25

The disturbance is a unit impulse in the electric power at
Bus 13, and the output is the speed of Generator 9.

4.2.1 Test System 2: Case 1

In Fig. 4, time responses of Test System 2 and the models
obtained with the ML method, with order 18, and with the
Prony method, with order 200, are presented. These orders
give a close approximation of the time response of Test Sys-
tem 2.
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Table 9 Test System 2: noiseless—eigenvalues

Mode Test System 2 Prony ML

1 0.161 £ 7.29; 0.162 & 7.291; 0.16 £ 7.29j

2 —0.049 + 4.131j —0.048 £ 4.1295 —0.049 £ 4.139;
3 0.079 £+ 6.983) 0.079 £ 6.979; 0.085 + 6.986,

4 —0.08 £ 2517 —0.08£ 2.517j  —0.082 £ 2.511j

Table 10 Test System 2: noiseless—GIC

GIC Test System 2 Prony ML

Csub.1 1.7049 x 1077 1.7177 x 1077 1.7460 x 1077
Tsub.2 4.8454 x 107° 4.8412 x 1070 4.9790 x 10°
Tsub.3 4.7575 x 107° 4.7660 x 107° 4.6182 x 107°
Tsub.4 6.7241 x 107° 6.7232 x 107° 6.7226 x 1076

In Table 9, the eight most significant eigenvalues, as given
by the GIC, of each model, are shown. These modes are close
to the dominant modes of the system. The remaining 192
eigenvalues, in the Prony model, and ten eigenvalues, in the
ML model, are spurious.

The individual GIC for each mode is presented in Table 10.
Modes 3 and 4 in the ML model are slightly different.
Those modes are more difficult to estimate as discussed in
Sect. 4.2.4.

4.2.2 Test System 2: Case 2

In Fig. S5a, the Test System 2 impulse response, contami-
nated with a 25dB SNR noise, is presented. In Fig. 5b, time
responses of the models obtained by the ML method, with
order 16, and Prony method, with order 500, are presented.
These orders give a close approximation of the real time
response.

In Table 11, the eight most significant eigenvalues, as
given by the GIC, for both methods, are shown. Again, these
modes are close to the dominant modes of the system. The
remaining 492 eigenvalues, in the Prony model, and eight
eigenvalues, in the ML model, are spurious. In this case, a
good fit with the ML method was achieved for a lower order
than in Case 1.

The GIC calculated for each individual mode can be seen
in Table 12. The indexes of all modes are close to what is
expected, except I'gyp,3 obtained with the ML method.

4.2.3 Test System 2: Case 3
In Fig. 6a, the 10dB SNR time response of Test System 2

is shown. In Fig. 6b, time responses of the models obtained
by the ML method, with order 18, and Prony method, with
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Fig.5 Test System 2—Case 2. a Test System 2 impulse response with

25dB noise. b Test System 2—Case 2 comparison

Table 11 Test System 2: 25 dB SNR—eigenvalues

Mode Test System 2 Prony ML

1 0.161 + 7.29f 0.159+ 7.291;  0.163 + 7.29;

2 —0.049+ 4.131; —0.049+ 4.129; —0.051 4+ 4.129;
3 0.0794 6.983j  0.076+ 6.976;  0.089 + 6.977;

4 —0.08+ 2517j  —0.081 4 2.518; —0.074+ 2.51;
Table 12 Test System 2: 25dB SNR-GIC

GIC Test System 2 Prony ML

Tsub.1 1.7235 x 1077 1.7403 x 1077 1.7427 x 1077
Csub.2 4.8448 x 107° 4.8368 x 1070 4.8303 x 107°
Tsub.3 47536 x 107° 4.7668 x 107° 4.3612 x 107°
Csub.4 6.7330 x 107° 6.7316 x 1076 6.7626 x 1076

order 3500, are presented. These orders give a close approx-
imation of the real-time response.

In Table 13, the eight most significant eigenvalues, as
given by the GIC, for both methods, are presented. These
modes are close to the system modes. The remaining 3492
eigenvalues, in the Prony model, and ten eigenvalues, in the
ML model, are spurious.

In Table 14, the GICs for each individual mode are shown.
The ML model gives a better estimation as compared with
Prony method. The 4th mode obtained with Prony method
presents the GIC with the biggest discrepancy.
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—3
,x10 Table 15 Test System 2: Order GIC
—Data different order GIC
o If 2 1.2592 x 1077
i 4 9.4895 x 1079
=0
£ 6 3.8145 x 1077
<t 8 8.3048 x 10710
10 8.2363 x 1070
) 5 10 15 20 25
Time [s]
(a) Table 16 Test System 2: model orders and computing times
Case Order Computing time
107 [—Test System 2---Prony N=3500 - - ML N=18] —
28 ‘ ‘ ‘ ‘ Prony ML Prony ML
o Noiseless 200 18 0.3144 5.9812
g 25dB 500 16 1.2111 5.6473
% 10dB 3500 18 397.152 78.113
<

0 5 10 15 20 25
Time [s]

(b)

Fig.6 Test System 2—Case 3. a Test System 2 impulse response with
10dB SNR. b Test System 2—Case 3 comparison

Table 13 Test System 2: 10dB SNR-eigenvalues

Mode Test System 2 Prony ML

1 0.161 & 7.29j 0.168 &+ 7.273 0.174 £ 7.3

2 —0.049 + 4.131j —0.05+ 4.124j —0.047 £ 4.13;
3 —0.08 £ 2,517  —0.089 + 2.511j —0.072 £ 2.517j
4 0.079 £+ 6.983) —0.001 + 6.839; 0.116 & 6.923

Table 14 Test System 2: 10dB SNR-GIC

GIC Test System 2 Prony ML

Toub. 1 1.2501 x 1077 1.1351 x 1077 1.2592 x 1077
Tsub.2 22289 x 1077 2.2078 x 1077 2.2290 x 1077
Cgub 3 5.2038 x 1077 5.1961 x 1077 5.2329 x 1077
Csuba 3.8993 x 1077 5.2516 x 1077 3.7453 x 1077

In order to illustrate how the GIC can be used to detect
spurious modes, the criterion was applied to the model iden-
tified with the ML method considering the two, four, six,
eight and ten most significant eigenvalues. The results are
shown in Table 15. The GIC gets smaller when 8 eigen-
values, known to be correct from the eigenvalues of Test
System 2, are added to the response. After the inclusion
of the first spurious mode, the GIC value rises. However,
the criterion value may continue roughly the same or even
reduce slightly after the inclusion of a spurious mode in the
reduced model. Therefore, after calculating the GIC for dif-

ferent model orders, the user has to define a threshold ¢ given
by

ITsub,i — Tsub,i—2 ||
[ Tsub.i—2 ||

(20)

to determine if a mode should be considered spurious. A
value € = 0.01 proved adequate for the results presented in
this paper.

An alternative is to define a desired model order and reduce
the order of the estimated system, to represent only the system
dominant dynamics (Trudnowski 1994). Another procedure
that can help to detect spurious modes is changing the order
of the identified ML or Prony model. Spurious modes tend to
vary between different order models, while the system modes
remain the same.

4.2.4 Test System 2: Conclusions

This test system was specially difficult to optimize in the
ML method. The unstable mode 0.079 £ 6.983; is hard to
estimate and its identification depends on the optimization
parameters such as the weight of regularization term and the
order of the model, which had to be fine tuned to find this
mode. The identification of this mode may also depend on
the optimization starting point.

Although the original system order is 95, only eight of the
system eigenvalues could be found in all cases. The modes
that could not be estimated are nondominant or have low
energy, making them more difficult to estimate. However, the
most significant modes were estimated with good precision.

In Table 16, the orders used to obtain the models with
Prony and ML methods along with the computing times in
each case are shown. Prony method outperforms the ML
method unless in case of heavy noise and lower sample time.
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Table 17 Test System 2: GIC

Case Test System 2 Prony ML

Noiseless ~ 1.2392 x 10710 1.2028 x 10710 3.7887 x 10~10
25dB 1.6897 x 10710 1.6631 x 10710 1.6752 x 1010
10dB 9.2709 x 10710 1.4623 x 10~° 8.3048 x 10710

The GIC of the individual modes estimated by Prony and
ML methods in Tables 10, 12 and 14 were close to the ones of
the original system, except in some cases such as the mode
0.079 + 6.983; estimated by the ML method in Cases 1
and 2. This is due to the fact that it is a difficult mode to
estimate with the ML method. In Case 3, with a low SNR,
Prony method could not estimate the modes accurately.

The GIC algorithm removes one mode at a time and then
reevaluates the indexes. Therefore, there are discrepancies
between the ranking order and the GIC of individual modes,
as seen in Cases 1, 2 and 3.

In Table 17, the GICs of the 8th-order reduced Test System
2, 8th-order reduced Prony model and 8th-order reduced ML
model, relative to the input data of each case, are shown.

Again, in Cases 2 and 3, the GIC obtained with the ML
method is closer to the GIC of Test System 2 than that of
Prony method. In Case 1, the noiseless case, the GIC of Prony
model is closer than that of ML model.

In order to show the importance of the regularization term,
in Case 1, (8) was used with v set to 0. The ML method fails
to estimate at least the eight main modes correctly. Orders up
to 60 were tested. The 60th-order model took 58.78 seconds
to optimize. In Cases 2 and 3 the objective function without
the regularization term also fails.

5 Results: Real Data

In this section, real data from a disturbance in the BIPS,
acquired by PMU of a low voltage WAMS (Prioste et al.
2011), are used. This was a large disturbance detected at
12:30 PM, January, 30th, 2017.

The data from the PMUSs, the difference between the volt-
age angle of a bar in Northeastern Brazil and the voltage
angle of a bar in Southern Brazil, are shown in Fig. 7a. The
input data window is taken after the large disturbance near
2000 s. The results of the model identification using Prony
method and the ML method are shown in Fig. 7b.

For the results, orders of 200 and 16 were used for Prony
method and for the ML method, respectively. These orders
ensure a close approximation between the system and the
identified models time responses. The computing time was
0.165s for the Prony method and 10.05 s for the ML method.
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Fig. 7 Test System 3. a Test System 3 PMU data. b Test System 3—
Response comparison

Table 18 Test System 3: eigenvalues

Mode Prony ML Subspace

1 —0.249 £ 2.62j —0.249 £ 2.633j —0.233+ 2.576
2 —0435+£5944; —0.36+ 6.023;  —0.454 £ 5.655
3 —0.195+ 3.833; —0.2784+ 3.713; —0.1889 £ 3.77
4 —1.646 £ 11407 —1.841+ 3.167;

In Table 18, the most significant modes estimated by the
Prony method and by the ML method, in the range of elec-
tromechanical oscillations, ranked according to the residues
and GIC, are shown.

In Table 19, the GIC evaluated for each individual mode
is shown. The GIC index of Mode 3 gives the largest discrep-
ancy between the Prony and ML models.

The GIC for the 6th-order Prony model is 1.3100 x 10~
and for the 6th-order ML model is 1.1114 x 10~!3. Those val-
ues indicate that the response of the 6th-order model obtained
with Prony method is closer to the noisy observation data.
However, it does not necessarily mean that the modes were
estimated correctly.

Since a detailed analytical model is not available for this
operating condition, in order to compare with the estimated
modes, the canonical variate algorithm (CVA) subspace iden-
tification method (Overschee and Moor 1996) is used to track
the oscillation modes using ambient data in a time window
of ten minutes after the large disturbance. The results for the
subspace method, with a model of order twelve, provided
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Table 19 Test System 3: GIC

GIC Prony ML

Csub, 1 2.1581 x 10713 2.0558 x 10~13
Csub2 8.3615 x 10710 8.5006 x 10710
Tsub,3 8.6841 x 10710 7.9038 x 10~10
Csub.4 8.5544 x 10710 8.5636 x 10710

three dominant modes, also given in Table 18. These results
show that the Prony method and the ML method give consis-
tent estimation of the most significant modes, according to
GIC, and close to the estimated by the subspace method. The
remaining pairs in Table 18 are discrepant and are deemed
to be spurious. When the model order is increased, they do
not show consistency between different model orders and
estimation methods.

6 Conclusions

Power systems oscillation modes are correctly estimated by
the ML method from low order models, with reduced num-
ber of spurious modes. A regularization term may improve
the estimation of the system modes. Some oscillation modes
are more difficult to identify, that is, their identification may
depend on the regularization function weight and also on the
initial parameters in the optimization procedure. The opti-
mization in the ML method takes most of the computing
time, making the ML method computationally costlier than
Prony method. Therefore, improvements in the optimization
can reduce the computing time.

The conventional Prony method has in most cases a
good performance. However, for signals with heavy noise, it
requires high dimension models in order to fit the noise. This
generates many spurious modes which must be sorted out
from the real ones, requiring good spurious modes detection
method with sophisticated statistics. Unless a high model
order is required, Prony method is computationally faster
than the ML method. For noisy measurements and lower
model orders, Prony method may fail to estimate the main
system modes correctly. For both methods, it is difficult to
initially determine the model order that gives a good fit com-
pared with the real system.

Since power system data may present low SNR, a ML
estimator may be a valuable tool to complement and validate
the results obtained from Prony analysis.

The performance of the ML estimator depends on the
optimization method. It can be improved by suited optimiza-
tion methods. The nonlinearity and nonstationarity of power
systems still require more development of the identification
methods and are topics for further research.
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