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Abstract

In this work, the applicability of a Lyapunov filter-based target feedback loop/loop transfer recovery controller to open-loop
unstable plants is investigated on an underactuated linear positioning mechanism. Uncertainties in friction coefficients are
taken into account. Lyapunov filter target loops yield robustly stable dynamics and tolerance to abrupt sensor faults, i.e.,
sensors affected by any attenuation in the interval [0, 1). Experimental results confirm the effectiveness of the proposed

solution when compared to alternative control methods.
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1 Introduction

Doyle’s paper Doyle (1978) is considered a watershed for
the robust control field since it demonstrated how frag-
ile observer-based controllers can be when not designed
properly. This sparked in the research community a will to
improve the robustness properties of observer-based com-
pensators. One well-known method to overcome this limi-
tation is the linear quadratic gaussian/loop transfer recovery
(LQG/LTR) procedure, where the filter gain is modified by
manipulating certain weight matrices. At the expense of los-
ing estimator optimality in the sense of minimum variance,
the desirable gain and phase margins of the linear quadratic
regulator (LQR) can be asymptotically recovered (Athans
1986; Stein and Athans 1987; Skogestad and Postlethwaite
2001). The concept of LTR was formulated by Doyle and
Stein in a series of papers (Doyle and Stein 1979, 1981)
mainly exploring ideas published earlier in Kwakernaak
(1969). Subsequently, the original procedure was extended
to discrete-time (Maciejowski 1985; Saberi et al. 1993) and
non-minimum phase systems (Zhang and Freudenberg 1990;
Saberi et al. 1991a,b). In Prakash (1990a, b), Prakash studied
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the applicability of several alternative target loops including
structures presented in Lehtomaki etal. (1981) and coined the
term target feedback loop/loop transfer recovery (TFL/LTR),
which encompasses the LQG/LTR as a particular case. The
main appeal of the TFL/LTR technique is the possibility of
employing structures with larger guaranteed stability mar-
gins than those of the LQR. Although many results in the LTR
field were developed in the 1980s and 1990s, the topic was
revitalized in recent years by authors who presented impor-
tant new contributions, addressing bilinear systems (Chen
and Chen 2008), disturbance cancelation (Ishihara and Guo
2008), Hoo/LTR control (Paula and Ferreira 2011; Silva et al.
2014; Guaracy et al. 2015a), adaptation mechanisms based
on LTR (Calise and Yucelen 2012; Lavretsky 2012; George
2014), retrieving performance in terms of the original cost
functions (Ravanbod et al. 2012), and obtaining target loops
with decoupled channels (Guaracy et al. 2015b).

Besides the aforementioned theoretical advances, LQG/
LTR has been utilized in several application fields such as
temperature control of nuclear reactors (Arab-Alibeik and
Setayeshi 2003), space launchers and aircraft stabilization
(Abbas-Turki et al. 2007; Zarei et al. 2007), oscillations
damping in power systems (Zolotas et al. 2007), doubly fed
induction motors speed regulation (Pinto et al. 2011), and
water level control in industrial tanks (Moraes and Kienitz
2017). In safety critical applications it is crucial to system-
atically account for possible component faults still in the
design phase, thus producing fault-tolerant control systems
(FTCS) (Alwi et al. 2011). A reconfigurable FTCS based on
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loop recovery is presented in Niemann and Stoustrup (2003),
where the controller parameters are left unchanged and only
the state observer is modified. In Prakash (1990a,b), two
structures named linear Lyapunov regulator (LLR) and Lya-
punov filter (LF) capable of tolerating faults in the input and
output channels, respectively, were introduced. More specif-
ically, abrupt arbitrary attenuations can independently occur
on every input or output channel without compromising the
closed-loop system stability. Nevertheless, these structures
require all poles of the system to be located in the open left
half-plane (OLHP). Prakash reported a case study on the
control of an induction motor using a LF-based TFL/LTR
design in Prakash (1992), but did not consider any sensor
fault. Moreover, the induction motor model was rather sim-
ple, being single-input single-output (SISO) and open-loop
stable. Hence, the full potential of the Lyapunov filter was
not exploited.

In this paper, the applicability of a Lyapunov filter-based
TFL/LTR controller to an underactuated linear positioning
system with one input and two outputs is investigated. Uncer-
tainties are taken into account in the friction coefficients
between the masses and the steel shaft on which they slide.
An internal feedback loop is used to pre-stabilize the sys-
tem and comply with the Lyapunov filter restrictions, while
the outer TFL/LTR controller assures performance and toler-
ance to parasitic abrupt attenuations on the remaining output
channel. As opposed to Niemann and Stoustrup (2003), the
fault-tolerant attribute of the proposed solution is based on
the controller inherent multivariable gain margins and, thus,
it does not require any fault detection and diagnosis (FDD)
mechanism. Despite being passive, the presented approach
is shown to yield similar performance to another control
method that requires measuring all states. The main contribu-
tion of this work is to elucidate how the Lyapunov filter (and,
by analogy, the linear Lyapunov regulator) can be applied to
open-loop unstable systems. Moreover, a necessary condi-
tion to dispense with the need of implementing the internal
control loop is given. A preliminary version of this work was
presented in Maddalena and Kienitz (2017). The reminder
of this work is organized as follows. In Sect. 2, the plant
dynamic equations and associated uncertainties are covered.
The design requirements and the proposed TFL/LTR con-
troller are presented in Sect. 3. Experimental results in normal
operation and under sensor fault are given in Sect. 4, followed
by the concluding remarks in Sect. 5.

Notation: The set of real numbers is denoted by R.
G (s) is the plant nominal model transfer function matrix,
whereas K (s) is the controller transfer function matrix.
Q is the set of dynamic models arising from the nominal
model uncertainties. The loop transfer function, sensitiv-
ity and complementary sensitivity are denoted, respectively,
by L(s) £ G()K(s), S(s) £ (I + G()K(s))™" and
T(s) 2 G()K(s)(I + G(s)K(s))~!. The maximum and

minimum singular values are represented by o (-) and o (-).
The symbols || - || and || - || denote the Euclidean norm
of a vector and the H-infinity norm of a transfer function
matrix, respectively. Finally, given a matrix M, M7 repre-
sents its transpose, while M > 0 (M > 0) indicates that M
is positive definite (positive semidefinite).

2 System Description
2.1 Mathematical Model

The linear positioning system is depicted in Fig. 1. It consists
of an active cart, which is driven by a direct-current (DC)
motor, connected to a passive cart through a linear spring.
Both masses slide on a stainless steel shaft and are equipped
with 0.023 mm resolution encoders. The whole setup is con-
nected to a desktop computer through an USB module and
a power amplifier, which sends the feedback signals to the
computer and drive the DC motor actuator.

The state vector X, = [Xac Xpe Xac )'cpc]T contains the
active cart position x,c, the passive cart position xp, the active
cart velocity x,c and the passive cart velocity Xpc. The input
u(t) is the voltage applied to the DC motor, which is bounded
to [—6, +6] V according to the limits specified by the manu-
facturer. Approximating dry friction by viscous friction, the
obtained dynamics are (Quanser Consulting 2012)

Xo(t) = Apxo(t) + Bou(t) (1
0 0 1 0
0 0 0 1
_ K2KmK,
AO - Ks Ks bac+ Rng%p (2)
My Mac Mac [?
Ky K c
e Mpe 0 _mI;C
KoK, T
B, = [0 0 s o] 3)
m/mp

where the description and value of each parameter are given
in Table 1. For convenience, a change of variables is pro-
posed to describe the system with a different state vector
x £ [xac (Yac — Xpe) Xac (Fac — )'cpc)]T. In this new frame
of reference, (xac — Xpc) is the difference between the active

Active cart Passive cart

Spring

Fig.1 The underactuated linear positioning system
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Table 1 Physical system parameters

Parameter Description Value

K Spring stiffness coefficient 142 N/m

Mac Active cart mass 1.15kg

Mpe Passive cart mass 0.54kg

bac Active cart friction coefficient 5.4Ns/m

by Passive cart friction coefficient 2.2Ns/m

K Gearbox ratio 3.71

Ky Force constant 7.67 x 1073 Vs/rad
K Motor torque constant 7.67 x 1073 Nm/A
R Motor armature resistance 2.6 Q

Rmp Motor pinion radius 6.35%x 1073 m

and passive cart positions, while (X, — Xpc) is the differ-
ence between the active and passive cart velocities. This is
accomplished by the similarity transform

1 0 0 0
1 =1 0 0

M=1o 0 1 o @
0 0 1 -1

with x = Mx,, Ay = MA,M~', B, = MB, and X(t) =
Apx(t) + B,u(t). The system outputs are defined as y =
[xac (Xac — xpc)]T. It should be noted that the second output
(Xac —Xpc) is equivalent to the spring deformation; indeed, the
spring will be compressed if (xac — xpc) > 0 and elongated
if (xac — xpe) < 0.

Substituting the numerical values into the state matrix A,,
its eigenvalues are found to be —3.66 & j20.54, —11.31 and
0. Due to the pole at the origin, there is a violation of the
Lyapunov Filter requirements. To overcome this limitation,
the active cart position sensor is used to build an internal
feedback loop and shift this specific pole into the OLHP.
Clearly, the main drawback of this approach is the insertion
of steady-state error, which was not present in the original
system. Minimizing this side effect is possible if a low feed-
back gain € is used (Maddalena 2017)

P S O
x(1) = (Ap — BaK) x(t)4+ By u(t) Q)
y() = Cx(¢) (6)

where K = [e 000 ] Setting € = 0.1 and substituting all
numerical values in (5) and (6) we obtain

0 0 1 0
a_] 0 0 0 1
—0.1724 —151.0638 —13.9612 0
—0.1724 —453.1915 —9.2804 —4.6809
(N
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B=[0 0 17235 1.7235] ®)
100 0
Cz[o 10 o] ©)

The above system has no zeros and poles located at
—3.67 =+ j20.55, —11.29 and — 0.01; hence, matrix A is
Hurwitz. Moreover, it is also fully controllable and observ-
able.

2.2 Plant Uncertainties

Simplifying the modeling process by assuming viscous fric-
tion was necessary to obtain a linear model of the positioning
system. Nevertheless, the nonlinear nature of dry friction may
cause the real mechanical behavior to deviate from the model
response (Urbakh et al. 2004). Therefore, b,c and bpe were
considered to be uncertain parameters.

The unstructured output multiplicative form was chosen
to represent the plant uncertainties (Skogestad and Postleth-
waite 2001), yielding a family €2 of dynamic models

Q={G'()IG () = I + A)wo(jo)] G(s), ...
A oo = 1} (10)

where G’(s) is a possible plant transfer function, G(s) is
the nominal transfer function, A(s) are unknown complex
perturbations, and wo (w) is the uncertainty weight. A total
variation of = 30% on the viscous friction coefficients b, and
bpe was taken into account in steps of 5%. For all 36 possi-
ble coefficient combinations, the perturbed transfer function
G p(s) was computed to generate the uncertainty functions
(Gp(s) — G(s))G*(s), where G*(s) denotes the pseudoin-
verse of G (s) (Skogestad and Postlethwaite 2001). Figure 2
presents the obtained singular values and the chosen upper
bound for the modeling error

oy @)1

G((GxG)G*)

Magnitude (dB)

Frequency (rad/s)

Fig. 2 Output multiplicative error for all possible friction coefficient
scenarios and constructed uncertainty weight
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3 Controller Design

The design requirements for the closed-loop system are good
reference tracking for the active cart position while maintain-
ing the spring deformation close to zero as much as possible.
No saturation of the control signal is tolerated since nonlinear
effects are to be avoided. Stability must be ensured not only
for the nominal plant G (s), but also for the entire €2 set. More-
over, abrupt parasitic attenuations in the spring deformation
feedback signal must not destabilize the system. Lastly, the
following high-frequency barriers must be avoided to assure
sensor noise rejection (see da Cruz 1996 for further details)

barrier 1:
0.05
o(L(jo)) < ————— o> 10’rad/s (12)
I+ |wo(jw)l
barrier 2:
F(L(jw) < —— 10° rad/ (13)
o Jw) < ——m——, 0 > rad/s.
1+ |wo(jo)l

3.1 Target Feedback Loop Design

Definition 1 Saberi et al. (1993): Given a linear system X
described by the triple {A, B, C}, A € R"*" B € R"*P,
C € R7*" the set of admissible target loop transfer functions
for perturbations reflected to output (PRO) designs is defined
by

T(%)={L7(s) | Lt(s) = CPKy, ...
... (A=K;yC) Hurwitz} (14)

where ® £ (sI — A)~! and Ky € R"*4 is the filter gain.
In the sequel, we describe the process of calculating
the gain Ky using the LF procedure proposed in Prakash

(1990b). Given a system X with all eigenvalues of A in the
OLHP, and Q € R, Q > 0, the equation

AP+ PAT +0=0 (15)

is solved for P € R™ ", Consider now R € R?*9, R > 0,
the Lyapunov Filter is then a gain given by

K;=PCTR™". (16)

Theorem 1 Prakash (1990a,b): If the Lyapunov Filter is
designed with Q > 0, and R > 0 diagonal, the guaran-
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Fig.3 Maximum and minimum singular values of the target loop, max-
imum singular value of the achieved loop, and high-frequency noise
rejection barriers

teed multivariable gain margins (GGM) and phase margins
(GPM) in the output channels are':

GGM: [0, c0)
GPM: [—90, +90] deg.

Hence, if K  is designed according to the Lyapunov Filter
procedure not only (A — K yC) Hurwitz is ensured, but also
that arbitrary attenuations on the outputs channels will not
compromise stability. The free parameters were chosen as
0 =0.023 x I, R =0.29 x [, resulting in

11216 ~ 0.0002  —0.0115  0.0056
p_ | 00002 00018 —0.0056 —0.0115
—0.0115 —0.0056  0.0613  0.1983
| 0.0056 —0.0115 0.1983  0.7226

(7

. _ [3-8676 00007 —0.0397 0.0192]T as)
/= 10.0007 0.0063 —0.0192 —0.0397]

As shown in Fig. 3, the singular values of the target loop
transfer function do not violate the sensor noise rejection bar-
riers. Moreover, o (L1 (jw)) assumes values close to 50 dB
below 1072 rad/s and presents a cutoff frequency of approx-
imately 3.3 rad/s, whereas o (L7 (jw)) has magnitude lower
than — 50 dB in the entire frequency spectrum. Although the
low magnitude values may suggest low performance prima
facie, the reference signals which are to be applied to the
closed-loop system have a specific direction as stated in
the design requirements. By avoiding the minimum singular
value direction, the obtained reference tracking performance
is satisfactory as confirmed by the experimental results.

! The concept of multivariable stability margins is defined in Lehtomaki

etal. (1981).
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3.2 Loop Transfer Recovery

Several controller structures for LTR are available in the liter-
ature (Prakash 1990b; Saberi et al. 1993; Pereira and Kienitz
2014). Herein, we consider the following output-feedback
controller for loop recovery (Athans 1986)

2(t) =Az(t) + Bu(t) + K s[—e(t) — Cz(1)] (19)
u(t) =— K, z(1) (20)

where z(¢) is the controller internal state, e(¢) is the error sig-
nal, u () is the control input, {A, B, C} are the same matrices
from the plant nominal model, K ¢ is the filter gain calculated
in the TFL phase, and K, is the regulator gain which is yet to
be determined. Next, the LTR procedure described in Prakash
(1990b) for PRO designs is employed.

Given a scalar parameterg € Rogand V € RP*P,V > 0,
Q is calculated as

0=qc’c. 1)
For R € RP*P_ R > 0, the algebraic Riccati equation
PA+ATP+0Q0—PBR'BTP=0 (22)
is solved for P. The regulator gain is then given by

K, =R7'BTP. (23)

It is guaranteed that the error between the target dynamics
L7(s) and the obtained loop transfer L(s) will converge to
zero as the recovery parameter ¢ is increased (Doyle and
Stein 1981). More specifically,

qli)rr;o L(s) = L7(s) (24)

holds pointwise in the complex domain, where L(s) =
G(s)K (s).

The design parameters were chosen as R = 10™* and
q = 150, yielding

1094.61  —853.45  37.1437 —36.2734
p_ | —85345 9628540 —27.9844  28.4032
37.1437  —27.9844 391077 —3.87547
—362734 284032 —3.87547  3.8490
(25)
K, =10*[1.5000 0.7218 0.0608 —0.0456].  (26)
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Fig. 4 Robust stability verification: output multiplicative uncertainty
weight inverse and complementary sensitivity function maximum sin-
gular value

The obtained controller transfer function matrix was

57985 (s + 11.29) (s> + 7.349s + 435.6)
(s2 + 13.08s + 248.6) (s2 + 272.6s + 37320)
61.629 (s + 19.2) (s + 7.401) (s — 2.354) ]

" (52 + 13.085 + 248.6) (s2 + 272.65 + 37320)
(27)

K(s) = [

with poles located at —111.40 & j112.17 and —6.51 £
j14.36, thus, stable. Clearly, an order reduction technique
could be employed in case the controller was to be imple-
mented in a low processing power hardware platform.

The quality of the recovery procedure can be assessed in
Fig. 3, where both maximum singular values were considered
sufficiently matched up to 100 rad/s. On the other hand, as
a consequence of the system underactuation, the minimum
singular value was not recovered and o (L (j)) is not shown
due to its low magnitude.

Robust stability in the presence of the output multiplica-
tive uncertainties given by (10) and (11) is attained if (Athans
1986; da Cruz 1996)

F(T(jw)) < ; Yo. (28)
[wo(jw)|

This condition is verified in Fig. 4 since the maximum singu-
lar value of the complementary sensitivity function does not
exceed the output multiplicative uncertainty weight inverse
module.

4 Experimental Results

Experiments were conducted with the system starting at the
origin. A ramp with slope 60 cm/s was applied as the active
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Fig.5 Experimental results in normal operation: a active cart position
and spring deformation, b DC motor voltage

cart reference until a 15 cm platoon was reached (first move-
ment); at 2 s, the reference was brought back to the origin
with a ramp of slope — 120 cm/s (second movement). The
spring deformation reference was kept at zero during the
whole maneuver. Moreover, the input signal was bounded to
[— 6, + 6] Vin accordance with the manufacturer’s specifica-
tions. The obtained reference tracking results and demanded
control effort are shown in Fig. 5.

In the fist movement, the first output reached 13.5 cm
in 0.558 s and presented a steady-state error of —0.060 cm
since the internal control loop moved the original pole from
the origin, whereas in the second movement, the first output
reached 1.5 cm in 0.490 s with a final error of 0.393 cm due
to the nonlinear effects of dry friction (de Wit et al. 1993;
Urbakh et al. 2004), which was approximated by viscous
friction in the modeling process. The spring was subjected
to deformation peaks of 1.793 cm and —1.993 cm in the
first and second movements, respectively. During the whole
maneuver, the control input remained within its predefined
bounds, thus avoiding any saturation. The final DC motor
voltage was —0.135 'V, still not high enough to reach the
threshold of motion and correct the outputs deviations with
respect to the references.

In a second experiment, the same previously described
reference signals were employed, but an abrupt sensor fault
in the second output channel was considered at 2 s. Hence,

(b)
6 . i
4 r 0.1 4
o 0
> 2 |
~ -0.1
g)D 0 —
] | I—
5 0
O B i B
> : 0.1
-4r -0.2 i
-6 L L ! H H H H R .
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)
(c)
2 T
| (%, (0)-%,,, (1)) meas urement
1.5 |

-

Position (cm)
=) [=}
5]

1
e
o

25 3 35 4 45 5
Time (s)

1
[y

<)
<}
33
-
-
53
%)

Fig.6 Experimental results with sensor faultat 2 s: a active cart position
and spring deformation, b DC motor voltage, ¢ spring deformation
measurement

the first movement was accomplished by the linear position-
ing system with both sensors, while the second movement
was carried out with only the active cart position sensor as
shown in Fig. 6. The first output reached 13.5 cm in 0.553 s
and presented a steady-state error of 0.020 cm in accordance
with the first experiment. However, steady-state error on the
second movement was reduced to 0.284 cm and the final
DC motor voltage to —0.098 'V, since the controller is no
longer fed with the error from the second output. Regardless,
closed-loop stability was preserved.

The pre-stabilization loop contribution to the overall con-
trol signal as described in Sect. 2.1 is not significant. Indeed,
the feedback gain € could be made arbitrarily small and the

@ Springer
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Fig. 7 Experimental results with no pre-stabilization loop and with
sensor fault at 2 s: a active cart position and spring deformation, b DC
motor voltage, ¢ spring deformation measurement

Lyapunov Filter restrictions would still be satisfied. Conse-
quently, it can be argued that its implementation is immaterial
in practice. A necessary condition for being able to neglect
the internal loop during operation is Re{A;(A)} < 0,i =
1, ..., nsince, if atleast one eigenvalue A; of the state matrix
has a positive real component, then there exists a minimum
feedback gain different from zero necessary to relocate that
system pole to the open left half-plane.

In view of the above observations, the internal loop was not
implemented in the last experiment and the plant was solely
controlled by the TFL/LTR compensator. A sensor fault was
also considered at 2s, and the results are shown in Fig. 7.
Although the obtained response on the first movement was
qualitatively similar to the one presented in Fig. 6, the active

@ Springer

cart position exhibited slightly higher steady-state error when
returning to the origin due to absence of the internal loop.
Also, no control saturation or instability occurred.

Despite being a passive fault-tolerant technique, the pro-
posed methodology attained reference tracking results for the
active cart comparable to the ones reported in Junior et al.
(2016), where a robust model predictive control (RMPC)
formulation was chosen to tackle exactly the same system.
Regarding spring deformation, the RMPC approach con-
sidered by the authors was capable of further reducing its
compression and elongation, satisfying a constraint |x,¢(¢) —
xpc(t)] < 1, VYt > 0. Nonetheless, while the TFL/LTR con-
troller is a straightforward linear output-feedback structure,
the solution proposed in Junior et al. (2016) requires all states
and relies on the online solution of a semidefinite optimiza-
tion problem at each sampling period.

5 Concluding Remarks

A Lyapunov filter-based TFL/LTR controller was designed
for an underactuated linear positioning mechanism. Robust-
ness against parameters uncertainties and abrupt sensor faults
was attained. It was shown that the Lyapunov filter (linear
Lyapunov regulator) technique can still be applied to open-
loop unstable systems if a pre-stabilization loop is designed.
This internal feedback compensator must employ as few
sensors (actuators) as possible, since fault tolerance will be
guaranteed in the remaining channels. In special cases such
as the one considered in this paper, the internal loop can be
dispensed in practice and the TFL/LTR compensator can be
directly applied to the plant. A necessary condition for this
end was given.

One drawback of the presented method, and of most
loop shaping techniques, is the difficulty of constructing
target loops for specific time domain requirements, since
the designer has to rely on the manual adjustment of
the free parameters in a trial and error fashion. Finally,
pre-stabilization of the linear positioning system was accom-
plished by means of a simple proportional feedback loop.
Howeyver, this same task could be fulfilled in numerous other
ways. The benefits of choosing one approach or another to the
overall system performance and robustness are to be explored
in the future.
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