
Journal of Control, Automation and Electrical Systems (2018) 29:470–479
https://doi.org/10.1007/s40313-018-0390-y

Humanoid Robot Framework for Research on Cognitive Robotics

Danilo H. Perico1 · Thiago P. D. Homem1,2 · Aislan C. Almeida1 · Isaac J. Silva1 · Claudio O. Vilão Jr.1 ·
Vinicius N. Ferreira1 · Reinaldo A. C. Bianchi1

Received: 29 November 2017 / Revised: 26 March 2018 / Accepted: 1 May 2018 / Published online: 31 May 2018
© Brazilian Society for Automatics–SBA 2018

Abstract
This paper presents a humanoid robot framework, composed of a simulator and a telemetry interface. The framework is based
on the Cross Architecture, and it is developed aiming for the RoboCup Soccer Humanoid League domain. A simulator is an
important tool for testing cognitive algorithms without handling issues of real robots; furthermore, a simulator is extremely
useful for allowing reproducibility of any developed algorithm, even if there is no robot available. The proposed simulator
allows an easy transfer of the algorithms developed in the simulator to real robots, as long as it uses the Cross Architecture as
its software architecture. Then, in order to evaluate the cognitive algorithms in real robots, a telemetry interface is proposed.
From this interface, it is possible to monitor any variable in the robot’s shared memory. The framework is open source and has
low computational cost. Experiments were conducted in order to analyze both, simulator and telemetry interface. Experiments
performed with the simulator aim to validate the high-level strategy development and the portability to a real robot, while
experiments with telemetry interface aim to evaluate the robot behavior using, as input, the information received from the
shared memory passed by all processes. The results show that the simulator can be used to test and develop new algorithms,
while the telemetry can be used to monitor the robot, thus validating the framework for this domain.

Keywords Humanoid robot framework · Cognitive robotics · Robot simulator and telemetry

1 Introduction

The humanoid robot framework proposed on this work is
based on the Cross Architecture (Perico et al. 2014a, b). The
Cross Architecture is a software architecture composed by
independent modules, that was proposed in order to allow a
humanoid robot, equipped with a computer, to perform sev-
eral concurrent tasks, including servomotor control, decision,
localization, vision and so on.

Several modules of the Cross Architecture are dedicated
to the development of cognitive algorithms, i.e., algorithms
aimed at building intelligent robots, where the input–output
behavior of the robot matches corresponding human behav-
ior (Russell and Norvig 2010). Nevertheless, one of the
main problems of developing cognitive algorithms in real

B Danilo H. Perico
dperico@fei.edu.br

Thiago P. D. Homem
thiagohomem@ifsp.edu.br

1 Centro Universitário FEI, São Bernardo do Campo, SP, Brazil

2 Instituto Federal de São Paulo, São Paulo, SP, Brazil

humanoid robots is the physical issues, such as backlashes,
broken parts, bad connections. Another problem of devel-
oping cognitive algorithms in unique humanoid robots, i.e.,
those ones that are not standard, is the lack of reproducibility
of any proposed code.

Thereby, a simulator becomes an important tool for debug-
ging and testing high-level algorithms without the need of
dealing with real robot problems. Furthermore, a simulator
allows the reproducibility of any proposed algorithm, even if
there is no real robot available. The usage of simulators also
allows the performance of a large number of experiments,
without the risk of damaging robots.

There are already several kinds of robot simulators avail-
able, such as Gazebo (2016), Webots (2016), Virtual robot
experimentation platform (2016) and RoboCup Soccer 3D
(2017). However, those 3D simulators often have high com-
putational cost and they need to have the specific desired
robot model, which is not always available by default. In
the existing 2D simulators, such as the RoboCup Soccer 2D
(2017), some of the difficulties arise from the integration of
the Cross Architecture. Beyond that, it is not an easy task to

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40313-018-0390-y&domain=pdf
http://orcid.org/0000-0001-6887-9240


Journal of Control, Automation and Electrical Systems (2018) 29:470–479 471

transfer an algorithm developed in a simulator to a real robot.
Usually, several adaptations and changes are necessary.

Moreover, after the code has been transferred from sim-
ulator to the real robot, it is tough to monitor inward robot
variables during execution time, which is a desirable task in
order to check and evaluate whether the robot is following
the expected behavior or not.

The approached domain of this paper is the RoboCup Soc-
cer, more precisely, the Humanoid League, where humanoid
robots have the goal of playing soccer autonomously and
cooperatively. Hence, the objective of this work is to pro-
pose a humanoid robot framework composed by a 2D
humanoid robot soccer simulator, called RoboFEI-HT Sim-
ulator (Perico et al. 2016), and a telemetry interface for real
robots. The simulator allows the abstraction of real-world
problems during the development of high-level algorithms
based on the Cross Architecture. Besides, these developed
algorithms can be easily transferred from the simulator to a
real humanoid robot, as long as this robot uses the Cross
Architecture as its software architecture. Meanwhile, the
proposed telemetry interface allows the monitoring of the
transferred algorithms behavior in a real robot. By using the
telemetry interface, one can check some important robot fea-
tures, such as its localization, battery level anddecision taken.

There are other software frameworks that are used for
humanoid robots, such as the one developed by UT Austin
Villa Team (Barrett et al. 2013), which, as well as the Cross
Architecture, is composed of logical processes and shared
memory to allow communication between processes. Austin
Villa also developed a visualization tool, mainly focused in
showing the robot localization. However, it is not clear if
their architecture is hierarchical, reactive or hybrid, which is
very clear in the case ofCrossArchitecture.Another software
framework was developed by Team NimbRo-OP (Allgeuer
et al. 2013), that used the Robot Operating System (ROS)
(Quigley et al. 2009) as the base of their architecture and
the RViz plugin to create a visualization tool. The Cross
Architecture was not implemented in ROS, because ROS has
high computational cost when combined with all processes
required by the robot.

So, in addition to the existing RoboFEI-HT Simulator
(Perico et al. 2016), this article brings new relevant exper-
iments performed in order to prove the accuracy of the
simulator in comparison with the real robot for the devel-
opment of cognitive algorithms, as well as the telemetry
interface which, together with the simulator, composes the
proposed framework.

Thiswork is structured as follows: Sect. 2 briefly describes
the Cross Architecture. Section 3 gives an overview about
telemetry. Section 4 shows the proposed framework, includ-
ing the simulator and the telemetry interface. In Sect. 5, some
case studies are presented and Sect. 6 provides the conclu-
sions and indicates avenues for extend this work.

2 The Cross Architecture

The Cross Architecture is based on the hybrid architecture
(Arkin 1998). Hybrid architecture argues that a robot has to
deliberate while it senses and acts, and it is done by decom-
posing a task into sub-tasks. Tasks that are reactive, such as
protecting a robot from a falling or adapting the walking to
sloped terrains (Silva et al. 2015), do not need to be planned
or deliberated.When one of those situations occurs, the robot
should simply sense and react, leaving complex behaviors,
like decidingwhat to do or localizing itself, to the hierarchical
structure.

The Cross Architecture allows an abstraction layer betw-
een the processes required for a humanoid robot soccer player
due to the blackboard concept (Hayes-Roth 1985), that is a
shared memory area that allows inter-process communica-
tion. The architecture states that independent processes can
communicate between each other in order to achieve an intel-
ligent system. It is composed by eight processes: vision,
localization, decision, communication, planning, inertial
measurement unit (IMU), control and management (Perico
et al. 2014a).

– Vision is responsible for data acquisition; it can be
monocular, when only one camera is used, or stereo,
when two cameras are adopted. Inside the Cross Archi-
tecture, visionprocess is used to recognize objects that are
in the robot’s field-of-view and send the relative distance
and direction to the localization and decision processes,
via blackboard. Vision process is themain sensor used by
the robot to perceive the world in RoboCup Humanoid
League.

– Localization is the process in charge of estimating the
robot’s pose. Localization is currently made by Monte
Carlo localization method (MCL) (Fox et al. 1999; Del-
laert et al. 1999), where particles represent the robot’s
confidence on its pose. MCL works as a recursive Bayes
filter, where the robot’s localization is updated consider-
ing its motion and its measurements.

– Communication is responsible for receiving and send-
ing data to the Game Controller. Besides, it receives and
sends information to other robots in the team. Communi-
cation broadcasts information to everything on the same
wireless network, using predetermined ports. Each port
is attached to a robot.

– Decision is responsible for defining which actions the
robot must perform and send them to the planning pro-
cess, which, in turn, send the actions to the Movement
Control process. From the data received by the vision,
localization and communication processes, decision can
use severalAI approaches to definewhich action the robot
should perform. The simplest decision implemented is a

123



472 Journal of Control, Automation and Electrical Systems (2018) 29:470–479

naive one, where the robot searches for the ball, walks
toward it and kicks the ball.

– Planning receives, from decision process, the actions the
robot must perform. As the robot soccer is a dynamic
environment, the planning process is used to allow a robot
to move itself from an initial position to a target position,
avoiding collisions with robots and other obstacles, in
order to perform the received action.

– Inertial measurement unit is the process that manage
the IMU sensor. IMU is composed of accelerometer and
gyroscope, where each sensor has three axis (x , y and
z). IMU allows the estimation of the robots orientation
by using an extended Kalman filter (EKF) (Russell and
Norvig 2010).

– Control is the process responsible for executing the
movements of the robot. Generally, humanoid robots use
a gait pattern generation in order to perform a walking
motion. Our real robots use the gait pattern developed by
Ha et al. (2011) for the DARwIn-OP robot. The control
process allow the real robot to perform movements such
as: walk forward, turn to right and to left, get up when a
fall happens and to stay stand-up. The control process is
connected to the IMU, as found in a reactive paradigm
(Brooks 1986).When the IMUdetects a fall, for example,
the robot get itself upwithout deliberate about this action.

– Management is the process that initializes, monitors and
finishes all other processes. Additionally, in case any pro-
cess stopsworking, management will reboot this process,
working like a watchdog timer.

Figure 1 depicts all processes and how they are inter-
connected by the blackboard (bkb) to exchange data among
them, considering a robot n. There are some researches with
humanoid robots that already use the Cross Architecture
as their basic architecture for the development of cognitive
behaviors, for example Silva et al. (2015), Vilão et al. (2014),
Perico et al. (2016) and Homem et al. (2017).

3 Telemetry

Telemetry is an automatic way for communicating mea-
surements of relevant data from a remote equipment to a
monitoring agent, usually by the usage ofwireless sensors. In
robotics, telemetry is necessary in order to supervise robots
behavior and its internal data during the robot’s execution
time. Oftentimes, telemetry and teleoperation can be seen
as complementary processes, once a person can control the
robot while follows the value of the robot’s variables.

So, communication can be the main issue of telemetry in
robotics, because, commonly, there is a great time delay of
exchanging data. Another problem of communication is the

Fig. 1 The Cross Architecture. Adapted from Perico et al. (2014a).
Gray boxes are the simulated processes

Fig. 2 RoboFEI-HT Simulator

fact that, in some situations, it needs a special protocol in
order to be able to communicate in the right way (Ingrand
et al. 1996).

In this paper, telemetry will be taken as a tool for moni-
toring the robot data remotely.

4 RoboFEI Framework for Humanoid Robots

4.1 RoboFEI-HT Simulator

RoboFEI-HT Simulator (Perico et al. 2016), depicted in
Fig. 2, is a 2D simulator built upon the Cross Architecture,
that simulates three processes from the Cross Architecture:
vision, control and IMU. Figure 1 depicts the simulated pro-
cesses in gray boxes.

All the processes linked to the cognitive algorithms of the
robot, such as decision, localization, planning and communi-
cation, run in both platforms: real or virtual robots.As already
mentioned, this abstraction is possible due to the blackboard.

123



Journal of Control, Automation and Electrical Systems (2018) 29:470–479 473

So, from the point-of-view of cognitive processes, it does not
matter whether the robot is real or virtual; decisions will be
taken following the data published in the blackboard.

The proposed simulator supports multi-robot systems,
where the robots can exchange data between them via socket
(UDP or TCP), following the same procedure used by real
robots.

RoboFEI-HTSimulator brings some contributions in rela-
tion to the already available simulators. The first one is the
possibility to create prototype decision-making algorithms
and the ease portability of these algorithms from the simu-
lation to a real robot that works with the Cross Architecture,
where only few parameters may need to be lightly adjusted
in the actual robot. Another advantage is the fact that the pro-
posed simulator is free, open source and it does not require
a powerful computer to work.

4.1.1 Physics Simulation

The purpose of this simulator is to simulate the physical
environment of the soccer competition in order to test the
high-level algorithms developed by the team. The simulated
world has two dimensions, allowing the robots to move for-
ward, backward, to the left, to the right and to rotate around
its own axis, representing the movements of real robots.

The objects’ movements are simulated using the concept
of speed. For robots, it is applied a rotation model, which
changes the orientation θt of the robot by summing a constant
turning factor �θ to the previous robot’s orientation θt−1, as
shown in Eq. (1). The velocity v̂t is computed by applying the
current orientation θt to the previous speed v̂t−1, as shown in
Eq. (2), where af and as are the forward acceleration and the
sideways acceleration, respectively. Then, the current posi-
tion ŝt of the robot is computed by the sum of the previous
robot’s position ŝt−1 and the current robot’s speed v̂t , as in
Eq. (3). The simulator runs 60 frames per second; however,
this value can be easily changed if needed.

θt = θt−1 + �θ. (1)(
vx

t
v

y
t

)
=

(
vx

t−1
v

y
t−1

)
+

(
cos(θt ) − sin(θt )

− sin(θt ) − cos(θt )

)
×

(
af
as

)
. (2)

(
sx

t
s y

t

)
=

(
sx

t−1
sy

t−1

)
+

(
vx

t
v

y
t

)
(3)

Robots’ movements are affected by errors. These errors
are simulated by normal distributed random numbers, that
are added to the movements speed. There are three kinds of
errors: speed error, which causes the robot to move forward
or backward; drifting error, which causes sideways move-
ments; and rotation error, which causes robots to rotate while
moving.

When a robot kicks the ball, a new velocity is given to
the ball. The orientation and direction are determined by the
relative angle between robot and the ball, and its value is
determined in function of the distance betweenball and robot.
This velocity decreases over time by a factor f , called fric-
tion. Note that the factor f ranges from 0 to 1, as shown in
Eq. (4). Then, the ball’s position is updated following Eq. (3).

(
v

b,x
t

v
b,y
t

)
=

(
f 0
0 f

)
×

(
v

b,x
t−1

v
b,y
t−1

)
. (4)

Collisions are interactions between objects, which can be
classified in four categories: interactions between robots;
interactions between robot and ball; interactions between
robot and static objects; and interactions between ball and
static objects. All interactions between robots, ball and
goalposts were approximated by an algorithm of collisions
between circles. To prevent robots and the ball to move
beyond the limits of the simulation, the borders of the simu-
lation were considered as walls.

4.1.2 Movement Control

Two processes of the Cross Architecture are responsible for
the robots movement: decision, which chooses the action
performed by the robot, and control, which executes the
movement. They communicate with each other through the
blackboard. So, control reads a variable published by deci-
sion in the blackboard and acts following this received
instruction. In order to simulate this behavior, each simu-
lated robot has its own control process, which reads the same
variables from the shared memory that the control of the real
robotwould read, and executes the same actions the real robot
would execute.

4.1.3 Vision

The vision process is responsible for recognizing objects in
the field, like the ball, teammates and opponents. The field-
of-view of the robot is set to 70◦ and the pan is limited to
270◦ , following the rules of the RoboCupHumanoid League
(2016/2017).

The search for objects in the soccer field is controlled by
the decision process, that defines what kind of object should
be searched and determines the beginning and the end of the
process. During the search, objects positioned in the field-
of-view and far up to 3 m from the robot can be identified.
Finally, the calculated distance value (in meters) and angle
value (in degrees) with respect to the robot are published in
the blackboard. Normal distributed random numbers can be
also added in these calculated values in order to simulate
vision errors.

123



474 Journal of Control, Automation and Electrical Systems (2018) 29:470–479

Fig. 3 Telemetry graphical user interface. a Graphical user interface showing three robots with its respective status windows, b status window in
details

4.2 RoboFEI-HT Telemetry

The motivation of the telemetry came from the problem of
not knowing what was happening to the robot when it had a
problem. The idea was to develop a graphical user interface
which can represent the inner states of the robot in a friendly
way, and not just a log screen. It was developed as an exten-
sion to the RoboFEI-HT Simulator, but works in a different
environment.

4.2.1 Motivation

After the use of the simulator to develop cognitive algorithms
for robotics, the natural next step is to test the same algorithm
in real robots. As already cited, real robots present a lot of
problems, such as walking problems, overheating servomo-
tors or battery drain issues; thus, a telemetry interface has
great value by allowing the monitoring of these problems
during robot execution time.

4.2.2 Graphical User Interface

The function of the RoboFEI-HTTelemetry is to be an output
screen for the team of robots, instead of a remote controller.
The simulator was designed to be used for the RoboCup Soc-
cer environment and, as a rule of the competition, teamsmust
not teleoperate the robots. Following this rule, the telemetry
only receives information.

Among it’s capacities, the telemetry interface can read the
Game Controller information (referee information), such as
quantity of scored goals and time of match, and display it
on screen. The telemetry presents a screen, which shows the
environment where the robots are working on, as depicted in
Fig. 3. Each robot is represented by a different color, and the
robot’s position is drawn based on the believes obtained by
the localization process. The circles around each robot rep-

Table 1 Communication structure

Robot number Localization Processes Others

resent their believes in such position: smaller circles means
higher believes. Another utility is to present the position the
robot perceives the ball.

Each robot in the telemetry interface has a floating screen,
which presents the robot’s name, its battery condition and the
internal status of the Cross Architecture processes. All these
data are taken from the robot’s blackboard.

4.2.3 Communication Protocol

An example of communication protocol is presented by
Table 1, where robot number is a number which represent
the robot, localization represent the set of variables used to
draw the robot on screen, processes is a set of variables which
represents the working processes, and others are a set of all
other variables, which the user is willing to see in the teleme-
try screen.

These variables are sent through UDP protocol as a text
message. Each robot is attached to a specific port, in a way
the telemetry will always read this same port in order to get
information from the given robot. Since the protocol con-
verts everything into text messages, it is good to take care on
how the information has been sent, depending on the preci-
sion used by the float numbers, message can became too big,
causing the communication to be ineffective. Also, the com-
puter with the telemetry and the robots need to be in the same
network. Note that the simulator and the telemetry can work
simultaneously in the same computer, any simulated robot
can send information to telemetry in order to test the com-
munication, or even making preliminary tests before testing
in real robots.

123



Journal of Control, Automation and Electrical Systems (2018) 29:470–479 475

Fig. 4 First proposed scenario for both domains. a Simulation, b real
robot

5 Case Studies

This section aims to validate the complete humanoid robot
framework. So, the experiments performed in Sect. 5.1 aim to
validate the high-level strategy development in the proposed
simulator and its portability to a real robot, while Sect. 5.2
aims to evaluate the robot behavior within the telemetry
interface using, as input, the information received from the
localization process.

A humanoid robot inspired on DARwIn-OP (Ha et al.
2011) was used in the experiments. This robot uses an Intel
Core i5 1.66 GHz computer with 8 GB SDRAM, running
Ubuntu 14.04 LTS. The same computer was also used in the
simulated experiments.

5.1 Transference of Algorithms Developed in the
Simulator for the Real Robot

This section illustrates the use of the decision process on the
simulator and its extension to real robots. The development
and analysis of the decision was chosen considering that the
control, IMU and vision are also implemented and available

(a)

(b)

(c)

Fig. 5 Paths performed by the virtual and by the real robot. a Simulated
environment without considering error rate, b simulated environment
with error rate, c real environment

for the real robot. In order to validate the transference of the
developed source code from the simulator to a real robot, the

123



476 Journal of Control, Automation and Electrical Systems (2018) 29:470–479

Table 2 Results comparing the
virtual robot and the real
humanoid robot

Average distance
traveled (cm)

Standard devia-
tion (cm)

% of scored goals

Real humanoid robot 848.40 42.82 50

Simulated robot-no error 791.17 20.70 100

Simulated robot-with errors 879.77 101.40 53

Fig. 6 Simulation: path performed in the second scenario

Fig. 7 Real world: path performed in the second scenario

decision process was implemented using the naive concept,
in which the robot searches for the ball, walks toward it, and
kicks the ball.

Two scenarios were considered for the experiments. Fig-
ure 4 shows the first scenario, in which the ball is positioned
at the penaltymark and the robot is positioned near the ball, at
the penalty area. So, due to the naive decision, it was expected
that the robot keep itself kicking the ball and walking until a
goal was scored, or until the ball was kicked outside the field.
In order to allow the analysis of the portability of the algo-
rithms between simulation and real world, the trajectory, as
well as the traveled distance and the number of scored goals
were stored.

Experiments with the real robot were performed 10 times,
while experiments with the virtual robot were performed 30
times. Thus, three graphs of traveled paths have been gen-
erated and can be seen in Fig. 5. In the case of the virtual

robot, two analyzes were performed, one without and other
with the inclusion of errors in the robot. The errors were
included in the robot velocity, in lateral displacement and
in rotation and were generated randomly from a normal dis-
tribution, considering mean equal to zero and the following
standard deviations: 0.2; 0.2; 0.1. In addition to the errors, a
Gaussian noise was also included in the data received from
IMU. This noise was generated with mean equal to zero and
a standard deviation of 0.01. Errors and noise are updated at
each iteration of the simulator. These deviation values were
empirically obtained.

As it can be seen in Fig. 5a, the average path performed
by the simulated robot, without considering error rates, was
basically a straight line, where the robot scored 100% of the
goals and traveled an average distance of 791.17 cm. Fig-
ure 5b depicts the traveled path performed by the virtual
robot considering error rates, where the robot scored 53%

123



Journal of Control, Automation and Electrical Systems (2018) 29:470–479 477

Fig. 8 Real robot positioning Fig. 9 Real robot telemetry

123



478 Journal of Control, Automation and Electrical Systems (2018) 29:470–479

of the goals and traveled an average distance of 879.77 cm.
Finally, Fig. 5c shows the paths performed by the real robot,
which scored 50% of the goals and traveled an average dis-
tance of 848.40 cm. Table 2 summarizes the results obtained
in this experiment.

The t-test with unequal variances was performed in order
to analyze whether the data obtained during the simulated
experiments, considering the robot with error rates, were sta-
tistically different from the data obtained during the real robot
experiment. The t-value calculated was 1.37; considering a
confidence of 95%, t critical one-tail was 1.69 and t critical
two-tail was 2.03. As t value is lower than both t critical val-
ues, we can conclude that the t-test failed verifying the null
hypothesis, which can mean that is not possible to prove that
data are different with confidence 95%.

The results demonstrate that the actions, paths and dis-
tances performed by robot in the simulator environment
(considering error rates) are similar to the actions performed
by the real humanoid robot, as described in Table 2.

The second analyzed scenario was shown in Figs. 6a and
7a, where the ball is positioned in front of a goalpost and
the robot must walk toward it and kick the ball. The virtual
robot was setup with the same error rates used during the
first scenario, then Figs. 6 and 7, from (a) to (d) depicts the
movement performed by the virtual and by the real robot,
respectively.

Both experiments indicate that a high-level decision algo-
rithm, implemented in the simulator, can be reproduced in
real robots with minor changes. This is possible because the
output of the simulated processes (IMU, control and vision)
is very similar to the output of these same processes in real
robots.

5.2 Telemetry in a Real Robot

This section illustrates the usage of the telemetry interface in
order to show the robot’s belief pose in the field. All the input
data received by telemetry interface came from the localiza-
tion process, that was running inside the real robot.

In order to evaluate the data representation of the local-
ization and telemetry processes, the robot walked to different
random positions in the field and its position was updated in
these processes. The localization process has performed the
robot localization using two landmarks in the corners of the
field; the robot’s position was sent to the telemetry interface,
while it was updated automatically.

Figure 8 depicts the randompositions of the real robot dur-
ing the experiment, while Fig. 9 presents the data received by
telemetry interface. Besides pose information, telemetry also
presents the status of several processes of the Cross Archi-
tecture and battery level.

6 Conclusion

This paper describes the RoboFEI framework for humanoid
robots developed for theRoboCupHumanoidSoccer domain,
which allows cognitive algorithms to be implemented, sim-
ulated, transferred to real humanoid robots and evaluated by
using the monitoring offered by telemetry interface.

The proposed framework has some advantages, for insta-
nce, it is open source1 and it has low computational cost.
With respect to the simulator, the main advantage is the fact
that it allows the development of cognitive algorithms with-
out having real robots, which also allows the reproducibility
of any new proposed source code. In addition, the proposed
simulator allows the transference of reasoning, learning and
localization algorithms to real robots that uses the Cross
Architecture with only few adjusts in some parameters. Fur-
thermore, the proposed telemetry interface allows the actual
timemonitoring of an implemented algorithm in a real robot.

The performed experiments showed that framework can
be avaluable tool during the development of high-level strate-
gies for humanoid robots, since the framework helps: (1) the
development and testing of cognitive algorithms in simula-
tor; (2) the transfer of codes to real robots and; (3) using the
telemetry, to evaluate the experiments in real robots. Despite
the chosen domain, the framework can be adapted for almost
every environment where a humanoid robot needs to work.

As future work, it is possible to improve the telemetry
interface in order to allow it to be more generic in regard to
the kind of information shown on the screen. With respect
to the simulator, more work is needed in order to allow it to
run in an accelerated mode, which would allow the simula-
tion to be performed directly in the robot’s computer. This
last feature could be desirable because of several reasons,
for instance, the execution of the simulator could be done
in parallel with the real robot, reproducing the actual game
situation in a simulated environment; thus, during an actual
game, the virtual robot could learn some behavior in the sim-
ulator (running faster than the real robot) and this learned
behavior could be used by the real robot.

Acknowledgements The authors would like to thank CAPES, CNPq
and FAPESP (grants 2016/21047-3 and 2016/18792-9) for their finan-
cial support.

References

Allgeuer, P., Schwarz, M., Pastrana, J., Schueller, S., Missura, M.,
& Behnke, S. (2013). A ROS-based software framework for the
NimbRo-OP humanoid open platform. In Proceedings of the 8th
workshop on humanoid soccer robot. IEEE-RAS, Atlanta.

1 The source code of the framework is available at: https://github.com/
danilo-perico/robofei-ht-framework.

123

https://github.com/danilo-perico/robofei-ht-framework
https://github.com/danilo-perico/robofei-ht-framework


Journal of Control, Automation and Electrical Systems (2018) 29:470–479 479

Arkin, R. C. (1998). Behavior-based robotics. Cambridge: MIT Press.
Barrett, S., Genter, K., He, Y., Hester, T., Khandelwal, P., Menashe,

J., et al. (2013). UT Austin Villa 2012: Standard Platform League
World Champions. In RoboCup, China.

Brooks, R. A. (1986). A robust layered control system for a mobile
robot. IEEE Journal of Robotics and Automation, 2(1), 14–23.

Dellaert, F., Fox, D., Burgard, W., & Thrun, S. (1999). Monte Carlo
localization for mobile robots. In 1999 IEEE international con-
ference on robotics and automation. Proceedings (Vol. 2, pp.
1322–1328). IEEE.

Fox,D.,Burgard,W.,Dellaert, F.,&Thrun, S. (1999).Monte carlo local-
ization:Efficient position estimation formobile robots.AAAI/IAAI,
343–349, 1999.

Gazebo. (2016). http://gazebosim.org. Accessed May 19, 2016.
Ha, I., Tamura, Y., Asama, H., Han, J., & Hong, D. W. (2011). Devel-

opment of open humanoid platform DARwIn-OP. In SICE annual
conference 2011 (pp. 2178–2181).

Hayes-Roth, B. (1985). A blackboard architecture for control. Artificial
Intelligence, 26(3), 251–321.

Homem, T. P. D., Perico, D. H., Santos, P. E., Bianchi, R. A. C., & de
Mantaras, R. L. (2017). Retrieving and reusing qualitative cases:
An application in humanoid-robot soccer. AI Communications,
30(3–4), 251–265.

Ingrand, F. F., Chatila, R., Alami, R., & Robert, F. (1996). PRS: A high
level supervision and control language for autonomous mobile
robots. In 1996 IEEE international conference on robotics and
automation. Proceedings (Vol. 1, pp. 43–49). IEEE.

Perico, D. H., Bianchi, R. A. C., Santos, P. E., & Lopez de Mántaras, R.
(2016). Collaborative communication of qualitative spatial percep-
tions for multi-robot systems. InProceedings of 29th international
workshop on qualitative reasoning (IJCAI), New York.

Perico, D. H., Homem, T. P. D., Almeida, A. C., Silva, I. J., Vilão, C.
O., Ferreira, V. N., & Bianchi, R. A. C. (2016). A robot simulator
based on the cross architecture for the development of cognitive
robotics. In 2016 XIII Latin American robotics symposium and IV
Brazilian robotics symposium (LARS/SBR) (pp. 317–322).

Perico, D. H., Silva, I. J., Vilão Jr., C. O., Homem, T. P. D., Destro, R.
C., & Tonidandel, F. (2014a). Joint conference on robotics, LARS
2014, SBR 2014, robocontrol 2014. Revised selected papers, chap-
ter Newton: A high level control humanoid robot for the RoboCup
Soccer KidSize League. Berlin: Springer.

Perico, D. H., Silva, I. J., Vilão, C. O., Homem, T. P. D., Destro, R. C.,
Tonidandel, F., et al. (2014b).Hardware and software aspects of the
design and assembly of a new humanoid robot for robocup soccer.
InRobotics: SBR-LARS robotics symposium and robocontrol (SBR
LARS Robocontrol).

Quigley, M., Conley, K., Gerkey, B. P., Faust, J., Foote, T., Leibs, J.,
Wheeler, R., & Ng, A. Y. (2009). ROS: An open-source robot
operating system. In ICRA workshop on open source software.

RoboCupHumanoidLeague. (2016/2017).RoboCupSoccerHumanoid
League Laws of the Game. https://www.robocuphumanoid.org/
materials/rules/. Accessed Nov 20, 2017.

Robocup Soccer simulation. (2017). http://wiki.robocup.org/Soccer_
Simulation_League. Accessed Nov 20, 2017.

Russell, S. J., & Norvig, P. (2010). Artificial intelligence: A modern
approach. Englewood Cliffs: Prentice Hall Press.

Silva, I. J., Perico,D.H.,Homem,T. P.D.,Vilão,C.O., Tonidandel, F.,&
Bianchi, R. A. C. (2015). Using reinforcement learning to improve
the stability of a humanoid robot: Walking on sloped terrain. In
12th Latin American robotics symposium and 2015 3rd Brazilian
symposium on robotics (LARS-SBR).

Vilão, C. O., Perico, D. H., Silva, I. J., Homem, T. P. D., Tonidandel, F.,
& Bianchi, R. A. C. (2014). A single camera vision system for a
humanoid robot. In SBR-LARS robotics symposium and robocon-
trol.

Virtual robot experimentation platform. (2016). http://www.v-rep.eu/.
Accessed May 19, 2016.

Webots. (2016). http://www.cyberbotics.com/.AccessedMay 19, 2016.

123

http://gazebosim.org
https://www.robocuphumanoid.org/materials/rules/
https://www.robocuphumanoid.org/materials/rules/
http://wiki.robocup.org/Soccer_Simulation_League
http://wiki.robocup.org/Soccer_Simulation_League
http://www.v-rep.eu/
http://www.cyberbotics.com/

	Humanoid Robot Framework for Research on Cognitive Robotics
	Abstract
	1 Introduction
	2 The Cross Architecture
	3 Telemetry
	4 RoboFEI Framework for Humanoid Robots
	4.1 RoboFEI-HT Simulator
	4.1.1 Physics Simulation
	4.1.2 Movement Control
	4.1.3 Vision

	4.2 RoboFEI-HT Telemetry
	4.2.1 Motivation
	4.2.2 Graphical User Interface
	4.2.3 Communication Protocol


	5 Case Studies
	5.1 Transference of Algorithms Developed in the Simulator for the Real Robot
	5.2 Telemetry in a Real Robot

	6 Conclusion
	Acknowledgements
	References




