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Abstract
This paper studies the problem on L2-gain analysis and anti-windup design of uncertain discrete-time switched saturated
systems by the multiple Lyapunov functions approach. Firstly, we obtain a sufficient condition of tolerable disturbances,
under which the state trajectory starting from the origin will remain inside a bounded set. Then, the upper bound of the
restricted L2-gain is obtained. Furthermore, the anti-windup compensators and the switched rule, aiming to determine the
maximum disturbance tolerance capability and the minimum upper bound of the restricted L2-gain, are presented by solving
a constraints optimization problem. Finally, we give a numerical example to show the effectiveness of the proposed method.

Keywords L2-Gain · Anti-windup · Switched systems · Actuator saturation · Multiple Lyapunov function · Tolerable
disturbances

1 Introduction

The switched systems that are an important class of a hybrid
system have attracted much attention in recent years (Liber-
zon and Morse 1999; Lin and Antsaklis 2009; Sun et al.
2002; Varaiya 1993; Zhao and Spong 2001; Sun et al. 2008).
Generally, switched systems consist of a set of subsystems
that interact with a logical or decision-making process. It is
generally known that the stability is of most importance in
analysis and design of switched systems. For studying the sta-
bility (Zhao and Dimirovski 2004; Cheng 2004; Pettersson
2003; Branicky 1998; Zhai 2001) and synthesis problem for
switched systems (Cheng et al. 2003; Hespanha and Morse
1999; Zhai et al. 2001; Zhao andHill 2008; Lin andAntsaklis
2006; Xie et al. 2004), many approaches have been intro-
duced. Thereinto, the common Lyapunov function is used
to check the stability property under arbitrary switchings
(Cheng 2004). Although this property is a desirable prop-
erty, the most switched systems do not possess a common
Lyapunov function. Yet, the switched system still is stable
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under certain switching laws by using othermethods. Among
them, the multiple Lyapunov functions method (Pettersson
2003; Branicky 1998), the single Lyapunov function method
(Zhai 2001; Cheng et al. 2003) and the average dwell-time
technique (Hespanha and Morse 1999; Zhai et al. 2001) are
effective tools for choosing switching laws.

On the other hand, the practice system is often sub-
ject to exogenous disturbances. The L2 analysis has also
an important influence for systems with disturbance, which
can provide a kind of measure of the certain extent of the
influence of disturbance (Zhai et al. 2001; Zhao and Hill
2008). All the results mentioned above study continuous-
time switched systems. However, from a practical point
of view, studying discrete-time switched systems with dis-
turbances is meaningful. The exponential stability and L2

induced gain performance were investigated for a class of
discrete-time switched systems by multiple functions (Lin
and Antsaklis 2006). Using the switched Lyapunov function
method, Xie et al. (2004) studied the L2-gain analysis and
control synthesis of uncertain discrete-time switched sys-
tems.

In addition, the actuator saturation appears in almost all
practical control systems owing to physical constraints. The
input saturation can degrade system performance and even
make system unstable. Thereby, the study of saturated sys-
tems has received much attention (Silva et al. 2008; Zheng
and Wu 2008; Fang et al. 2004; da Silva et al. 2008; Wada
et al. 2004). There are many methods developed to deal with
saturation (Tarbouriech et al. 2002; Zhang et al. 2008; Hu
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et al. 2002; Gomes da Silva and Tarbouriech 2006). How-
ever, the anti-windup method is better for handling input
saturation. This method is to firstly design a linear controller
that meets the performance requirement of the closed-loop
system without considering actuator saturation and then to
design an anti-windup compensator to reduce the effects of
the actuator saturation (Gomes da Silva and Tarbouriech
2006). So the anti-windup compensators can maintain the
performance of the closed-loop system in the absence of satu-
ration, while minimizing the degradation of the performance
for the closed-loop system subject to actuator saturation. For
switched saturated systems, studying its property becomes
more difficult. It is because the saturation and switching
signals interact with each other. The existing results are rel-
atively few (Lu and Lin 2008, 2010; Zhang et al. 2011; Lu
et al. 2009; Benzaouiaa et al. 2010). And then for the study
of the L2-gain and anti-windup design problem of uncertain
switched discrete systems on the strength of the multiple
Lyapunov functions method, to the best of our ability, there
are nearly no results in the existing literature. That is our
motivation.

Compared with the existing results for switched satu-
rated systems (Zhang et al. 2012; Lu and Lin 2008, 2010;
Zhang et al. 2011; Lu et al. 2009; Benzaouiaa et al. 2010),
there are two features of our results. First of all, the L2-gain
analysis and anti-windup design problem are simultaneously
addressed for discrete-time uncertain switched systems with
saturating actuator, while most existing works considered
only the problem of stability; second, the multiple Lyapunov
functions method is used to study the disturbance toler-
ance/rejection problem for discrete-time uncertain switched
systemswith actuator saturation for the first time and no solv-
ability of the problem for subsystem is required, while in the
existing literature, the problemhas been investigated byusing
the switched Lyapunov function method which requires the
solvability for each subsystem.

Based on the multiple Lyapunov function approach, the
L2-gain analysis and anti-windup compensators design are
studied for a class of uncertain discrete-time switched sat-
urated systems in this paper. Firstly, we obtain a sufficient
condition of disturbance tolerance under which the state tra-
jectory starting from the origin will remain inside a bounded
set. Then, we analyzed the restricted L2-gain. Furthermore,
in order to obtain the maximal disturbance tolerance capac-
ity and the minimum upper bound of the restricted L2-gain,
the problem of designing the anti-windup compensators and
the switched rule is formulated and solved as a constraints
optimization problem.

2 Problem Statement and Preliminaries

The following discrete-time switched systems with actuator
saturation are considered:

x(k + 1) = (Aσ + �Aσ )x(k) + (Bσ + �Bσ )sat(u(k))

+Eσ w(k),

y(k) = Cσ1x(k),

z(k) = Cσ2x(k), (1)

where k ∈ Z+, x(k) ∈ Rn is the state vector,u(k) ∈ Rm is the
control input vector, y(k) ∈ Rp is the measured output vec-
tor, z(k) ∈ Rl is the controlled output, and w(k) ∈ Rq is the
external disturbance input. σ(k) is a switching signal which
takes its values in the finite set IN = {1, · · · , N }; σ(k) = i
means that the ith subsystem is active. Ai , Bi , Ei , Ci1

and Ci2 are real constant matrices of appropriate dimen-
sions. �Ai , �Bi are unknown matrices with time-varying
parameter uncertainties in the system matrices and having
the following form

[�Ai , �Bi ] = Ti�(k) [F1i , F2i ] , ∀i ∈ IN ,

where Ti , F1i and F2i are given constant matrices with
proper dimensions which characterize the structure of uncer-
tainties and�(k) is an unknown time-varyingmatrix function
satisfying

�T(k)�(k) ≤ I .

Due to the presence of actuator saturation, the L2-gain
may not be well defined when the external disturbances are
sufficiently large, because a sufficiently large external dis-
turbance may drive the system state or output unbounded
under any control input (Fang et al. 2004; Lu et al. 2009).
Therefore, we assume that

W 2
β : =

{
w : R+ → Rq ,

∞∑
k=0

wT(k)w(k) ≤ β

}
, (2)

whereβ is some positive number that is aimed at representing
disturbance tolerance capability of system. sat : Rm → Rm

is the vector-valued standard saturation function defined as

sat(u) =
[
sat(u1), · · · , sat(um)

]T
, (3)

sat(u j ) = sign(u j )min
{
1,

∣∣∣u j
∣∣∣} , ∀ j ∈ Qm = {1, . . . , m} . (4)

Notice that herewe have slightly abused the notation by using
“sat(·)” to stand for both scalar- and vector-valued saturation
functions. It is generally known that it is without loss of
generality to assume unity saturation level. The non-unity
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saturation level can always be transformed into unity satura-
tion level by scaling the matrix Bi and u (Hu et al. 2002).

For system (1), suppose that a set of nc-order dynamic
output feedback controllers are of the form

xc(k + 1) = Aci xc(k) + Bciuc(k),

vc(k) = Cci xc(k) + Dciuc(k), ∀i ∈ IN , (5)

where xc(k) ∈ Rnc , uc(k) = y(k) and vc(k) = u(k) are
the vector of state, input and controller output, respectively.
In this paper, we focus on L2-gain analysis and anti-windup
gains design, so we assume that the dynamic compensators
have been designed for system (1) without actuator satura-
tion, as commonly adopted in the literature (see, for example,
Gomes da Silva and Tarbouriech 2006).

For the sake of weakening the undesirable effects of the
windup caused by actuator saturation, a typical anti-windup
compensator includes adding to the controller dynamics a
“correction” term of the form Eci (sat(vc(k))−vc(k)). Then,
the modified controller structure has the form

xc(k + 1) = Aci xc(k) + Bci uc(k) + Eci (sat(vc(k)) − vc(k)),

vc(k) = Cci xc(k) + Dciuc(k), ∀i ∈ IN . (6)

Clearly, through adding such the correction terms, the
dynamic controllers (6) go on operating in the linear domain
without actuator saturation, which does not affect the sys-
tem’s performance. Then the controller state of the system
with input saturation can be revised by using the anti-windup
compensatorswhich restore the systemnominal performance
as much as possible.

Then, when we adopt the above controllers and anti-
windup tactic, the closed-loop system will be written as

x(k + 1) = (Ai + �Ai )x(k)

+(Bi + �Bi )sat(vc(k)) + Eiw(k),

y(k) = Ci1x(k),

z(k) = Ci2x(k),

xc(k + 1) = Aci xc(k) + BciCi1x(k)

+Eci (sat(vc(k)) − vc(k)),

vc(k) = Cci xc(k) + DciCi1x(k), ∀i ∈ IN . (7)

Now, define a new state vector

ζ(k) =
[
x(k)
xc(k)

]
∈ Rn+nc (8)

and the matrices

Ãi =
[
Ai + Bi DciCi1 BiCci

BciCi1 Aci

]
, B̃i =

[
Bi
0

]
, G =

[
0
Inc

]
,

Ki = [
DciCi1 Cci

]
, Ẽi =

[
Ei
0

]
, C̃i2 = [

Ci2 0
]
.

T̃i =
[
Ti
0

]
, F̃i = [

F1i + F2i DciCi1 F2iCci
]
.

Therefore, in combination with (7) and (8), the closed-loop
system can be rewritten as

ζ(k + 1) = ( Ãi + T̃i�(k)F̃i )ζ(k)

−(B̃i + GEci + T̃i�(k)F2i )ψ(vc) + Ẽiw(k),

z(k) = C̃i2ζ(k), ∀i ∈ IN , (9)

where vc = Kiζ(k), ψ(vc) = vc − sat(vc).
In this paper, we design the switched law and the anti-

windup compensation gains via multiple Lyapunov such
that the largest disturbance tolerance level of system (9)
is obtained at the beginning and then the minimized upper
bound of the restricted L2-gain is achieved.

Definition 1 (Fang et al. 2004; Lu et al. 2009) Given γ > 0.
System (9) is said to have a restricted L2-gain less than γ , if
there exists a switching signal σ(k) such that the following
condition is satisfied under the zero initial condition,

∞∑
k=0

zT(k)z(k) < γ 2
∞∑
k=0

wT(k)w(k),

for all nonzero w(k) ∈ W 2
β .

Todevelop themain results, we need the following lemma.
For a positive definite matrix P ∈ R(n+nc)×(n+nc) and a

scalar ρ > 0, an ellipsoid 
(P, ρ) is defined as


(P, ρ) =
{
ζ ∈ Rn+nc : ζTPζ ≤ ρ

}
.

Consider matrices Ki , Hi ∈ Rm×(n+nc) and define the
following polyhedral set:

L(Ki , Hi ) =
{
ζ ∈ Rn+nc :

∣∣∣(K j
i − H j

i )ζ

∣∣∣ ≤ 1,

i ∈ IN , j ∈ Qm

}
,

where K j
i , H j

i are the jth row ofmatrices Ki and Hi , respec-
tively.

Lemma 1 (Gomes da Silva and Tarbouriech 2006) Consider
the function ψ(vc) defined above. If ζ ∈ L(Ki , Hi ), then
the relation

ψT(Kiζ )Ji [ψ(Kiζ ) − Hiζ ] ≤ 0, ∀i ∈ IN , (10)

holds for any matrix Ji ∈ Rm×m diagonal and positive defi-
nite.
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3 Disturbance Tolerance

In this section, we derive a sufficient condition under the
given anti-windup gain matrices Eci via the multiple Lya-
punov function method, which guarantees that the state
trajectory of the system (9) starting from the origin will
remain inside a bounded set for any disturbance satisfying
(2). The approach obtaining the largest disturbance tolerance
level by designing the switched lawand the anti-windup com-
pensation gains will be stated in Sect. 5.

Theorem 1 Suppose there exist positive definite matrices Pi ,
matrices Hi and diagonal positive definite matrices Ji and a
set of scalars βir ≥ 0 and λi > 0 such that

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Pi + ∑N
r=1, r �=i βir (Pr − Pi ) HT

i Ji 0 ÃT
i Pi F̃T

i

∗ −2Ji 0 −(B̃i + GEci )
TPi −FT

2i

∗ ∗ −I ẼT
i Pi 0

∗ ∗ ∗ −Pi + λi Pi T̃i T̃ T
i Pi 0

∗ ∗ ∗ ∗ −λi I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, ∀i ∈ IN , (11)

and


(Pi , β) ∩ �i ⊂ L(Ki , Hi ), ∀i ∈ IN . (12)

Then under the switched law

σ = argmin{ζT(k)Piζ(k), i ∈ IN }, (13)

where �i = {ζ(k) ∈ Rn+nc : ζT(k)(Pr − Pi )ζ(k) ≥
0, ∀r ∈ IN , r �= i}; any trajectory of system (9)
starting from the origin will remain inside the region
∪N
i=1(
(Pi , β) ∩ �i ⊂ L(Ki , Hi )) for every w ∈ W 2

β .

Proof By condition (12), if ∀ζ ∈ 
(Pi , β) ∩ �i , then
ζ ∈ L(Ki , Hi ). Therefore, in view of Lemma 1, for
∀ζ ∈ 
(Pi , β)∩�i it follows that ψ(Kiζ(k)) = Kiζ(k)−
sat(Kiζ(k)) satisfies the sector condition (10).

In view of the switching law (13), for ∀ζ(k) ∈ 
(Pi , β)∩
�i ⊂ L(Ki , Hi ), the ith subsystem is active.

Then, we choose the following quadratic Lyapunov func-
tion candidate for system (9) as

V (ζ(k)) = Vσ(k)(ζ(k)) = ζT(k)Pσ(k)ζ(k). (14)

We split the proof into two parts.

Case 1When σ(k+1) = σ(k) = i , for ∀ζ(k) ∈ 
(Pi , β)∩
�i ⊂ L(Ki , Hi ), the difference of V (ζ(k)) along the solu-
tion of the closed-loop switched system (9) is

�V (ζ(k)) = ζT(k + 1)Piζ(k + 1) − ζT(k)Piζ(k)

= [( Ãi + T̃i�(k)F̃i )ζ(k) − (B̃i + GEci

+T̃i�(k)F2i )ψ(Kiζ(k)) + Ẽiw(k)]T

×Pi [( Ãi + T̃i�(k)F̃i )ζ(k) − (B̃i + GEci

+T̃i�(k)F2i )ψ(Kiζ(k))

+Ẽiw(k)] − ζT(k)Piζ(k). (15)

Therefore, by using Lemma 1 and condition (12), we have

�V (ζ(k))

≤ [( Ãi + T̃i�(k)F̃i )ζ(k) − (B̃i + GEci

+T̃i�(k)F2i )ψ(Kiζ(k)) + Ẽiw(k)]T

×Pr [( Ãi + T̃i�(k)F̃i )ζ(k) − (B̃i + GEci

+T̃i�(k)F2i )ψ(Kiζ(k)) + Ẽiw(k)] − ζT(k)(Pi )

×ζ(k) − 2ψT(Kiζ(k))Ji [ψ(Kiζ(k)) − Hiζ(k)].

Case 2 σ(k) = i, σ (k + 1) = r and i �= r , for ∀ζ(k) ∈

(Pi , β)∩�i ⊂ L(Ki , Hi ). Then using the switching law
(13) gives

�V (ζ(k)) = ζT(k + 1)Prζ(k + 1) − ζT(k)Piζ(k)

≤ ζT(k + 1)Piζ(k + 1) − ζT(k)Piζ(k).

In view of Cases 1 and 2, we get

�V (ζ(k)) ≤ [( Ãi + T̃i�(k)F̃i )ζ(k) − (B̃i + GEci

+T̃i�(k)F2i )ψ(Kiζ(k)) + Ẽiw(k)]T
×Pr [( Ãi + T̃i�(k)F̃i )ζ(k) − (B̃i + GEci
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+T̃i�(k)F2i )ψ(Kiζ(k)) + Ẽiw(k)]
−ζT(k)(Pi )ζ(k) − 2ψT(Kiζ(k))Ji

[ψ(Kiζ(k)) − Hiζ(k)],

Then, from Schur’s complements, (11) is equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

( Ãi + T̃i�(k)F̃i )TPi ( Ãi

+T̃i�(k)F̃i ) − Pi
+∑N

r=1, r �=i βir (Pr − Pi )

−( Ãi + T̃i�(k)F̃i )T

×Pi (B̃i + GEci

+T̃i�(k)F2i )
+HT

i Ji

( Ãi + T̃i�(k)F̃i )T

×Pi Ẽi

∗
(B̃i + GEci

+T̃i�(k)F2i )T

×Pi (B̃i + GEci

+T̃i�(k)F2i ) − 2Ji

−(B̃i + GEci

+T̃i�(k)F2i )TPi Ẽi

∗ ∗ ẼT
i Pi Ẽi − I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (16)

Multiplying (17) from the left by [xT ψT wT] and from the
right by [xT ψT wT]T, we have

�V (k) = V (k + 1) − V (k) < wT(k)w(k)

−
N∑

r=1, r �=i

βirζ
T(k)(Pr − Pi )ζ(k). (17)

Again by the switching law (13), we obtain

N∑
r=1, r �=i

βirζ
T(k)(Pr − Pi )ζ(k) ≥ 0,

which in turn gives

�V (k) = V (k + 1) − V (k) < wT(k)w(k). (18)

Then, when we consider V (k) as the overall Lyapunov func-
tion of system (9), it follows that

�V (k) = V (k + 1) − V (k) < wT(k)w(k),

∀ζ(k) ∈ ∪N
i=1(
(Pi , β) ∩ �i ). (19)

Therefore, it follows

k∑
t=0

�V (t) <

k∑
t=0

wT(t)w(t),

which indicates

V (k + 1) < V (0) +
k∑

n=0

wT(n)w(n), ∀k ≥ 0.

Due to x(0) = 0 and
∑∞

k=0 wT(k)w(k) ≤ β, we can
obtain

V (k + 1) < β, (20)

which implies that the state trajectory of the system (9) start-
ing from the origin will always remain inside the region
∪N
i=1(
(Pi , β) ∩�i ) for all times. Thus, this completes

the proof. 
�
In view of the above-established result, we easily know

that the disturbance tolerance capability is estimated firstly
before we analyze the restricted L2-gain for the closed-loop
system (9). Clearly, constant β provides a kind of measure
of the system’s disturbance tolerance capability. Thus, the
largest disturbance tolerance levelβ∗ is able to be determined
by solving the following optimization problem,

sup
Pi , Hi , Ji , βir

β

s.t. (a) inequality (11), ∀i ∈ IN , (21)

(b) 
(Pi , β) ∩ �i ⊂ L(Ki , Hi ), ∀i ∈ IN .

Then, pre- and post-multiplying both sides of inequality (11)
by block-diagonal {P−1

i , J−1
i , I , P−1

i , I } and letting
P−1
i = Xi , Hi P

−1
i = Mi , J−1

i = Si , it follows that
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Xi

−∑N
r=1, r �=i βir Xi

MT
i 0 Xi ÃT

i Xi F̃T
i Xi Xi Xi

∗ −2Si 0
−Si (B̃i
+GEci )

T −Si FT
2i 0 0 0

∗ ∗ −I ẼT
i 0 0 0 0

∗ ∗ ∗ −Xi

+λi T̃i T̃ T
i

0 0 0 0

∗ ∗ ∗ ∗ −λi I 0 0 0
∗ ∗ ∗ ∗ ∗ −β−1

i1 Xi 0 0

∗ ∗ ∗ ∗ ∗ ∗ . . . 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −β−1

i N XN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (22)

By using a similar method as in Zhang et al. (2011), the
condition (b) is guaranteed by

Pi −
N∑

r=1, r �=i

δir (Pr − Pi ) − β(K j
i − H j

i )T(K j
i − H j

i ) ≥ 0, (23)

where K j
i , H j

i are the jth row ofmatrices Ki and Hi , respec-
tively, and δir > 0.

Then from Schur’s complements, (23) is equivalent to

[
Pi − ∑N

r=1, r �=i δir (Pr − Pi ) (K j
i − H j

i )T

∗ μ

]
≥ 0, (24)

where μ = β−1.

Thus, pre- and post-multiplying both sides of inequality (24)
by block-diagonal {P−1

i , I } , we also have

⎡
⎢⎢⎢⎢⎢⎢⎣

Xi + ∑N
r=1, r �=i δir Xi Xi K

jT
i − M jT

i Xi Xi Xi

∗ μ 0 0 0
∗ ∗ δ−1

i1 X1 0 0

∗ ∗ ∗ . . . 0
∗ ∗ ∗ ∗ δ−1

i N XN

⎤
⎥⎥⎥⎥⎥⎥⎦

≥ 0, (25)

where M j
i denotes the jth row of Mi .

As a result, the optimization problem (21) can be formu-
lated as

inf
Xi , Mi , Si , βir , δir

μ

s.t. (a) inequality (22), ∀i ∈ IN , (26)

(b) inequality (25), ∀i ∈ IN , ∀ j ∈ Qm .

4 L2-Gain Analysis

The L2-gain which can measure the disturbance rejection
capability is one of the important performance indexes for
control systems. However, due to the presence of actuator
saturation, the disturbance rejection capability of the sys-
tem with actuator saturation is measured by means of the
restricted L2-gain over a set of tolerable disturbances. Thus,
we study the restricted L2-gain problem for system (9) via
the multiple Lyapunov function method in this section. Sim-
ilarly, we suppose that the anti-windup compensation gains
Eci are given beforehand.

Theorem 2 Consider switched systems (9). For given posi-
tive scalar β ∈ (0, β∗] and constant γ , suppose there exist
positive definite matrices Pi , matrices Hi , and diagonal pos-
itive definite matrices Ji and a set of scalars βir ≥ 0 such
that
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⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−Pi + ∑N
r=1, r �=i βir (Pr − Pi ) HT

i Ji 0 ÃT
i Pi F̃T

i C̃T
i2

∗ −2Ji 0 −(B̃i + GEci )
T
Pi −FT

2i 0
∗ ∗ −I ẼT

i Pi 0 0
∗ ∗ ∗ −Pi + λi Pi T̃i T̃ T

i Pi 0 0
∗ ∗ ∗ ∗ −λi I 0
∗ ∗ ∗ ∗ ∗ −γ 2 I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

∀i ∈ IN ,

(27)

and


(Pi , β) ∩ �i ⊂ L(Ki , Hi ), ∀i ∈ IN . (28)

Then, under the switching law

σ = argmin
{
ζTPiζ, i ∈ IN

}
, (29)

the restricted L2-gain from w to z over W 2
β is less than γ .

Proof Using the similarmethod as for provingTheorem1,we
choose the same the multiple Lyapunov function candidate
for system (10) as

V (ζ(k)) = Vσ(k)(ζ(k)) = ζT(k)Pσ(k)ζ(k). (30)

We still split the proof into two parts.
Case 1 σ(k+1) = σ(k) = i , for ∀ζ(k) ∈ 
(Pi , β)∩�i ⊂
L(Ki , Hi ). Then, computing the variation of V (ζ(k)) along
the trajectory of the switched system (9), we have

�V (ζ(k)) = ζT(k + 1)Piζ(k + 1) − ζT(k)Piζ(k)

= [( Ãi + T̃i�(k)F̃i )ζ(k) − (B̃i + GEci

+T̃i�(k)F2i )ψ(Kiζ(k)) + Ẽiw(k)]T
×Pi [( Ãi + T̃i�(k)F̃i )ζ(k) − (B̃i + GEci

+T̃i�(k)F2i )ψ(Kiζ(k))

+Ẽiw(k)] − ζT(k)Piζ(k).

Then, in view of Lemma 1 and Condition (29), it follows
that

�V (ζ(k)) ≤ [( Ãi + T̃i�(k)F̃i )ζ(k) − (B̃i + GEci

+T̃i�(k)F2i )ψ(Ki ζ(k)) + Ẽiw(k)]T
×Pi [( Ãi + T̃i�(k)F̃i )ζ(k) − (B̃i + GEci

+T̃i�(k)F2i )ψ(Ki ζ(k)) + Ẽiw(k)] − ζT(k)Pi ζ(k)

−2ψT(Ki ζ )Ji [ψ(Ki ζ ) − Hi ζ ].

Case 2 σ(k) = i, σ (k + 1) = r and i �= r , for ∀ζ(k) ∈

(Pi , β) ∩ �i ⊂ L(Ki , Hi ). Then applying the switching
law (30), we obtain

�V (ζ(k)) = ζT(k + 1)Prζ(k + 1) − ζT(k)Piζ(k)

≤ ζT(k + 1)Piζ(k + 1) − ζT(k)Piζ(k).

From Cases 1 and 2, we have

�V (ζ(k)) ≤ [( Ãi + T̃i�(k)F̃i )ζ(k) − (B̃i + GEci

+T̃i�(k)F2i )ψ(Ki ζ(k)) + Ẽiw(k)]T
×Pi [( Ãi + T̃i�(k)F̃i )ζ(k) − (B̃i + GEci

+T̃i�(k)F2i )ψ(Ki ζ(k)) + Ẽiw(k)] − ζT(k)Pi ζ(k)

−2ψT(Ki ζ )Ji [ψ(Ki ζ ) − Hi ζ ].

Then, in view of Schur’s complements, (27) is equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

( Ãi + T̃i�(k)F̃i )T

×Pi ( Ãi + T̃i�(k)F̃i )
−Pi + γ −2C̃T

i2C̃i2

+∑N
r=1, r �=i βir (Pr − Pi )

−( Ãi + T̃i�(k)F̃i )T

×Pi (B̃i + GEci

+T̃i�(k)F2i ) + HT
i Ji

( Ãi + T̃i�(k)F̃i )T

×Pi Ẽi

∗
(B̃i + GEci + T̃i�(k)F2i )T

×Pi (B̃i + GEci

+T̃i�(k)F2i ) − 2Ji

−(B̃i + GEci

+T̃i�(k)F2i )TPi Ẽi

∗ ∗ ẼT
i Pi Ẽi − I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (31)
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Multiplying (31) from the left by [ζT ψT wT] and from the
right by [ζT ψT wT]T, we obtain

�V (k) = V (k + 1) − V (k) < wT(k)w(k) − γ −2zT(k)z(k)

−
N∑

r=1, r �=i

βir ζ
T(k)(Pr − Pi )ζ(k). (32)

Again from the switching law (30), we have

N∑
r=1, r �=i

βirζ
T(k)(Pr − Pi )ζ(k) ≥ 0,

which implies that

�V (k) = V (k+1)−V (k) < wT(k)w(k)−γ −2zT(k)z(k).

(33)

Then, considering V (k) as the overall Lyapunov function of
system (9), we obtain

�V (k) = V (k + 1) − V (k) < wT(k)w(k) − γ −2zT(k)z(k),

∀ζ(k) ∈ ∪N
i=1(
(Pi , β) ∩ �i ). (34)

Therefore,

∞∑
k=0

�V (k) <

∞∑
k=0

wT(k)w(k) − γ −2
∞∑
k=0

zT(k)z(k). (35)

Then,

V (∞) < V (0)+
∞∑
k=0

wT(k)w(k)−γ −2
∞∑
k=0

zT(k)z(k). (36)

Due to V (0) = 0 and V (∞) ≥ 0, we obtain

∞∑
k=0

zT(k)z(k) < γ 2
∞∑
k=0

wT(k)w(k), (37)

which implies that system (9) has its restricted L2-gain from
w to z over W 2

β less than γ . Thus, the proof is complete. 
�

In order to minimize the upper bound of the restricted L2-
gain of system (9), the optimization problem can be solved
for given β ∈ (0, β∗] as follows:

inf
Pi , Hi , Ji ,;βir

γ 2

s.t. (a) inequality (27), ∀i ∈ IN , (38)

(b) 
(Pi , β) ∩ �i ⊂ L(Ki , Hi ), ∀i ∈ IN .

Applying a similar method as used in changing (21) into
(26), we can convert the optimization problem (38) into a
constraints optimization problem. Therefore, constraint (a)
in (38) is equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Xi

−∑N
r=1, r �=i βir Xi

MT
i 0 Xi ÃT

i Xi F̃T
i Xi C̃T

i2 Xi Xi Xi

∗ −2Si 0
−Si (B̃i

+GEci )
T −Si FT

2i 0 0 0 0

∗ ∗ −I ẼT
i 0 0 0 0 0

∗ ∗ ∗ −Xi

+λi T̃i T̃ T
i

0 0 0 0 0

∗ ∗ ∗ ∗ −λi I 0 0 0 0
∗ ∗ ∗ ∗ ∗ −θ I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −β−1

i1 X1 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ . . . 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −β−1

i N XN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0, (39)

where θ = γ 2 and constraint (b) in (38) is guaranteed by

⎡
⎢⎢⎢⎢⎢⎢⎣

Xi + ∑N
r=1, r �=i δir Xi Xi K

jT
i − M jT

i Xi Xi Xi

∗ μ 0 0 0
∗ ∗ δ−1

i1 X1 0 0

∗ ∗ ∗ . . . 0
∗ ∗ ∗ ∗ δ−1

i N XN

⎤
⎥⎥⎥⎥⎥⎥⎦

≥ 0.

(40)

Then, the optimization problem (38) can be formulated as

inf
Xi , Mi , Si , βir , δir

θ

s.t. (a) inequality (39), ∀i ∈ IN , (41)

(b) inequality (40), ∀i ∈ IN , ∀ j ∈ Qm .
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5 Anti-windup Synthesis

In fact, anti-windup compensation gains can be designed in
order to further improve the closed-loop system (9) perfor-
mance. Thus, the optimum solutions in Sect. 3 and 4 can be
obtained by anti-windup compensation gains design.

Let Ni = Eci Si . Then, (22) and (39) are, respectively,
equivalent to

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Xi

−∑N
r=1, r �=i βir Xi

MT
i 0 Xi ÃT

i Xi F̃T
i Xi Xi Xi

∗ −2Si 0
−Si B̃T

i−NT
i G

T −Si FT
2i 0 0 0

∗ ∗ −I ẼT
i 0 0 0 0

∗ ∗ ∗ −Xi

+λi T̃i T̃ T
i

0 0 0 0

∗ ∗ ∗ ∗ −λi I 0 0 0
∗ ∗ ∗ ∗ ∗ −β−1

i1 Xi 0 0

∗ ∗ ∗ ∗ ∗ ∗ . . . 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −β−1

i N XN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0 (42)

and

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Xi

−∑N
r=1, r �=i βir Xi

MT
i 0 Xi ÃT

i Xi F̃T
i Xi C̃T

i2 Xi Xi Xi

∗ −2Si 0
−Si B̃T

i−NT
i G

T −Si FT
2i 0 0 0 0

∗ ∗ −I ẼT
i 0 0 0 0 0

∗ ∗ ∗ −Xi

+λi T̃i T̃ T
i

0 0 0 0 0

∗ ∗ ∗ ∗ −λi I 0 0 0 0
∗ ∗ ∗ ∗ ∗ −θ I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −β−1

i1 X1 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ . . . 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −β−1

i N XN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0. (43)

Therefore, the optimization problemwhich aims to obtain
the largest disturbance tolerance level β∗ is formalized as
follows:

inf
Xi , Mi , Ni , Si , βir , δir

μ

s.t. (a) inequality (42), ∀i ∈ IN , (44)

(b) inequality (25), ∀i ∈ IN , ∀ j ∈ Qm,

and then, when anyβ ∈ (0, β∗] is given, theminimumupper
bound of the restricted L2-gain will be obtained by solving
the following optimization problem,

inf
Xi , Mi , Ni , Si , βir , δir

θ

s.t. (a) inequality (43), ∀i ∈ IN , (45)

(b) inequality (40), ∀i ∈ IN , ∀ j ∈ Qm .

When these optimization problems (44) and (45) are
solved, we can compute the anti-windup compensation gains
Eci = Ni S

−1
i .

6 An Illustrative Example

In order to illustrate the effectiveness of the proposedmethod,
we give the following example in the section.

x(k + 1) = (Ai + �Ai )x(k) + (Bi + �Bi )

sat(vc(k)) + Eiw(k),

y(k) = Ci1x(k), (46)

z(k) = Ci2x(k),
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and the dynamic output feedback controllers with the anti-
windup terms are given as

xc(k + 1) = Aci xc(k) + BciCi1x(k) + Eci (sat(vc(k)) − vc(k)),

vc(k) = Cci xc(k) + DciCi x(k), (47)

where σ(k) ∈ I2 = {1, 2},

A1 =
[
1.25 0
0 0

]
, A2 =

[
0.339 0
0 1.487

]
, B1 =

[
0

0.75

]
,

B2 =
[

0
−1.3

]
, E1 =

[
0.3 0.02
0.44 0.04

]
, E2 =

[
0.6 0.35
0.55 0.1

]
,

C11 =
[
0.345
0.69

]T
, C21 =

[
0.17
−0.3

]T
,C12 =

[
0.058
0.030

]T
,

C22 =
[ −0.019

0.017

]T
, Ac1 =

[
0.1133 0
0.0138 −0.1143

]
,

Ac2 =
[ −0.0515 0

0.0043 −0.0309

]
, Bc1 =

[ −0.0209
−0.0904

]
,

Bc2 =
[ −0.0525

0.0286

]
,Cc1 =

[
2.3191

−0.4768

]T
, Cc2 =

[ −2.9468
−1.5688

]T
,

Dc1 = −0.5437, Dc2 = −1.5199.

x(0) =
[ −2

1

]
, xc(0) =

[
1
1

]
.

The uncertain term [�Ai , �Bi ] = Ti�(k)[F1i , F2i ] with

T1 = T2 =
[
0.1
0.1

]
, F11 = F12 =

[
0.1
0.1

]T
, F21 = 0.1,

F22 = 0.2, �(k) = sin(k).

Firstly, we design the set of anti-windup compensation gains
by using the proposed method in Sect. 5 such that the
capability of disturbance tolerance of systems (46)–(47)
is maximized via the multiple Lyapunov function method.
Thus, solving the optimization problem (44), we obtain the
optimal solutions as follows:

μ∗ = 0.0546, β∗ = μ∗−1 = 18.3150, S1 = 95.2784,

S2 = 52.1235,

X1 =

⎡
⎢⎢⎣
35.4219 −4.3051 −3.4539 −5.6234

∗ 91.2354 −5.2536 2.2782
∗ ∗ 8.5237 0.0857
∗ ∗ ∗ 32.5473

⎤
⎥⎥⎦ ,

X2 =

⎡
⎢⎢⎣
38.6719 −3.9653 −3.1277 −4.9839

∗ 89.6518 −6.0253 1.8567
∗ ∗ 9.3615 0.0975
∗ ∗ ∗ 42.3566

⎤
⎥⎥⎦ ,

N1 =
[−6.8532

3.9136

]
, N2 =

[
6.8735

−1.7584

]
,

Ec1 = N1S
−1
1 =

[−0.0719
0.0411

]
, Ec2 = N2S

−1
2 =

[
0.1319

−0.0337

]
.
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Fig. 1 Input signal of systems (46)–(47)

0 5 10 15 20
−2

−1.5

−1

−0.5

0

0.5

1

k

x(
k)

x
1

x
2

Fig. 2 State response of systems (46)–(47)

The input signal is shown in Fig. 1. The state response
and the controller state response are shown in Figs. 2 and 3,
respectively.

In addition, if we let Ec1 = Ec2 = 0, the obtained opti-
mal solution is β∗ = 2.8937, which implies the disturbance
tolerance capacity of the system expanded under the effect
of the anti-windup compensators.

Finally, for any given β ∈ (0, β∗], we can obtain the min-
imum upper bound of the restricted L2-gain of the switched
systems (46)–(47) by solving optimization problem (45).
Figure 4 shows the relation of the restricted L2-gain γ and
different values β ∈ (0, β∗] of the corresponding system.

On the other hand, we apply the method in Benzaouiaa
et al. (2010) to the considered system and find that all the
optimization problems have no solutions, which is because
the problem of disturbance tolerance/rejection is required to
be solvable for every subsystem in Benzaouiaa et al. (2010).
However, it is easy to verify that in this example, the problem
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Fig. 3 Controller state response of systems (46)–(47)
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Fig. 4 Restricted L2-gain of the switched systems (46)–(47) for any
β ∈ (0, β∗]

of disturbance tolerance/rejection for each subsystem is not
solvable.

7 Conclusions

The problem of L2-gain analysis and anti-windup design
has been investigated for a class of discrete-time uncer-
tain switched systems subject to actuator saturation. We
derive some sufficient conditions of disturbance tolerance
and restricted L2-gain by using the multiple Lyapunov func-
tionmethod. Furthermore, we propose amethod of designing
the anti-windup compensators of the considered system such
that the disturbance tolerance capacity is maximized and the
upper bound of the restricted L2-gain over the set of tolerable
disturbances is minimized, respectively.
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