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Abstract
In this study, a new parameter estimation method based on coupled least squares method for recursive estimation of time-
varying parameters in multivariable systems is presented. The bi-loop matrix forgetting factor-based coupled recursive least
squares method is employed for estimation of time-varying parameters in which the forgetting factor for each parameter is
adjusted according to its variance. This means that the forgetting factors of slow-varying and fast-varying parameters are
calculated according to their variances, automatically. The simulation results demonstrate the advantage of the proposed
method for estimation of parameters with different variation rates (including slow-varying or fast-varying parameters) in
comparison with ordinary coupled least squares method.

Keywords System identification · Recursive least squares algorithm · Coupled least squares algorithm · Multivariable
systems · Time-varying parameters · Matrix forgetting factor

1 Introduction

System identification as a useful tool for describing real
plants with mathematical models has been studied in the lit-
erature (Åström and Eykhoff 1971; Ljung 2010). Parameter
estimation is the fundamental part of the parametric iden-
tification approaches in which the unknown parameters in
the model structure should be estimated. Closed loop system
identification necessitates employing recursive parameter
estimation methods (Ljung and Gunnarsson 1990). More-
over, recursive system identification is inevitable when some
special model structures are employed (Astrom and Wit-
tenmark 1995). Recursive least squares (RLS) algorithm
(Astrom and Wittenmark 1995), the projection algorithm
(Feng et al. 2013), the stochastic gradient (SG) method
(Ding andChen 2007;Ding 2010) and recursive kernel-based
methods (Romeres et al. 2016) are some of the well-known
recursive parameter estimation methods. Among them, the
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RLS algorithm ismore common due to its faster convergence
rate.

To apply theRLS algorithm for estimation of time-varying
parameters, a forgetting factor RLS (FFRLS) algorithm has
been employed. The forgetting factor value is usually con-
sidered between 0 and 1. When this parameter is close to
one, the RLS algorithm shows good stability, but its track-
ing capability is reduced. In this case, the constant unknown
parameters are estimated, accurately. However, to estimate
the fast-varying parameters, the forgetting factor should be
kept far from one that may affect the stability of the algo-
rithm. To overcome this problem, variable forgetting factor
has been utilized. Gauss Newton (Song et al. 2000) and
gradient-based (So et al. 2003) variable forgetting factors
have been employed in this area. Paleologu et al. (2008)
presented a variable forgetting factor RLS algorithm robust
against different types of system noise variations. Yazdi et al.
(2009) proposed a dynamic forgetting factor for RLS algo-
rithm in which the forgetting factor was changed based on
the gradient of the inverse correlation matrix.

The main problem in the estimation of the time-varying
parameters in dynamical systems is that different parameters
may have different variation rates. This may cause problems
in adjusting the forgetting factor in RLS algorithm. To over-
come this drawback, several methods have been proposed
in the literature. One of the famous methods proposed in

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40313-018-0370-2&domain=pdf


Journal of Control, Automation and Electrical Systems (2018) 29:136–152 137

this area is the matrix forgetting factor RLS (MRLS) algo-
rithm in which different forgetting factors have been utilized
for different parameters (Poznyak 1999; Poznyak and Juarez
1999). Dong et al. (2016) employed dual forgetting factors
to improve the convergence rate in an output-error model
identification. Li et al. (2014) extracted the optimal value for
matrix forgetting factor in RLS algorithm. Fraccaroli et al.
(2015) employed multiple forgetting factors in RLS algo-
rithm for tracking time-varying parameters with different
variation rates. For tracking fast-varying parameters, sev-
eral improvements in RLS algorithm have been presented.
For example, Yu and Shih (2006) proposed a Bi-loop RLS
algorithm that could increase the tracking capabilities of the
FFRLS algorithm. Zheng and Lin (2003) incorporated the
effect of the local and global trend variations of the estimated
parameters in the RLS algorithm to decrease the tracking
error of fast-varying parameters.

On the other hand, identification of multi-input multi-
output (MIMO) plants has been considered in the literature
(Rajbman and Sinha 1977; Garcia et al. 2014). Hierarchical
identification is one of the common approaches for parameter
estimation in multivariable systems. In the hierarchical iden-
tification, the system is decomposed into smaller dimension
subsystems and the parameters of each of the correspond-
ing subsystems are estimated (Ding and Chen 2005; Ding
2014). The hierarchical identification principle has been
employed to replace the noise terms in the information vector
with the estimated residuals in a multivariable autoregres-
sive moving average (ARMA) model structure (Bao et al.
2011). Li et al. (2014) employed the maximum-likelihood
RLS algorithm to estimate the parameters of the subsys-
tems obtained from the hierarchical identification procedure.
Moreover, a hierarchical-based direct closed loop identifi-
cation method for multivariable plants in the presence of
the color noise has been presented (Jin et al. 2014). Apply-
ing the RLS algorithm to multivariable plants requires the
matrix inversion in each iteration. To avoid this computa-
tional effort, the coupling identification principle has been
employed to convert the parameter estimation problem in
a MIMO system to parameter estimation in some single-
input single-output (SISO) subsystems (Ding 2013). The
mentioned coupled least squares (CLS) algorithm has been
employed for bias compensation-based recursive parame-
ter estimation of a permanent magnet synchronous motor
(PMSM) (Shi et al. 2016).

In this paper, the CLS algorithm has been employed to
estimate time-varying parameters in multivariable systems.
To apply this algorithm, the matrix forgetting factor-based
recursive CLS (MCLS) algorithm is established. The forget-
ting factor for each parameter is determined based on its
variance. In other words, an explicit relation for the for-
getting factor of each parameter in terms of its variance is
proposed. This means that slowly varying parameters have

forgetting factors around one, while fast-varying parameters
have smaller forgetting factors. Therefore, constant and vari-
able parameters couldbe estimated, simultaneouslywith high
estimation accuracy. This algorithm then is combined with
bi-loop parameter estimation method proposed by Yu and
Shih (2006) to build bi-loop MCLS or BMCLS algorithm.
The proposed method estimates parameters with different
variation rates. For example, the algorithm estimates fast-
varying parameters like square signal. The parameters with
continuous changes like sinusoidal or exponential signals are
estimated as well as constant parameters, too. Simultaneous
estimation of these parameters for multivariable plants could
be considered as the main contribution of this paper. This
makes the CLS algorithm more applicable for estimation of
parameters of real multivariable plants with unknown vari-
ation rates. Numerical examples show the superiority of the
proposed algorithm compared with the ordinary CLS and Bi-
loop forgetting factor RLS (BFFCLS) algorithms, as well.

The organization of this paper is as follows. In Sect. 2,
the RLS and CLS algorithms are introduced. The matrix for-
getting factor RLS algorithm is illustrated in Sect. 3. The
proposedBMCLS algorithmwith variance-based adjustment
of the forgetting factors is given in Sect. 4. Simulation results
of the proposed algorithm are presented in Sect. 5. Finally,
Sect. 6 concludes the paper.

2 Recursive Least Squares-based Parameter
EstimationMethods

In this section, a brief review on the recursive least squares
method for SISO systems and its generalized version already
presented for MIMO systems by Ding (2013) are presented.
The mathematical details are given in the following subsec-
tions.

2.1 RLS Algorithm

The linear regression model for a multi-input multi-output
system withm outputs and n unknown parameters is defined
as (Astrom and Wittenmark 1995)

y(t) = �(t)ϑ + v(t) (1)

where y(t) = [y1(t), y2(t), ..., ym(t)]T ∈ Rm is the sys-
tem output vector, ϑ ∈ Rn is the unknown parameters
vector and �(t) = [φ1(t) . . . φm(t)]T ∈ Rm×n is the
regression matrix consists of the past input and output
data, φi (t) ∈ Rn, i = 1, . . . ,m are the regression vec-
tors for each output and v(t) = [v1(t) . . . vm(t)] T ∈
Rm is a Gaussian noise vector with zero mean. In this
section, the unknown parameters ϑ are considered con-
stant, temporarily. According to the recursive least squares
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Fig. 1 Block diagram of the CLS algorithm

method, the estimated parameters vector ϑ̂(t) in iteration t
could be obtained through the following recursive algorithm
(Astrom and Wittenmark 1995)

ϑ̂(t) = ϑ̂(t − 1) + K (t)[y(t) − �(t)ϑ̂(t − 1)]. (2)

K (t) = P(t − 1)�T(t)[Im + �(t)P(t − 1)�T(t)]−1. (3)

P(t) = [In − K (t)�(t)]P(t − 1), P(0) = p0 In (4)

where K (t) ∈ Rn×m is the gain matrix, P ∈ Rn is the
covariance matrix, In is the n × n identity matrix, and p0 is
a positive large number.

The expression Im+�(t)P(t−1)�T(t) for SISO systems
(m = 1) is a scalar number which could be easily inversed.
However, forMIMOsystems it is am×mmatrix. Thismeans
that applying RLS algorithm to MIMO systems requires to
inverse a m ×m matrix in each iteration. This leads to some
computational complexities. Ding (2013) proposed the CLS
algorithm to overcome this drawback.

Fig. 2 Flowchart of the BMCLS algorithm
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Fig. 3 Exponential parameter estimated with a FFCLS, b BFFCLS, c MCLS and d BMCLS algorithms in Example 1

2.2 CLS Algorithm

The relation (1) could be rewritten in the following modified
form

yi (t) = φT
i (t)ϑ + vi (t), i = 1, 2, ...,m. (5)

According to (5), the MIMO system could be decomposed
into m SISO subsystems in which the unknown parameters
could be estimated through any of them. According to the
CLS algorithm, all subsystems are utilized to improve the
accuracy of the parameter estimation. In other words, in
each iteration, m RLS estimators are employed through a
cascade configuration to estimate the unknown parameters.
Figure 1 shows the block diagram of the CLS algorithm. As
could be seen from Fig. 1, in each iteration, the estimated
parameters obtained from each estimator are considered as
the initial conditions for the next one. Finally, the estimated

vector obtained from the last estimator is considered as the
initial condition for the first estimator in the next iteration.

Thus, the CLS parameter estimation algorithm could be
described with the following relations (Ding 2013)

ϑ̂i (t) = ϑ̂i−1(t) + Ki (t)[yi (t) − φT
i (t)ϑ̂i−1(t)]. (6)

Ki (t) = Pi−1(t)φi (t)

1 + φT
i (t)Pi−1(t)φi (t)

. (7)

Pi (t) = [In − Ki (t)φ
T
i (t)]Pi−1(t), i = 2, 3, ...,m. (8)

and

ϑ̂1(t) = ϑ̂m(t − 1) + K1(t)[y1(t) − φT
1 (t)ϑ̂m(t − 1)]. (9)

K1(t) = Pm(t − 1)φ1(t)

1 + φT
1 (t)Pm(t − 1)φ1(t)

. (10)

P1(t) = [In − K1(t)φ
T
1 (t)]Pm(t − 1), Pm(0) = p0 In (11)
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Fig. 4 Square parameter estimated with a FFCLS, b BFFCLS, c MCLS and d BMCLS algorithms in Example 1

where ϑ̂i (t) ∈ Rn , Ki (t) ∈ Rn and Pi (t) ∈ Rn×n are the esti-
mated parameters, the gain vector and the covariance matrix
in the i − th subsystem in time t , respectively.

3 RLS Estimation of Time-Varying
Parameters

In this section, the forgetting factor RLS and Matrix forget-
ting factor RLS algorithms for estimation of time-varying
parameters in dynamical systems are illustrated.

3.1 FFRLS Algorithm

To apply the RLS algorithm for estimation of time-varying
parameters, the effect of the previous data should be con-
sidered in the estimation procedure. This could be achieved

by incorporating a forgetting factor parameter (0 < λ < 1)
in the estimation procedure. Choosing this parameter to one
decreases the tracking capability of the FFRLS algorithm and
increases its stability. The parameter adaptation relations in
accordance with the FFRLS algorithm are (Astrom and Wit-
tenmark 1995)

ϑ̂(t) = ϑ̂(t − 1) + K (t)[y(t) − �(t)ϑ̂(t − 1)]. (12)

K (t) = P(t − 1)�T(t)[λIm + �(t)P(t − 1)�T(t)]−1.

(13)

P(t) = 1

λ
[In − K (t)�(t)]P(t − 1), P(0) = p0 In . (14)

If the forgetting factor λ is considered as 1, the ordinary RLS
algorithm relations (2–4) will be obtained.
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Fig. 5 Sinusoidal parameter estimated with a FFCLS, b BFFCLS, c MCLS and d BMCLS algorithms in Example 1

3.2 MRLS Algorithm

In some real plants, the plant parameters could change with
timewith different rates. For example, the flight conditions of
a missile depend on the angle of the attack, the air speed, and
the altitude (Apkarian et al. 1995). The variation rates of these
three parameters could be different. In another example, in a
continuous stirred tank reactor (CSTR), the kinetic rates in
the reactor are complex functions of the process states (like
the temperature inside the reactor). The heat of reaction and
the global coefficient of the heat transfer are other uncertain
parameters in a CSTR plant (Bequette 2002). It is obvious
that the variation rates of these parameters are not the same. In
liquid level control of interacting spherical two-tank system,
the area of the spherical tanks changes with respect to change
in the flow (Kumar andMeenakshipriya 2012). The variation
rate of the area is faster than change in other plant parameters.

In these situations, a fixed forgetting factor for all parameters
could not be useful. In this case, various forgetting factors
for each of the parameters should be utilized. This could be
achieved by employing a diagonal matrix forgetting factor�
instead of a scalar forgetting factor in the FFRLS algorithm.
This leads to the following MRLS algorithm (Dong et al.
2016; Li et al. 2014)

ϑ̂(t) = ϑ̂(t − 1) + K (t)[y(t) − �(t)ϑ̂(t − 1)]. (15)

K (t) = P(t−1)�−1�T(t)[Im+�(t)P(t−1)�−1�T(t)]−1.

(16)

P(t) = [In − K (t)�(t)]P(t − 1)�−1 (17)

where � = diag(λ1, . . . , λn) and λi is the forgetting factor
for i − th parameter.
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Fig. 6 Constant parameters estimated with a FFCLS, b BFFCLS, c MCLS and d BMCLS algorithms in Example 1

4 CLS Algorithm for Estimation of
Time-Varying Parameters

In this section, the forgetting factor CLS (FFCLS) algo-
rithm is introduced for parameter estimation of time-varying
parameters in multivariable systems. Then, a
matrix forgetting factor-based CLS or MCLS algorithm is
presented for identification of time-varying parameters with
different variation rates. The variance of the parameters is
employed to determine their corresponding forgetting factor.

4.1 FFCLS Algorithm

Consider that in theCLSalgorithmpresented byDing (2013),
the information matrix is updated with a forgetting factor
parameter λ. According to Fig. 1, the last obtained informa-

tion matrix in time t − 1 is the P−1
m (t − 1) . Thus, according

to the forgetting factor concept, the first stage information
matrix in time t (P−1

1 (t)) should be updated according to
the prior information (P−1

m (t − 1)) and new information
(φ1(t)φT

1 (t)) as

P−1
1 (t) = λP−1

m (t − 1) + φ1(t)φ
T
1 (t). (18)

Recall the matrix inversion lemma (Skogestad and Postleth-
waite 2001)

(A + BC)−1 = A−1 − A−1B(I + CA−1B)−1CA−1 (19)

where A is an invertible matrix and B, C are two arbitrary
matrices. Now, according to (18) and (19), we have
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Fig. 7 Constant and exponential parameters estimated with the BMCLS algorithm for γ = 0.5, 1.5, 2.5 and ω0 = 0.005 in Example 1

P1(t) = [P−1
1 (t)]−1

= 1

λ
Pm(t − 1) − Pm(t − 1)φ1(t)φT

1 (t)Pm(t − 1)

λ[λ + φT
1 (t)Pm(t − 1)φ1(t)]

.

(20)

Now, consider that the gain vector in (20) is denoted by K1(t).
Or

K1(t) = Pm(t − 1)φ1(t)

λ + φT
1 (t)Pm(t − 1)φ1(t)

. (21)

Relations (20) and (21) yield

P1(t) = 1

λ
[In − K1(t)φ

T
1 (t)]Pm(t − 1). (22)

Therefore, in the FFCLS algorithm, relations (6–9)
will remain unchanged. However, relations (10) and (11)
should be replaced with relations (21) and (22),
respectively.
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Fig. 8 Sinusoidal and square parameters estimated with the BMCLS algorithm for γ = 0.5, 1.5, 2.5 and ω0 = 0.005 in Example 1

4.2 MCLS Algorithm

In the FFCLS algorithm, if the forgetting factor λ is replaced
with a forgetting factor matrix �, the MCLS algorithm is
obtained. To derive the MCLS algorithm relations, relation
(18) should be rewritten as

P−1
1 (t) = �P−1

m (t − 1) + φ1(t)φ
T
1 (t). (23)

Now, according to (19), relation (23) could be rewritten as

P1(t) = [P−1
1 (t)]−1 = Pm(t − 1)�−1

− Pm(t − 1)�−1φ1(t)φT
1 (t)Pm(t − 1)�−1

1 + φT
1 (t)Pm(t − 1)�−1φ1(t)

. (24)
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Fig. 9 Constant and exponential parameters estimated with the BMCLS algorithm for γ = 1.5, 4, 5 and ω0 = 0.03 in Example 1

Consider that

K1(t) = Pm(t − 1)�−1φ1(t)

1 + φT
1 (t)Pm(t − 1)�−1φ1(t)

. (25)

Now, relation (24) could be written as

P1(t) = [In − K1(t)φ
T
1 (t)]Pm(t − 1)�−1. (26)

This means that for the MCLS algorithm, relations (6–9)
could also be utilized while relations (25) and (26) should be
employed instead of relations (10) and (11), respectively.

4.3 Variance-based Forgetting Factor Calculation

In Sect. 4.2, the CLS algorithm proposed by Ding (2013)
is modified to the MCLS algorithm in which time-varying
parameters with different variation rates should be esti-
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Fig. 10 Sinusoidal and square parameters estimated with the BMCLS algorithm for γ = 1.5, 4, 5 and ω0 = 0.03 in Example 1

mated. In this section, a variance-based method for adjusting
the forgetting factor in each iteration is proposed. The
main idea is that the forgetting factor of each parameter
should be adjusted according to its variance. Slow-varying
or constant parameters should have forgetting factors 1
and fast-varying parameters should have forgetting factor
smaller than 1. This means that for simultaneous tracking
of slow-varying and fast-varying parameters, the elements

of the forgetting factor matrix should be appropriately
adjusted. In this paper, the matrix forgetting factor � is
considered as a diagonal matrix that its diagonal elements
(λi , i = 1, . . . , n) are calculated according to the vari-
ance of each parameter (σ 2

i , i = 1, . . . , n). Thus, we
have

λi = α + (1 − α)e−γ σ 2
i , i = 1, . . . , n (27)
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Table 1 The relative estimated
errors for different values of γ

and ω0

Relative estimated errors ω0 = 0.005 ω0 = 0.03

γ = 0.5 γ = 1.5 γ = 2.5 γ = 1.5 γ = 4 γ = 5

Exponential 0.000518 0.000193 0.00036 0.000318 0.00022 0.00024

Square 0.03778 0.02412 0.0286 0.21202 0.08272 0.07595

Sinusoidal 0.07983 0.04741 0.04756 0.1973 0.1219 0.13

Constant (ϑ̂4) 0.01811 0.00875 0.00963 0.0227 0.0118 0.0252

Constant (ϑ̂5) 0.04697 0.0186 0.0687 0.0345 0.0289 0.0763

Fig. 11 Exponential parameter estimated with a FFCLS, b BFFCLS, c MCLS and d BMCLS algorithms in Example 2

where 0 < α ≤ 1 is an adjustable parameter close to 1 and
γ is a positive adjustable parameter for scaling the variance
value. According to (27), the forgetting factor of fast-varying
parameters with large variance value is close to α while
the forgetting factor of slow-varying parameters (or constant
parameters) is close to 1.

Remark 1 Relation (27) shows that the forgetting factor of
each parameter changes according to its variance during the
estimation procedure. When the parameter does not change,

its variance is around zero. This means that its corresponding
forgetting factor is around 1 (independently of the value of
α). According to (27), the forgetting factor is in the range
[α, 1]. This means that minimum value of λi is α (for fast
variations of the estimated parameter). Thus, considering α

a bit smaller than 1 could be reasonable. This means that for
estimating parameters in real plants with fast-varying param-
eters the value of α could be decreased. On the other hand,
the parameter γ determines that how match the forgetting
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Fig. 12 Constant parameter estimated with a FFCLS, b BFFCLS, c MCLS and d BMCLS algorithms in Example 2

factor should be decreased when the variance of the esti-
mated parameter is increased. In Sect. 5, the effect of the
parameterγ on the estimation error will be investigated.

4.4 BMCLS Algorithm

To improve the performance of the FFRLS algorithm, a Bi-
loop FFRLS or BLFFRLS algorithm was proposed (Yu and
Shih 2006). In this algorithm, a nested loop was employed
in which the outputs of the FFRLS algorithm employed in
the outer loop were utilized as the initial parameters val-
ues of the inner loop. Resetting initial conditions during the
in-between time interval gives improvement in tracking time-
varying parameters. To track the fast-varying parameters, the
in-between recursive procedure should be executed M times.
In other words, the inner loop is employed for tracking fast-
varying parameters. The estimated parameters in the inner
loop are employed by the outer loop (FRLS loop). In this
paper, the MCLS algorithm is combined with the Bi-loop
algorithm to build the BMCLS algorithm. The flowchart of

the BMCLS algorithm is shown in Fig. 2. The final esti-
mated parameter obtained from the inner loop (ϑ̂in,1(M))
could be employed to improve the tracking abilities of the
MCLS algorithm (in the outer loop). This is the combination
of the BLFFRLS algorithm given by Yu and Shih (2006) and
the MCLS algorithm.

5 Simulation Results

In this section, the performance of the proposed parame-
ter estimation methods is investigated through a numerical
example.

Example 1 In this example, a two-input two-output system
with the following dynamics is considered

d(z)y(t) = Q(z)u(t) + v(t) (28)
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Fig. 13 Square parameter estimated with a FFCLS, b BFFCLS, c MCLS and d BMCLS algorithms in Example 2

where u(t) = [u1(t) u2(t)]T, y(t) = [y1(t) y2(t)]T and

v(t) = [v1(t) v2(t)]T are the system input, output and the
Gaussian noise, respectively. Moreover, d(z) and Q(z) are
defined as

d(z) = 1 + ϑ◦
1 (t)z−1, Q(z) =

[
ϑ◦
2 (t) ϑ◦

4
ϑ◦
3 (t) ϑ◦

5

]
z−1 (29)

where

ϑ◦
1 (t) = 1 − e−ω0t , t ≥ 0, ϑ◦

2 (t) =
{
1 sin(ω0t) < 0.5
2 Otherwise

,

ϑ◦
3 (t) = 1.5 + sin(ω0t), ϑ

◦
4 = 1, ϑ◦

5 = 0.425 (30)

ω0 = 0.005 is considered. System (28) could be described
with linear regression model (1) where

�(t) =
[−y1(t − 1) u1(t − 1) 0 u2(t − 1) 0

−y2(t − 1) 0 u1(t − 1) 0 u2(t − 1)

]
,

ϑ = [
ϑ1 ϑ2 ϑ3 ϑ4 ϑ5

]T (31)

For estimation of the unknown parameters, v1(t) and v2(t)
are considered as Gaussian noises with variance 0.16 and
0.25, respectively. For estimation of parameters with the
FFCLS algorithm, the fixed forgetting factorλ = 0.98 is con-
sidered. In the MCLS algorithm, α = 0.98 and γ = 1.5 are
considered. In theBMCLS algorithm,M = 10 is considered.
In all simulations, p0 = 106 I5, ϑ̂(0) = 0 are considered (I5
is the 5 × 5 identity matrix).

The estimated parameters for the FFCLS, BFFCLS,
MCLS and BMCLS algorithms are shown in Figs. 3, 4,
5 and 6. As could be seen from Fig. 3, the best tracking
of the exponential parameter is achieved with the BMCLS
algorithm. Figure 4 shows that the fastest tracking capabil-
ity for the square parameter is attained with the BMCLS
algorithm. Figure 5 shows that by using the BMCLS algo-
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Fig. 14 Sinusoidal parameter estimated with a FFCLS, b BFFCLS, c MCLS and d BMCLS algorithms in Example 2

rithm, the sinusoidal parameter is identified with smallest
error and distortion (comparing with other algorithms).
Moreover, as could be seen from Fig. 6, the constant param-
eters are better estimated comparing with the MCLS and
BMCLS algorithms. Finally, constant and variable parame-
ters (including slow-varying or fast-varying ones) could be
estimated through the BMCLS algorithm, simultaneously.

Now, to show the performance of the proposedmethod for
systemswith large number of outputs, the following example
is presented.

To verify the effect of the parameter γ , all the parameters
are estimated for three different values of γ (0.5, 1.5, 2.5).
The simulation results obtained from the BMCLS algorithm
are shown in Fig. 7 (for constant and exponential parame-
ters) and Fig. 8 (for sinusoidal and square parameters). It is
obvious that γ = 1.5 gives superior results.

Remark 2 According to (27), the appropriate value for γ

for slow-varying parameters should be considered smaller
than the corresponding one for fast-varying parameters. This

means that for greater values of ω0 in (30), a greater value
for γ should be selected. The estimated constant and expo-
nential parameters with different values of γ and ω0 = 0.03
are shown in Fig. 9 while the estimated square and sinu-
soidal parameters are shown in Fig. 10. As could be seen
form Figs. 9 and 10, γ = 4 leads to better results comparing
with other values of γ . Table 1 shows the relative estimated
errors (ε) for estimated parameters with different values of γ

and ω0. Consider that ε =
∥∥∥ϑ̂(t)−ϑ(t)

∥∥∥
2‖ϑ(t)‖2
where ϑ̂(t) and ϑ(t)

are the estimated and the true values, respectively. Table 1
shows that γ = 4 is a reasonable choice for ω0 = 0.03 (that
is greater than the corresponding value for ω0 = 0.005).

Example 2 Consider that in system (28) the input, output and

the Gaussian noise are defined as u(t) = [
u1(t) . . . u5(t)

]T
,

y(t) = [
y1(t) . . . y5(t)

]T
and v(t) = [

v1(t) . . . v5(t)
]T
,

respectively. Moreover, d(z) and Q(z) are changed as
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d(z) = 1+ϑ◦
1 (t)z−1, Q(z) =

⎡
⎢⎢⎢⎢⎣

ϑ◦
2 ϑ◦

3 0 0 0
0 0 ϑ◦

4 (t) ϑ◦
5 0

0 0 0 ϑ◦
6 (t) ϑ◦

7
ϑ◦
8 0 0 ϑ◦

9 0
0 ϑ◦

10 0 0 ϑ◦
11

⎤
⎥⎥⎥⎥⎦ z−1

(32)

where

ϑ◦
1 (t) = 1 − e−0.004t , t ≥ 0,

ϑ◦
2 = ϑ◦

3 = ϑ◦
5 = ϑ◦

7 = ϑ◦
8 = ϑ◦

9 = ϑ◦
10 = ϑ◦

11 = 1,

ϑ◦
4 (t) =

{
1 sin(0.006t) < 0.5
2 Otherwise

, ϑ◦
6 (t) = 1 + sin(0.003t)

(33)

Now, the linear regression model (1) for this example could
be written as

�(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−y1(t − 1) −y2(t − 1) −y3(t − 1) −y4(t − 1) −y5(t − 1)
u1(t − 1) 0 0 0 0
u2(t − 1) 0 0 0 0

0 u3(t − 1) 0 0 0
0 u4(t − 1) 0 0 0
0 0 u4(t − 1) 0 0
0 0 u5(t − 1) 0 0
0 0 0 u1(t − 1) 0
0 0 0 u4(t − 1) 0
0 0 0 0 u2(t − 1)
0 0 0 0 u5(t − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

,

ϑ = [
ϑ1 . . . ϑ11

]T
(34)

Gaussian noises with variance 0.16 and p0 = 106 I11,
ϑ̂(0) = 0(I11 is the 11×11 identitymatrix) are considered for
the simulations. In the FFCLS algorithm, the fixed forgetting
factor λ = 0.98 is selected. In the MCLS algorithm, α =
0.98, γ = 1.5 are considered. In the BMCLS algorithm,
M = 10 is selected.

The estimated parameters for the FFCLS, BFFCLS,
MCLS and BMCLS algorithms are given in Figs. 11, 12,
13 and 14. Figure 11 shows that the BFFCLS, MCLS and
BMCLS algorithms provide better performance for tracking
exponential parameter comparingwith theFFCLSalgorithm.
However, their tracking ability is approximately the same. As
could be seen from Fig. 12, the best tracking of the constant
parameter is obtained with the BMCLS algorithm (consider
that only one of the constant parameters is shown). Fig-
ures 13 and 14 show that the fastest tracking capability for
the square and the sinusoidal parameter is achieved with the
BMCLS algorithm. Thus, for simultaneous estimation of the
constant and time-varying parameters (including slow and

fast-varying ones), the BMCLS algorithm could be consid-
ered as a reasonable choice.

6 Conclusion

In this paper, some algorithms are introduced for estima-
tion of time-varying parameters in multivariable systems.
These algorithms employ the CLS algorithm (which has bet-
ter performance andhigher calculation speed compared to the
RLS). Incorporating the matrix forgetting factor in the CLS
algorithm gives the MCLS algorithm in which the forgetting
factor of each parameter is obtained in terms of its variance.
Combining this algorithm with the BLFFRLS algorithm
leads to the BMCLS algorithm that contains the advantages
of both of them. Simulation results with different kinds of
parameters (including constant, exponential, square and sinu-
soidal parameters) demonstrate that the BMCLS algorithm

estimates both slow-varying and fast-varying parameters for
multivariable systems.
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