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Lutein reverses hyperglycemia-mediated blockage
of Nrf2 translocation by modulating the activation of intracellular
protein kinases in retinal pigment epithelial (ARPE-19) cells
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Abstract
Diabetic retinopathy (DR) is a major cause of acquired blindness among working adults. The retinal pigment epithelium (RPE),
constitutes an outer blood-retinal barrier, is vastly affected in diabetic humans and animals. Lower levels of lutein in the serum and
retina of diabetic population, and beneficial effects of carotenoids supplementation in diabetic retinopathy patients created an interest
to examine the protective effect of lutein on hyperglycemia-mediated changes in oxidative stress and antioxidant defense system in
ARPE-19 cells. The WST-1 assay was performed to analyze the impact of glucose, and lutein on the viability of ARPE-19. The
intracellular oxidative stress was measured by a DCF (dichlorofluorescein) assay, mitochondrial membrane potential (MMP) was
monitored using a JC-10 MMP assay kit and GSH level was examined using GSH/GSSG ratio detection kit. The oxidative stress
markers, protein carbonyl and malondialdehyde were spectrophotometrically measured using 2,4-dinitrophenylhydrazine and 2-
thiobarbituric acid, respectively. The expression of endogenous antioxidant enzymes and regulatory proteins in ARPE-19 was
quantified by western blotting. The localization of Nrf2 protein was examined by immunofluorescent staining. The results show that
lutein (up to 1.0 μM) did not affect the viability of ARPE-19 grown in both normal and high-glucose conditions. Lutein treatment
blocked high glucose-mediated elevation of intracellular ROS, protein carbonyl and malondialdehyde content in ARPE-19 cells.
The decreased MMP and GSH levels observed in ARPE-19 grown under high-glucose condition were rescued by lutein treatment.
Further, lutein protected high glucose-mediated down-regulation of a redox-sensitive transcription factor, Nrf2, and antioxidant
enzymes, SOD2, HO-1, and catalase. This protective effect of lutein was linked with activated nuclear translocation of Nrf2, which
was associated with increased activation of regulatory proteins such as Erk and AKT. Our study indicates that improving the
concentration of lutein in the retina could protect RPE from diabetes-associated damage.
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Introduction

The Retinal Pigment Epithelium (RPE) is a tightly aligned
array of monolayered pigmented epithelial cells which form

the outer blood-retinal barrier (BRB). RPE is situated between
photoreceptor’s outer segments and Bruch’s membrane that
separates RPE from the fenestrated endothelium of
choriocapillaris. It has several vital functions in retina, which
include transportation of water, ions and metabolites (Hamann
2002; Sparrow et al. 2003), maintenance of photoreceptor
health (Young and Bok 1969), metabolism and recycling of
retinal (Bernstein et al. 1987), absorption of light and protec-
tion against photooxidation (Boulton and Dayhaw-Barker
2001), and secretion and synthesis of immunoregulatory mol-
ecules and growth factors (Sugasawa et al. 1994; Ishida et al.
2003). This ensures that the functional coordination between
RPE and neighboring retinal cells is essential for the integrity
of the retina. Therefore, it is plausible that any cellular or
metabolic disruption in RPE can cause retinal dysfunction,
which leads to loss of visual function. In diabetic retina,
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cellular and biochemical alterations in the RPE occur before
vision loss or before diabetic retinopathy (DR) is clinically
identified (Decanini et al. 2008; Xu and Le 2011). Also, recent
report highlights that early RPE dysfunction is concomitant
with hyperglycemia in mouse models of type 1 and type 2
diabetes (Desjardins et al. 2016).

Hyperglycemia is a well-known major cause of DR and
other microvascular complications associated with diabetes.
Thus, it is apparent that hyperglycemia-induced oxidative
stress in RPE plays a significant role in diabetic retinopathy
which in turn leads to subsequent development of vision im-
pairment. Under diabetic condition, retinal cells including
RPE cells experience increased oxidative stress due to
sustained hyperglycemia, which disrupts the normal cellular
functions leading to the development of retinopathy (Nita and
Grzybowski 2016). The elevated reactive oxygen species
(ROS) levels are considered as a potential contributor to in-
creased oxidative stress in RPE (Cai et al. 2000). The mito-
chondrial over-production of superoxide followed by activa-
tion of at least four crucial pathological changes such as in-
creased flux of the polyol pathway, PKC activation, increased
production of AGEs and over-activation of the hexosamine
pathway are proven to increase intracellular ROS production
in hyperglycemic retina (Kowluru and Mishra 2015). On the
other hand, diabetic retina experiences compromised antioxi-
dant defense system; as a result, the condition of imbalance
between intracellular ROS and antioxidants occurs, which
leads to domination of the state of oxidative stress.

RPE possesses an effective defense system against oxida-
tive damage, particularly rich in antioxidants such as vitamin
C, α-tocopherol, β-carotene, macular pigments, and antioxi-
dant enzymes. A previous study reported that endogenous
defense system against oxidative damage in RPE cells protects
well against damage to mitochondria and endoplasmic reticu-
lum (Lu et al. 2006). There are substantial evidence from
previous experimental studies indicate that Nrf2 (Nuclear
factor-erythroid 2-related factor-2) is a crucial stress-
response transcription factor which acts by triggering anti-
oxidant response element (ARE) bearing genes that are critical
for the intracellular redox homeostasis in many cell types
(Nguyen et al. 2003; Wang et al. 2007; Dieter 2015). Several
other studies have shown that this adaptive response by Nrf2
is significantly reduced in the later stage of diabetic mice as
well as human subjects (Siewert et al. 2013; Bai et al. 2013).
This emphasizes an important role of Nrf2 system as the
body’s natural defense against hyperglycemia-induced cell
damage. Thus, it is plausible that activation of Nrf2 signaling
pathway with small molecule Nrf2 activators in hyperglyce-
mic RPE could prevent the development of diabetic
retinopathy.

In the retina, lutein, zeaxanthin, and meso-zeaxanthin, so-
called macular pigments, have been found to show important
photoprotective and antioxidant activities (Whitehead et al.

2006). Epidemiological studies showed an inverse association
between the plasma levels of macular carotenoids and age-
related macular degeneration, and cataract (Coyne et al.
2005; Zhong and Kowluru 2011). A few recent in vivo studies
have reported that these macular carotenoids down-regulate
the expression of VEGF which is the major contributor of
vascular complication in the retina of diabetic mice
(Madsen-Bouterse and Kowluru 2008; Santos et al. 2014).
Recently, lutein and zeaxanthin were found to induce Nrf2-
mediated phase II enzymes in RPE cells cultured in DMEM/
F12 medium with recommended glucose level (Zou et al.
2014; Frede et al. 2017), which emphasize their protective
efficacy towards conditions like age-related macular degener-
ation (AMD). However, the degree of Nrf2 activation was
found to vary from one carotenoid to the other (Koushan
et al. 2013; Zou et al. 2014; Frede et al. 2017). We have set
an experimental protocol that aids the researchers to test any
drug molecule on hyperglycemia-mediated changes in redox
signaling in ARPE-19 cells (Shivarudrappa et al. 2019).
Despite numerous in vivo and in vitro studies, our understand-
ing of the mechanisms underlying the benefits of lutein
concerning hyperglycemia-induced oxidative stress in RPE
is still limited. In this context, this study aimed to investigate
whether lutein protects RPE cells from hyperglycemia-
mediated oxidative stress, which would, in turn, due to the
activation of Nrf2 signaling or not. We chose to use human
adult retinal pigment epithelial (ARPE-19) cell line as in vitro
model of RPE. ARPE-19 has been widely used as an alterna-
tive to primary cultures, which exhibit similar epithelial cell
morphology and express several genes specific for the RPE,
such as RPE65, CRALBP, and ZO-1 (Maminishkis et al.
2006; Kannan et al. 2006).

Materials and methods

Chemicals and reagents

Bovine serum albumin (BSA), 2′,7′-dichlorofluorescein
diacetate (DCFH-DA), mounting medium, 4′,6-diamidino-2-
phenylindole dihydrochloride (DAPI) and 2-thiobarbituric ac-
id (TBA) were purchased from Sigma-Aldrich Co., USA. The
mitochondrial membrane potential (MMP) assay kit and
GSH/GSSG ratio detection kit were purchased from Abcam
Inc., UK. The WST-1 reagent was procured from Roche Life
Science, USA. Syringe filters (Acrodisc) were purchased from
Pall Corporation Inc., USA, and the cell culture media and
supplements were from Life Technologies, USA. ARPE-19
cells were obtained from ATCC, USA. The DC protein assay
kit, polyvinylidene difluoride (PVDF) membrane, and
Clarity™Western ECL substrate solution were procured from
Bio-Rad Laboratories, USA. Primary antibodies to Nrf2, HO-
1, AKT, pAKT, Erk1/2, pErk1/2, p38, p-p38 and β-actin were
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purchased from Cell Signaling Technology Inc., USA, and
antibody to catalase was from Cloud-Clone Corp., USA.
The antibodies to SOD2 and lamin were procured from
Abcam Inc., UK. The secondary antibody, enzyme-
conjugated anti-rabbit IgG was purchased from Cell
Signaling Technology Inc., USA, and Alexa Fluor 594 goat
anti-rabbit IgG was procured from Thermofisher Scientific
Inc., USA. The carotenoid, lutein used in this study was iso-
lated and purified from Chenopodium album. Trichloroacetic
acid (TCA) and 2, 4-dinitrophenylhydrazine (DNPH) were
purchased from Sisco Research Laboratories Pvt. Ltd. India.
Skimmed milk powder was procured from Hi-Media
Laboratories Pvt. Ltd., India. All other reagents and chemicals
were of the analytical grade commercially available. In all
experiments, Milli-Q (Merck Millipore Corporation, USA)
water was used.

Preparation of lutein

The carotenoids were extracted from the lyophilized powder
of Chenopodium album using acetone as described in
Sowmya Shree et al. (2017). Briefly, the acetone extract was
subjected to saponification using methanolic-KOH. The
unsaponified fraction was phase-separated using hexane.
Then the carotenoid-rich hexane fraction was washed with
distilled water to remove the potassium salts. The resulted
extract was condensed under reduced pressure using rotary
flash evaporator (Heidolph, Germany). From the total extract,
lutein-rich fraction was separated by open column chromatog-
raphy, and was subjected to preparative HPLC for purification
of lutein. Lutein was identified based on the absorption spec-
trum of lutein peak measured using a photodiode array detec-
tor (SPD-M10A, Shimadzu, Japan) attached to the Shimadzu
HPLC system. Purified carotenoid (purity ≥95%) was stored
at −80 °C for further analysis.

Cell culture

ARPE-19, a human retinal pigment epithelial cell line was
cultured in DMEM/F12 medium (1:1 mixture of Dulbecco’s
modified Eagles medium and Ham’s F12 containing glucose
concentration of 17.5 mM) supplemented with 10% heat-
inactivated fetal bovine serum (FBS), penicillin (100 U/ml),
and streptomycin (100 μg/ml). Cells were cultured at 37 °C in
a humidified atmosphere with 5%CO2. The sub-culturing was
performed by trypsinizing the cells with 0.05% trypsin-EDTA
solution. For cell viability assay, lutein treatment was done
along with hyperglycemic condition for 24 h. For all other
experiments, the cells were pre-treated with lutein at noted
concentrations for 3 h and then the hyperglycemic condition
was established for 24 h to examine the protective effect of
lutein on hyperglycemia-mediated oxidative stress in ARPE-
19.

Cell viability and morphology

The viability of ARPE-19 was analyzed by the water-soluble
tetrazolium-1 (WST-1) assay. In brief, cells at a density of
5.0 × 104 cells/ml were seeded (100 μl/well) in a 96-well plate
for 18 h, and the effect of lutein treatment on viability of
ARPE-19 cultured in both normal and high-glucose condition
(25 mM) was analyzed after 24 h. To examine the impact of
hyperglycemia on the viability of ARPE-19, glucose at two
different concentrations (25 and 30 mM) were analyzed.
DMSO was used as a vehicle for lutein with the final level
of 0.05% (v/v) in the culture medium. After 24 h of treatment,
a tetrazolium salt, WST-1 (2-(4-Iodophenyl)-3-(4-nitrophe-
nyl)-5-(2,4-disulfophenyl)-2H-tetrazolium) reagent was
added (10 μl/well) to each well and incubated at 37 °C for
1 h. The cleavage of WST-1 to formazan by metabolically
active cells was quantified spectrophotometrically at 450 nm
using a multimode plate reader (Infinite-M200 PRO, Tecan,
Switzerland). The morphological changes in control and
lutein-treated ARPE-19 cells were observed under Phase-
contrast microscope (Model 1X73, Olympus Corporation,
Japan). The images captured were analyzed and compared
with respective control.

ROS assay

Intracellular ROS level was measured spectrofluorimetrically
by using 2′,7′-dichlorofluorescein diacetate (DCFH-DA).
Within the cells, DCFH-DA, a fluorogenic dye, reacts with
ROS, which results in the formation of a fluorescent product,
DCF that reflects the level of ROS. Briefly, ARPE-19 cells
seeded in a clear bottom 96-well black plate (Eppendorf Ltd.,
Germany) for overnight were pre-treated with lutein (0.5 μM
and 1 μM) for 3 h followed by high-glucose (25 mM) media
for 24 h. After the treatment, cells were subjected with 10 μM
DCFH-DA solution and incubated for 30 min. The fluores-
cence was measured at an excitation wavelength of 485 nm
and an emission wavelength of 530 nm using a multimode
plate reader (Infinite-M200 Pro, Tecan, Switzerland).
Finally, the cells were washed with PBS and examined under
an inverted fluorescent microscope (Model 1X73, Olympus
Corp., Japan).

Spectrophotometric determination of MDA-TBA

One of the predominant byproducts of lipid peroxidation is
malondialdehyde (MDA). The MDA content in ARPE-19
was measured spectrophotometrically according to the meth-
od described by Prabhakar et al. (2012). Briefly, 50 μL aliquot
of cell lysate from each experimental group was mixed with
200 μL of TBA-TCA reagent [0.375% thiobarbituric acid (w/
v) and 15% trichloroacetic acid (w/v)], and the volume was
made up to 500 μL with distilled water and incubated at 95 °C
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for 20 min. The reaction mixture was allowed to cool at room
temperature. The TBA–MDA complex was then extracted by
adding 500 μL of n-butanol. The pink-colored extract in n-
butanol was measured at 532 nm using a spectrophotometer
(Epoch-2, Biotek, US). The amount ofMDAwas expressed as
% of control of μmol MDA per mg wet weight of cell lysate.

Protein carbonyl assay

As described by Dalle-Donne et al. (2003), 150 μg of pelleted
protein from each experimental group was incubated with
150 μL of 10 mM DNPH (2,4-dinitrophenylhydrazine) at
room temperature under dark condition for an hour. The mix-
ture was vortexed every 10 min. After incubation, the solution
was precipitated using 10% TCA, and the protein pellet was
washed with ethanol: ethyl acetate at the ration of 1:1 ratio (v/
v) to remove any free DNPH. The resulting pellet was re-
suspended with 6.0 M guanidine hydrochloride and incubated
for 15 min at 37 °C. Protein carbonyl content was measured
spectrophotometrically (Epoch-2, Biotek, US) at 366 nm and
calculated using the molar extinction coefficient of 22,000
Mˉ1cm ˉ1. Protein carbonyl was expressed as % of control.

Mitochondrial membrane potential (MMP) assay

The MMP assay was performed as described in the manufac-
turer’s protocol of the JC-10 MMP assay kit. Briefly, ARPE-
19 cells (5 × 104 cells/ml) seeded in a 96-well clear bottom
black plate (Eppendorf Ltd., Germany) were pre-treated with
lutein (0.5 μM and 1 μM) for 3 h followed by high-glucose
media (25 mM) for 24 h. Following the incubation, JC-10 dye
solution (JC-10 and assay buffer A 1:100 v/v) was added
(50 μl/well) to the control and treated cells. The plate was kept
under dark condition for 30 min. Then, assay buffer B (50 μl/
well) was added, and the fluorescent intensity was measured
at 490/525 nm (Green) and 540/590 nm (Red) using a multi-
mode plate reader (Infinite-M200 Pro, Tecan, Switzerland).
The ratio of red/green fluorescent intensity was used to deter-
mine the MMP. To visualize the protective effect of lutein on
high glucose-mediated loss of MMP, the plate was analyzed
under inverted fluorescent microscope (Model 1X73,
O lympus Corp . , J apan ) . Ca rbony l cyan ide m-
chlorophenylhydrazone (CCCP) was used as a positive
control.

Total GSH assay

The GSH assay was performed by following the manufac-
turer’s protocol of the GSH/GSSG ratio detection assay kit.
Briefly, ARPE-19 cells (2.5 × 105 cells/ml) seeded in a 6-well
plate (Eppendorf Ltd., Germany) were treated with DMSO
(control) or lutein (1 μM) for 3 h followed by glucose treat-
ment (25 mM) for 24 h. Then, the cells were extracted using

lysis buffer, deproteinized with TCA, and neutralized using
sodium bicarbonate. Prepared samples with an equal volume
of reagents were loaded on to a 96-well black plate
(Eppendorf Ltd., Germany) along with standards as prescribed
in the manufacturer’s protocol. Fluorescent intensity was mea-
sured at an excitation wavelength of 490 nm and an emission
wavelength of 520 nm using a multimode plate reader
(Infinite-M200 Pro, Tecan, Switzerland). The levels of GSH
were detected using a standard curve, as mentioned in the
manufacturer’s manual.

Protein expression

Cellular proteins of control and treated cells were extracted by
using lysis buffer (20 mM Tris-buffered saline, 1% Triton-
X100, protease inhibitor cocktail, 50 mM sodium fluoride,
and 1 mM orthovanadate). The extract was centrifuged at
14000 rpm for 30 min at 4 °C and supernatant was collected.
Nuclear proteins were extracted using a standard method de-
scribed by Johnson et al. (2009). The concentration of protein
in the supernatant was quantified using a DC protein assay kit.
Protein concentration of 30 μg/lane was subjected to electro-
phoretic separation on 8% (Nrf2), 10% (catalase, p38, Erk and
AKT) and 12.5% (HO-1 and SOD2) SDS-polyacrylamide
gels. The protein bands were then transferred on to
polyvinylidene difluoride membranes and were blocked using
3% skimmed milk powder for 2 h. Next, the membranes were
probed with specific primary antibodies for 1 h and subse-
quently with secondary horseradish peroxidase-conjugated
anti-rabbit IgG antibody for 1 h. Finally, the bands were visu-
alized with the substrate, Clarity™ western ECL using a Bio-
Rad visualizer (Bio-Rad Laboratories, USA). The beta-actin
and lamin were used as a loading control for cytoplasmic and
nuclear protein, respectively.

Immunofluorescent staining

ARPE-19 cells were seeded on 8-chambered cell imaging
slide (Eppendorf Ltd., Germany) for 18 h. Cells were then
pre-treated with lutein for 3 h, followed by exposure to high-
glucose condition for 24 h. H2O2 treated for 24 h at a concen-
tration of 100 μM was used as positive control. After the
treatment, cells were washed with PBS and fixed with 2%
paraformaldehyde. The fixed cells were permeabilized using
0.1% triton X100 and then blocked with 3% BSA for 1 h at
4 °C. To examine the localization of Nrf2, cells were incubat-
ed with a monoclonal antibody against Nrf2 (1/200 dilution)
and with Alexa Fluor 594-labeled secondary goat anti-rabbit
IgG (1/2000). After washing the cells with PBS, the nuclei
were counter stained with DAPI. Finally, the slide was
mounted using mounting medium, and was subjected to mi-
croscopic observation. The images for Nrf2 and nucleus were
taken separately using a fluorescent microscope (Model
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1X73, Olympus Corporation, Japan) and were processed
using an Olympus Cell Sens Entry 1.16 software. The overall
experiment was done at 4 °C under dark condition.

Statistical analysis

Values are presented as means ± SD. Data were analyzed by
one-way (ANOVA) analysis of variance with the Tukey-
Kramer post-hoc test to identify significant differences
(p < 0.05).

Results

Effect of lutein on the viability and morphology
of ARPE-19

Lutein was found to be a major carotenoid in Chenopodium
album and was identified based on the retention time (Fig. 1a
and b) and specific absorption spectrum (Fig. 1c) on the
HPLC chromatogram as described in our previous paper
(Kavalappa et al. 2019). To examine the effect of purified
lutein on the viability of ARPE-19 cells grown in both stan-
dard and high-glucose media, the treated cells were incubated

for 24 h. Treatment with lutein at concentrations ranging from
0.1 to 1 μM neither inhibited the viability nor affected the
morphology of ARPE-19 cells grown in standard media
(Fig. 2a and b). But, lutein concentration at 2.5 μMwas found
to exert slightly reduced viability, though the reduction was
not significant (p > 0.05). The microscopic observation also
displayed cell shrinkage and reduced cell density in experi-
mental group treated with 2.5 μM of lutein. Increased glucose
concentrations (25 mM and 30 mM) did not show any signif-
icant effect on the viability of ARPE-19 (Fig. 2c). Thus,
25 mM was chosen to generate a hyperglycemic condition.
Also, the concentrations of lutein (0.5 and 1 μM) tested for
cell viability on ARPE-19 grown in high-glucose (25 mM)
media did not show any significant effect (Fig. 2d). Based
on these results, non-cytotoxic concentrations of lutein (0.5
and 1 μM) were used further to examine its protective effects
against hyperglycemia-mediated changes in oxidative and re-
dox status of ARPE-19 cells.

Lutein counteracts oxidative stress generated
by high-glucose

To determine the protective role of lutein against oxida-
tive stress caused by high-glucose condition in ARPE-19,
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Fig. 1 Isolation and identification
of lutein. a Carotenoids profile of
Chenopodium album. b HPLC
chromatogram of purified lutein
from the total carotenoid extract
of C. album. c UV-VIS-spectrum
of the respective peak of lutein
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we compared the intracellular reactive oxygen species
(ROS) levels and mitochondrial membrane potential
(MMP) of the high-glucose group with lutein pre-treated
group. As predicted, we found a raised fluorescent inten-
sity when the cells were subjected to high-glucose condi-
tion. The increase was found to be around 18% compared
to control (Fig. 3a). An increased green fluorescence ob-
served under fluorescent microscope further confirms this
elevated intracellular oxidative stress (Fig. 3b).
Interestingly, pre-treatment with lutein (1 μM) reversed
this high glucose-mediated elevation of ROS in ARPE-
19. Similarly, two significant markers of oxidative stress,
MDA and protein carbonyl levels were significantly in-
creased in hyperglycemic ARPE-19, whereas lutein pre-
treatment brought those levels down as close to that of
control (Fig. 3c and d). From these data, it is noticed that
lutein prevents high glucose-mediated oxidative stress in
ARPE-19.

High-glucose treatment also caused significant decrease in
MMP, with an observed reduction of 16%. Incubation of
ARPE-19 with high-glucose, but prior pre-treatment with lu-
tein at 1 μM for 3 h showed an increase in MMP (Fig. 4a). To
corroborate the data, fluorescent microscopic images of
ARPE-19 stained with JC-10 were analyzed. As shown in
merged images of Fig. 4b, control cells exhibited green cyto-
solic fluorescence with orange colored thread-like appearance
of mitochondria, whereas high glucose-treated cells showed
distinctly less red fluorescence, demonstrating mitochondria
with lesser MMP. Carotenoid treatment ameliorated this high
glucose-mediated loss of MMP, with an increased red fluores-
cent aggregates. The cells treated with CCCP (positive con-
trol) exhibited a complete loss of MMP with almost no red
fluorescence. Thus, it appears that excess glucose disrupts
MMP in ARPE-19, which may be due to elevated generation
of ROS, and lutein effectively protects this glucose-mediated
disruption.
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Protective role of lutein against high
glucose-mediated blockage of antioxidant markers

Since an impaired antioxidant defense is evident in dia-
betic and pre-diabetic condition alongside with elevated
oxidative stress (Siewert et al. 2013; Bai et al. 2013),
we next interested to study the effect of lutein on high
glucose-mediated changes of antioxidant markers in
ARPE-19 cells. When there is a threat to the cells due
to pro-oxidant state, antioxidant enzymes such as super-
oxide dismutase (SOD), catalase (CAT) and glutathione
peroxidase (GP) play a critical role in maintaining the
normal cellular homeostasis. In the current study, SOD2
(MnSOD) and catalase were down-regulated by glucose
treatment compared to control, whereas lutein pre-
treatment reversed this glucose-mediated suppression of
those antioxidant enzymes. The reduction in the expres-
sion of SOD2 and catalase upon glucose treatment was

22% and 32% respectively compared to control, which
was reversed by 39% and 32% respectively upon lutein
pre-treatment (Fig. 5a and b). Similarly, a long-known
stress response enzyme, heme oxygenase-1 (HO-1) was
repressed (39%) by glucose treatment, while lutein pre-
treatment ameliorated this effect (Fig. 5c). The intracellu-
lar concentration of GSH also followed a similar trend as
that of ant iox idant enzymes s tudied (Fig . 5d) .
Transcriptional regulators such as Nrf2 and nuclear factor
kappa-B (NF-kB) play pivotal roles in the events of cel-
lular defense against oxidative stress through activating
the genes mentioned above. The results indicate that hy-
perglycemic condition for 24 h suppresses the expression
of primary antioxidant enzymes that are necessary for the
cellular defense against glucose-mediated oxidative stress
in ARPE-19 cells, and lutein restores this glucose-
mediated effect, which might be through activation of
transcriptional regulators, Nrf2 or NF-kB.
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group. b The microscopic images
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posed to lutein (1 μM) for 3 h
followed by glucose (25 mM) for
24 h. MDA content was assessed
using Thiobarbituric Acid-
Reactive Substances (TBARS)
assay as described in materials
and methods. Values are mean ±
SD (n = 3); Bars with different
letter indicate significant differ-
ence (p < 0.05) between the
group. d The carbonyl content in
ARPE-19 cells treated with lutein
(1 μM) for 3 h followed by glu-
cose (25 mM) for 24 h was mea-
sured by spectrophotometric
DNPH assay as detailed in mate-
rials and methods. Values are
mean ± SD (n = 3); Bars with dif-
ferent letter indicate significant
difference (p < 0.05) between the
group
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Lutein induces translocation of Nrf2

Based on the above hypothesis, we evaluated the effect of
lutein on translocation of transcription factor, Nrf2 from the
cytosol to the nucleus in ARPE-19 grown under hyperglyce-
mic condition (Fig. 6). From Fig. 6a and b, it is evident that
lutein pre-treatment induced cytoplasmic and nuclear expres-
sion of Nrf2 in ARPE-19, which was found to hinder by hy-
perglycemia. To confirm this result, an immunofluorescence
assay was performed with a fluorescent-tagged (Alexa Fluor
594) secondary antibody. Our observations showed that Nrf2
is predominantly localized in the cytoplasm of hyperglycemic
cells, nevertheless lutein pre-treatment stimulated transloca-
tion of Nrf2 with an increased localization in the nucleus
(Fig. 6c). A widely known stress inducer, H2O2 used in this
study as positive control exhibited similar result as that of
hyperglycemic cells indicate that sustained oxidative stress
blocks Nrf2 activation, which is in accordance with our find-
ings that hyperglycemia increased the intracellular levels of

ROS in ARPE-19. From these data, it is demonstrated that
lutein pre-treatment alleviates hyperglycemia-mediated ob-
struction in the translocation of Nrf2 in ARPE-19.

Regulatory mechanism of lutein

The PI3K/AKT, and mitogen-activated protein kinases
(MAPKs) such as Erk1/2, JNK, and p38 have been shown
to regulate Nrf2 in different types of cells (Yu et al. 2000;
Varì et al. 2011; Filomeni et al. 2012). To determine whether
Nrf2 activation in hyperglycemic ARPE-19 cells by lutein is
associated with those regulators or not, we measured the acti-
vation of AKT, Erk and p-38 (Fig. 7). The results showed that
hyperglycemia suppressed the activation of both AKT (Fig.
7a) and Erk (Fig. 7b), whereas lutein pre-treatment rescued
this hyperglycemia-mediated suppression. In contrast, phos-
phorylated p-38 expression was increased under hyperglyce-
mic condition, which was again diminished by lutein pre-
treatment (Fig. 7c). Together our data indicate that lutein
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protects ARPE-19 cells from hyperglycemia-mediated oxida-
tive stress through activation of Nrf2 by regulating the expres-
sion of pAKT and pErk positively, and negatively the phos-
phorylation of p38.

Discussion

Even though biochemical changes related to several cellular
and molecular signaling pathways occur in the human RPE in
diabetic patients (Vinores et al. 2000; Decanini et al. 2008;
Wang et al. 2010), the impact of RPE dysfunction in diabetic
retinopathy is poorly defined. A vast number of studies
highlighted that diabetic retinopathy is majorly a microvascu-
lar (inner blood-retinal barrier) complication of diabetes
mellitus but, a few recent investigations identified the break-
down of outer blood-retinal barrier, RPE in diabetic subjects
and animal models (Johnson et al. 2009; Wang et al. 2010;
Samuels et al. 2014). Elevated levels of ROS and impaired
antioxidant defense found in the retina of diabetic animals and
human subjects indicate that there is a strong correlation be-
tween hyperglycemia-associated oxidative stress and RPE
dysfunction. In our previous study, we found a sustained

increase in ROS levels in ARPE-19 cells cultured under hy-
perglycemic condition from 24 h to till 96 h (Shivarudrappa
et al. 2019). We also found that a major component of antiox-
idant defense and regulator of endogenous antioxidant en-
zymes, Nrf2 is down-regulated in hyperglycemic ARPE-19.
Lutein is one of the macular carotenoids present predominant-
ly in the peripheral macula, which is known for its antioxidant,
anti-inflammatory, and anti-apoptotic properties (Thomas and
Harrison 2016). In general, presence of conjugated double-
bonds and hydroxy group make these carotenoids as potent
scavengers of singlet oxygen (1O2) and peroxyl radicals (Choe
and Min 2006). In addition to their role as a scavenger of
reactive oxygen species (ROS), carotenoids including lutein
act by making interaction with cellular signaling cascades,
such as NF-kB, MAPK, or Nrf2 (Shi and Zhou 2010; Min
et al. 2011). A recent dietary supplementation study reported
that carotenoids dietary supplementation [lutein (10 mg), ze-
axanthin (2 mg) and meso-zeaxanthin (10 mg)] improves the
visual function of type 2 diabetes patients (Moschos et al.
2017). In our current study, we demonstrate that lutein effec-
tively protects ARPE-19 from damage generated by hypergly-
cemia by activating Nrf2 through its regulators, suggesting the
preventive role of lutein against diabetic retinopathy.
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Reports highlight that serum concentration of lutein in nor-
mal subjects varies from 0.08–0.35 μg/ml and this level is
significantly reduced in patients with diabetic retinopathy
(Bone et al. 2003; Hu et al. 2011). However, supplementation
of lutein at 10 mg/day could achieve a maximum serum con-
centration of 1.4 μg/ml after 18 days in healthy subjects, and
by supplementation of lutein, the serum concentration in-
creases significantly in diabetic retinopathy patients (Hu
et al. 2011). Thus, it is essential to note that hyperglycemia
may prevent absorption of lutein, which subsequently reflects
its low levels in the retina of diabetic patients. Since caroten-
oids are not synthesized by humans, intake of lutein-rich foods

may improve the serum levels and accumulation in the retina.
In this study, lutein up to the concentration of 1 μM did not
show any cytotoxic effect both in normal and hyperglycemic
ARPE-19; instead, i t showed protect ion against
hyperglycemia-mediated oxidative stress. The concentration
of 1 μM lutein is equal to 0.568 μg/ml, which is physiologi-
cally achievable through intake of lutein-rich foods or
supplementation.

The two major events of cellular damage due to oxidative
stress in the diabetic retina are lipid peroxidation and oxida-
tion of glycated proteins (van Reyk et al. 2003). Our initial
findings on the functional role of lutein on hyperglycemia-
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mediated oxidative damage in ARPE-19 demonstrate that it
prevents hyperglycemia-mediated intracellular ROS genera-
tion, and reduces the levels of ROS-specific markers such as
protein carbonyl and malondialdehyde. We hypothesize that
conjugated double bonds in lutein and activation of antioxi-
dant defense system by Nrf2 could have involved in scaveng-
ing intracellular ROS, which in turn contributed to reduced
levels of the markers of oxidative damage. Oxidative stress
caused by ROS was reported to induce depolarization of mi-
tochondrial membrane potential (MMP) (Garg and Chang
2004). We also noticed a significant loss of MMP in hyper-
glycemic ARPE-19, and lutein brings back this loss. Further,
disrupted MMP observed with the addition of a relatively
stable and membrane permeable ROS, H2O2 indicate that hy-
perglycemic condition generated adequate ROS which is suf-
ficient to affect the MMP in ARPE-19. In earlier studies, lutein

showed its potency as a powerful antioxidant in ARPE-19
under different oxidative stress conditions. To demonstrate a
few, in one study, lutein suppressed ROS levels in photo-
stressed RPE-choroid (Kamoshita et al. 2016). Another study
observed that lutein at 5 and 10 μM concentrations reduce
H2O2-mediated elevation of ROS (Liu et al. 2017).

To determine whether or not lutein protects hyperglycemia-
mediated down-regulation of antioxidant defense enzymes,
we measured the expression levels of three major proteins,
SOD2, catalase and HO-1 in hyperglycemic ARPE-19 pre-
treated with lutein. In antioxidant defense process, as the first
line of defense, SOD catalyzes the dismutation of superoxide
(O2

• –) to hydrogen peroxide (H2O2), which consequently
converted into a water molecule and molecular oxygen by
the action of catalase. Another antioxidant enzyme in this line,
HO-1 is involved in the conversion of heme into bilirubin, a
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potent antioxidant (Ndisang et al. 2014). Interestingly, lutein
exhibited significant protection over hyperglycemia-mediated
down-regulation of SOD2, catalase, and HO-1. Recent studies
reported that lutein and zeaxanthin significantly up-regulated
mRNA and protein expression of HO-1 in ARPE-19 cells
(Zou et al. 2014; Frede et al. 2017). Further, increased levels
of GSH observed in lutein-treated ARPE-19 in this study
might be due to the activation of enzymes that catalyze GSH
synthesis such as GCLc, and GCLm. Carotenoids,
astaxanthin, zeaxanthin, and lutein were found to activate ex-
pression of GCLc and GCLm in different cells including
ARPE-19 (Li et al. 2013; Zou et al. 2014; Frede et al. 2017;
Nishimoto et al. 2017). These observations indicate that the
protection showed by lutein against hyperglycemia-mediated
oxidative stress in ARPE-19 is probably through the enhance-
ment of phase II antioxidant enzyme system.

Next, we underwent to decipher the potential mechanism
by which lutein protects ARPE-19 from hyperglycemia-
mediated oxidative stress. The Nrf2 signaling pathway plays
a vital role in regulating the transcription of several antioxi-
dant genes such as enzymes related to GSH synthesis, and
SOD, NQO1, HO-1 and catalase (Li et al. 2013). Studies
enunciate that Nrf2 is decreased in diabetic mice and in

patients with type 2 diabetes mellitus (T2DM) which contrib-
utes to increased oxidative stress. But, overexpression and
small molecule activation of Nrf2 prevents the onset of
T2DM and reduces oxidative stress, respectively (David
et al. 2017; Matzinger et al. 2018). As cellular levels of Nrf2
is critical in maintaining the redox status, it was reported that
the nuclear fractions of peripheral blood mononuclear cells
(PBMC) from pre-diabetic and diabetic patients contain di-
minished level of Nrf2 (Jiménez-Osorio et al. 2014). As ex-
pected, the expression of Nrf2 in both cytosolic and nuclear
fraction is decreased in hyperglycemic ARPE-19, and lutein
treatment successfully restored these changes. Therefore, we
assume that activation of Nrf2 pathway might be accounting
for the benefits of lutein against diabetic retinopathy. Further
to confirm this mechanism, we tested the localization of Nrf2
as it release from Keap1 in the cytoplasm and translocate into
the nucleus to activate transcription. The results indicate that
lutein promotes Nrf2 nuclear translocation, which was
blocked when the cells were grown only with high-glucose.
Previous studies reported that few carotenoids including lutein
activate Nrf2 in ARPE-19 cells under normal growth condi-
tion, suggesting its potency in the context of age-related mac-
ular degeneration (AMD) (Ben-Dor et al. 2005; Frede et al.
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through activating its upstream
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Erk1/2, and thereby upregulates
protective antioxidant enzymes in
hyperglycemic ARPE-19 cells
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2017). The present study for the first time demonstrates the
activation of Nrf2 signaling by lutein in hyperglycemic
ARPE-19, which mimic the condition of diabetic retinopathy.

Several studies have proved the involvement of the PI3K/
AKTand the MAP kinases pathways, including Erk, p38, and
JNK, in the regulation of Nrf2 (Yu et al. 2000; Li et al. 2013;
Zou et al. 2014). It was demonstrated that p38 negatively
regulates the induction of antioxidant response element
(ARE)-dependent phase II gene expression, but in contrast,
Erk and AKT regulate the expression of ARE-dependent en-
zymes (Goodwin 1980; Yu et al. 1999, 2000; Wang et al.
2008; Pitha-Rowe et al. 2009; Das et al. 2013) positively.
Consistent with the earlier studies, in the current study, phos-
phorylation of AKT and Erk1/2 was significantly blocked in
hyperglycemic ARPE-19 cells, whereas the phosphorylation
of p38 was promoted. These changes were retrieved when the
cells were pre-treated with lutein. In support of our study,
astaxanthin in a previous study showed a protective effect
against H2O2-mediated oxidative stress in ARPE-19 via up-
regulation of Nrf2 and its regulatory antioxidant enzymes
through activation of AKT (Li et al. 2013). Similarly, zeaxan-
thin in an earlier study exhibited increased Nrf2 expression in
ARPE-19 cells cultured in normal growth condition that was
associated with elevated phosphorylation of AKTand Erk1/2,
but the phosphorylation of p38 was unaffected (Zou et al.
2014). These data demonstrate that activation of Nrf2 in hy-
perglycemic ARPE-19 by lutein is through an upregulated
expression of its positive regulators, pAKT and pErk1/2, and
down-regulated expression of a negative regulator, phospho-
p38. Though lutein reverses hyperglycemia-mediated eleva-
tion of oxidative stress and associated dysregulation of Nrf2
and its intracellular signal transducers, the upstream signaling
molecule(s) from which the signal is transmitted needs to be
studied.

n conclusion, as illustrated in Fig. 8, lutein potently
activates Nrf2 nuclear translocation in hyperglycemic
ARPE-19 by activating the PI3K/AKT and Erk1/2 path-
ways, thereby protecting the cells from hyperglycemia-
mediated oxidative damage. An account with recent stud-
ies, the present study here specifies that lutein not only
activates Nrf2 signaling in conditions like age-related mac-
ular disorders but also in diabetic retinopathy. We consider
our study imparts an additional benefit to lutein for its
effects related to the treatment of diabetes-related retinal
disorders.
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