Pathology & Oncology Research (2020) 26:1385-1399
https://doi.org/10.1007/s12253-019-00685-2

REVIEW

Methods for Identifying Patients with Tropomyosin Receptor Kinase

(TRK) Fusion Cancer

Derek Wong" - Stephen Yip' - Poul H. Sorensen>*

®

Check for
updates

Received: 14 December 2018 / Accepted: 11 June 2019 /Published online: 29 June 2019

© Aranyi Lajos Foundation 2019

Abstract

NTRK gene fusions affecting the tropomyosin receptor kinase (TRK) protein family have been found to be oncogenic drivers in a
broad range of cancers. Small molecule inhibitors targeting TRK activity, such as the recently Food and Drug
Administration-approved agent larotrectinib (Vitrakvi®), have shown promising efficacy and safety data in the
treatment of patients with TRK fusion cancers. NTRK gene fusions can be detected using several different ap-
proaches, including fluorescent in situ hybridization, reverse transcription polymerase chain reaction, immunohisto-
chemistry, next-generation sequencing, and ribonucleic acid-based multiplexed assays. Identifying patients with can-
cers that harbor NTRK gene fusions will optimize treatment outcomes by providing targeted precision therapy.

Keywords NTRK gene fusions - TRK fusions - TRK inhibitors - Next-generation sequencing - NGS

Introduction
TRK Receptor Family and Signaling

The tropomyosin receptor kinase (TRK) family is a
group of three neurotrophic receptor tyrosine kinase
proteins (TRKA, TRKB, and TRKC) encoded by the
NTRKI1, NTRK2, and NTRK3 genes located on chromo-
somes 1g23.1, 9q21.33, and 15q25.3, respectively. These re-
ceptors are normally expressed in neuronal tissues and have
high affinity for and are activated by neurotrophins.
Activation of a TRK protein and subsequent signal transduc-
tion requires homo-dimerization of TRK membrane receptors
following ligand binding [1]. Developmentally, TRK proteins
are important for the differentiation and maturation of the
central and peripheral nervous system through activation of
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the phosphoinositide 3-kinase/protein kinase B (PI3K-AKT)
and mitogen-activated protein kinase (MAPK) signaling cas-
cades [2-5] (Fig. 1).

NTRK Gene Fusions

Gene fusions involving the TRK protein family typically in-
volve intra- or inter-chromosomal rearrangements of the 5’ end
of a fusion partner containing a dimerization/oligomerization
domain with the 3’ region of an NTRK gene encoding the tyro-
sine kinase domain. The resulting fusion gene leads to the
expression of a chimeric protein that lacks the TRK ligand-
binding domain but retains the tyrosine kinase domain. This
fusion protein harbors oncogenic and transforming potential
through overexpression and constitutive activation of the
TRK kinase domain due to the presence of a dimerization do-
main derived from the fusion partner [5-8] (Fig. 2a).
Historically, the first NTRK gene fusion was isolated from a
human colon carcinoma by classical deoxyribonucleic acid
(DNA) transformation assays [10]. The ETV6-NTRK3 gene
fusion is the most extensively studied NTRK gene fusion.
Recurrent NTRK gene fusions involving E7V6 and NTRK3
(Fig. 2b) were first identified in infantile (or congenital) fibro-
sarcoma, a malignant tumor of fibroblasts that occur in patients
aged 2 years or younger [11], and then shortly after in congen-
ital mesoblastic nephroma, the renal counterpart of infantile
fibrosarcoma [12, 13]. Since then, ETV6-NTRK3 fusions have

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s12253-019-00685-2&domain=pdf
mailto:psor@mail.ubc.ca

1386

D. Wong et al.

BDNF
7 \% ")
TRKA TRKB TRKC

PIP2 = il 5 :
PC) b e oaBl) —
‘H 1 P85
P110
IP3 . GRB2 \
DAG SOS P13K
IP3R v

(Ca® ) ¢— RAS AKT

D ¥ ( - ..

- (=)
falii =" o
- & PROLIFERATION
PKC & DIFFERENTIATION

f— MEK

Fig. 1 Tropomyosin receptor kinase (TRK) receptor signaling [5]. AKT,
v-akt murine thymoma viral oncogene homolog; BDGF, brain-derived
growth factor; DAG, diacylglycerol; ERK, extracellular signal-regulated
kinase; GAB1, GRB2-associated-binding protein 1; GRB2, growth factor
receptor-bound protein 2; IP3, inositol trisphosphate; MEK, mitogen-
activated protein kinase; NGF, nerve growth factor; NTF-3, neurotrophin

been identified in numerous other cancer types, including se-
cretory breast carcinoma [14], acute myeloid leukemia [15],
radiation-associated thyroid cancer [16], pediatric high-grade
glioma [17], Philadelphia chromosome-like ALL, and other
tumor types (Table 1).

Studies investigating the mechanism of ETV6-NTRK3
transformation in NIH 3T3 cells and other fibroblasts have
revealed that autophosphorylation of this chimeric protein re-
sults in the dual activation of RAS-ERK1/2 and PI3K-AKT
signaling, and is dependent on homo- and hetero-dimerization
mediated by the dimerization domain of E7V6 [7, 50, 51].
Expression of the ETV6-NTRK3 fusion in mammary tissues
of mice has also identified early breast progenitor cells rather
than stem cells as the direct targets of transformation and has
provided valuable models for preclinical studies [52].
Interestingly, the protein encoded by the ETV6-NTRK3 fusion
has also been found to interact with and be dependent on the
activity of insulin-like growth factor 1 receptor (IGF1R) for
both stability and transformation, which may provide another
clinical avenue for future treatments [53-55].

Although the ETV6-NTRK3 fusion is the most extensively
studied NTRK gene fusion, fusion events involving all three of
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3; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; PIP2, phos-
phatidylinositol 4,5-bisphosphate; PKC, protein kinase C; PLC, phospho-
lipase C; RAF, rapidly accelerated fibrosarcoma kinase; RAS, rat sarcoma
kinase; SHC, Src homology 2 domain containing. Reproduced with per-
mission from Amatu A, Sartore-Bianchi A, Siena S. ESMO Open
2016;1(2):¢000023

the NTRK genes and over 50 different 5’ fusion partners have
been identified (Table 1). NTRK gene fusions have been found
in over 20 different cancer types and in up to 1% of all solid
tumor malignancies, suggesting that NTRK gene fusions may
be oncogenic drivers regardless of the tumor type [8].

Clinical Data for TRK Inhibitors

Fusions involving TRK proteins lead to constitutive activation
of the kinase domain similarly to many other oncogenic drivers
such as BCR-ABL translocation and EGFR amplification/muta-
tion. One strategy in targeting these kinds of oncogenic drivers
has been to develop small molecule inhibitors to block the
downstream signaling pathways that are activated and drive
the cancer. Currently, there are several small molecular inhibi-
tors targeting TRK in phase 1 clinical trials; the most notable are
larotrectinib, a highly selective TRK inhibitor (TRKA/B/C), and
entrectinib, a broader tyrosine kinase inhibitor (7TRKA/B/C,
ROS1, ALK) [5, 56]. Both have demonstrated the ability to cross
the blood-brain barrier, making them suitable agents for central
nervous system (CNS) tumors that harbor TRK fusions [57, 58].
Clinical basket trials using larotrectinib (NCT02122913,
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Fig. 2 NTRK gene fusions. (a) a }
Mechanism of NTRK1/2/3 gene NITRK1/2/3
fusions; (b) ETV6-NTRK3 gene —| Promoter 1] 5' partner // LBD i kinase domain
fusion [9]. DNA, / / L
deoxyribonucleic acid; LBD,
ligand-binding domain; PTK, ty-
rosine kinase; TRK, tropomyosin \ 4
receptor kinase; TM, transmem- - - -
brane; SAM, sterile alpha motif.  — 5 partner TRK kinase domain AAAA
Figure 2b reproduced with per-
mission from Triche TJ, Hicks
MJ, Sorensen PH. Diagnostic ! ® @
Pathology of Pediatric 5 5
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Poplack DG, editors. Principles imarizati i - - s
P > . p Dimerization domain TRK kinase domain P 4
and Practice of Pediatric <
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ETV6 NH, SAM DNA binding COOH
NTRK3 NH, LBD PTK COOH
ATP  Activation Y615 PLC
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tyrosines tyrosine
ETV6-NTRK3 NH, COOH
ATP  Activation Y615 PLC
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tyrosines tyrosine

NCT02637687, NCT02576431) have shown durable overall
response rates of 93% in a pediatric phase VIl trial and 75% in
a combined adult and pediatric phase V11 trial [23, 59]. Adverse
events were predominantly grade 1 or grade 2 with no grade 3 or
grade 4 adverse events attributable to larotrectinib seen in more
than 5% of the patients regardless of tumor type or fusion part-
ner [23, 59]. These data clearly demonstrate the potency of
larotrectinib as a therapeutic option for patients that harbor
NTRK gene fusions. Similarly, phase I/lla clinical trials for
entrectinib demonstrated low toxicity with reversal of side-
effects following dose monitoring [22]. Larotrectinib has been
recently approved for use in the United States for patients with
solid tumors that harbor an N7RK fusion gene [60]. Clinical
trials for both drugs are still currently on-going and further sup-
port the utility of identifying TRK fusion cancers in order to
provide effective and durable clinical therapeutic options to

patients. In this review, we summarize the methods available
for detecting NTRK gene fusions in cancer.

Methods to Identify Patients with TRK Fusion Cancer

Several different approaches have been used to detect the
presence of NTRK gene fusions at the DNA and ribonucleic
acid (RNA) level and TRK expression. These methods in-
clude traditional clinical assays such as fluorescent in situ
hybridization (FISH), reverse transcription polymerase chain
reaction (RT-PCR), immunohistochemistry (IHC), and newer,
emerging technologies such as next-generation sequencing
(NGS) and RNA-based multiplexed assays (Nanostring).
Each technique is associated with advantages and disadvan-
tages (Table 2).
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Table2  Advantages and disadvantages of methodologies for detecting tropomyosin receptor kinase (TRK) fusion cancer

Fluorescence in situ
hybridization (FISH)

Reverse transcription
polymerase chain
reaction (RT-PCR)

Pan-TRK Next-generation
immunohistochemistry sequencing (NGS)
(THC)

« Location of the target within the
cell can be detected [61]

Advantages

« High sensitivity and specificity [63]

« Several fluorophores can be used
at once to detect different targets
in one sample [67]

Disadvantages * Requires fluorescence microscopy [61]

« Target sequence must be known; unable
to detect novel fusion partners unless
break-apart probes are used [34]

[71]

» Development of separate tests required
for each NTRK gene [71]

« Cannot demonstrate that functional
protein has been generated [34, 67]

* High sensitivity and
specificity [20, 62]

* Assays detect fusions
expressed at the
RNA level [62] [66]

* Inexpensive [68]

» Target sequences must
be known; unable to
detect novel fusion
partners [34, 68]

* Development of
separate tests required
for each NTRK gene

* Detection of novel fusion
partners [34] and fusions
expressed at RNA level [65]

* Ability to test multiple
actionable targets
simultaneously [34]

* Inexpensive [63, 64]

* Decentralized, available
in most laboratories [20]

« Established
reimbursement codes

* Turnaround time:
~2 days [64]

* Plays key role in diagnostic
work-up of TRK fusion can-
cer [23]

* Relevance of NGS increases
as number of actionable
targets grows [69]

* High sensitivity and specificity
potential [63]

 Cannot differentiate  Turnaround time: ~1-3

between fusion and weeks [69]
Wlld—type TRK expres- .+ Technically complex and
sion [28] costly [70]

* Scoring algorithms are
not standardized [20]

* Requires highly centralized
testing model [34] and
bioinformatics infrastructure
[72]

* Additional testing required * Reimbursement currently
to determine course of restricted [73]

action [28] » Sensitivity and specificity
of NGS assays vary widely
[63, 74]

FISH

Historically, FISH has been the gold standard for the clinical
detection of gene fusions (e.g. BCR-ABL rearrangements in
chronic myeloid leukemia) [75]. FISH uses fluorescently labeled
RNA or DNA probes that bind to complementary sequences on
formalin-fixed paraffin embedded (FFPE) tumor sam-
ples. For gene fusions typical of certain malignancies
(e.g. ETV6-NTRK3 in infantile fibrosarcoma), dual color
FISH probes can be used. One major advantage of
FISH analysis is the ability to detect the presence of a
fusion event involving a target gene without prior
knowledge of the fusion partner by utilizing “break-
apart” probes, where each probe is directed to the 5’
and 3’ ends of the target gene, respectively (Fig. 3a
and b). An intact NTRK gene would result in overlap-
ping probes and produce yellow fluorescence whereas a
translocation event would result in the probes “breaking
apart” to produce two individual probes (red and green)
indicating a break in the gene most likely arising from a chro-
mosomal translocation. An example is the detection of a
LMNA-NTRK] fusion using break-apart probes in a soft-
tissue sarcoma [76] (Fig. 3c). Although this method is useful

@ Springer

when the fusion partner is unknown, individual FISH analysis
must be performed for each of the three NTRK genes due to
the sequence specificity of the probes; this can be labor- and
cost-intensive. Lastly, due to the detection of gene rearrange-
ments at the DNA level, FISH does not provide any informa-
tion as to whether an oncogenic fusion protein is produced.

RT-PCR

Tumor RNA from fresh frozen or FFPE samples can be ex-
tracted and converted to complementary DNA (cDNA) se-
quences using reverse transcription. The cDNA is then ampli-
fied using polymerase chain reaction (PCR) primers that are
located on either side of the fusion breakpoint, resulting in a
PCR amplification product only when that specific fusion is
present. The amplification products can then be visualized
using intercalating dyes that bind to double-stranded DNA
or a fluorescent reporter-quencher system that allows for
multiplexing of multiple primer sets [77]. RT-PCR provides
a highly specific, rapid, economical, and sensitive testing
method, even at low transcript levels, with quick turnaround
time and multiplexing capabilities [78] compared with FISH
analysis. However, RT-PCR requires prior knowledge of the
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Fig. 3 Break-apart fluorescent in a
situ hybridization (FISH). (a) The
wildtype pattern shows two pairs
of closely situated or fused
signals. (b) In break-apart FISH, a
set of probes specific for the target
gene is used. When translocation
occurs involving a breakpoint be-
tween the two probe sites, the loci
split apart. (¢) An example of
break-apart FISH testing results in
a patient with soft-tissue sarcoma
and an LMNA-NTRK] gene fu-
sion [76]. NTRK1 break-apart
FISH demonstrates both paired
green (5" NTRK1) and red (3’
NTRK]1) signals corresponding to
the normal NTRK gene (yellow
arrow). Isolated red signals (red
arrows) are observed in tumor
nuclei (stained blue with DAPI)
indicative of a chromosomal de-
letion leading to an NTRK/ gene
fusion. DAPI, 4',6-diamidino-2-
phenylindole. Figures 3a and b
reproduced with permission from
Cheng L, Zhang S, Wang L,
MacLennan GT, Davidson DD. J
Pathol Clin Res 2017;3(2):73-99.
Figure 3¢ reproduced with per-
mission from Doebele RC, Davis
LE, Vaishnavi A, Le AT, Estrada-
Bernal A, Keysar S, et al. Cancer
Discov 2015;5(10):1049-57

Probe 1

' Probe 1

b Break site

Gene 1 4

- —

Probe 2 '

—w

0 Break apart

Wild type

fusion partners. A variation of RT-PCR that can detect the
presence of a fusion with an unknown partner has been devel-
oped [79]. Although RT-PCR has a quick turnaround time
once established, the design and validation of each
primer set is labor intensive, more so when multiplexing
multiple primer sets, which introduces the potential for
cross-interactions. Robust detection by RT-PCR also re-
lies on the quality of the RNA extracted, which can
vary greatly due to the unstable nature of RNA. An example
of the detection of an ETV6-NTRK3 fusion in a mammary
analog secretory carcinoma using RT-PCR is presented in
Fig. 4a [80].

IHC

While FISH and RT-PCR are used to detect fusions at the
DNA and RNA level, respectively, IHC can be used to survey
the protein expression of your target of interest using antibod-
ies tagged with a colorimetric label. In contrast to FISH, the
availability of a pan-TRK antibody eliminates the need to
perform individual assays for each TRK protein. The use of
a pan-TRK monoclonal antibody has been shown to be sensi-
tive and reliable, identifying TRK expression in 20/21 cases in
one study [28] and 21/28 cases in another study [81]. In the
second study, pan-TRK THC was less effective in detecting

@ Springer
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TGGGAGAATAGCAG

ETV6

TGTGCAGGCACATT
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ETV6-NTRK3

RNA (20 ng)
FFPE Biopsy
FFPE Resected Tumor
Intergrated Genomics
Viewer (IGV)
Data Analysis
[ Custom BI pipeline
== (alignment, QC,
quantification of
fusion transcripts)
c Detection of Fused Genes d
EML4 ALK
A o B Eon 13 Exon 20 g Exon 21
mRNA (cDNA) Exon 13 Exon 20

— —

Fig. 4 Reverse transcription polymerase chain reaction (RT-PCR) and
next-generation sequencing (NGS). (a) Example results for reverse tran-
scription polymerase chain reaction (RT-PCR) testing [80]. RT-PCR for
ETV6-NTRK3 fusion transcripts in mammary analogue secretory carci-
noma (MASC) tumors. ACTB, B-actin, MASC 1, MASC 2, MASC 3 and
MASC 4, tumor samples from Case 1, Case 2, Case 3, and Case 4,
respectively. (b—d) Summary of NGS [79]. (B) RNA is extracted from
formalin-fixed, paraffin-embedded (FFPE) tumor specimens and reverse
transcribed into complementary DNA (cDNA). The cDNA is amplified
with a panel of primers targeting fusion and native control transcripts. The
resulting libraries are sequenced on Ion Torrent instruments and the

fusions involving NTRK3, which may reduce the overall sen-
sitivity of IHC as the ETV6-NTRK3 fusions has been reported
as the most common TRK fusion in pan-cancer studies [33,
81]. An example of the detection of a protein resulting from
the LMNA-NTRK1 fusion using IHC can be found in Fig. 5
[28]. A pan-TRK monoclonal antibody has been recently ap-
proved for in vitro diagnostic use (Ventana Medical Systems),
which should provide a more reproducible reagent for the
detection of TRK expression. One caveat when using IHC to
detect TRK is that the antibody does not discriminate between
expression of the wildtype and fusion protein. Therefore,
strong staining may indicate either expression of the wildtype
protein or the presence of a TRK fusion protein. Interpretation
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mRNA (cDNA) | | Exon 5 | Exon 6 |
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Library Preparation
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V4
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sequence reads are then enumerated using a custom pipeline. Identified
fusion transcripts are confirmed in the Integrative Genomics Viewer
(IGV) to check that sequence reads span both fusion partners. (C)
Fused genes are detected by PCR amplicons that span a known fusion
breakpoint. (D) Novel fusions may also be detected based on overexpres-
sion of the kinase domain of selected targets. Figure 4a reproduced with
permission from Fehr A, Loning T, Stenman G. Am J Surg Pathol
2011;35(10):1600-2. URL: https:/journals.lww.com/ajsp/Citation/2011/
10000/Mammary_Analogue Secretory Carcinoma of the.20.aspx.
Figures 4b—d reproduced with permission from Beadling C, et al. ] Mol
Diagnostics. 2016;18(2):165-175

of IHC results can also be subjective due to the heterogeneity
of normal tissue expression and thus requires strict controls.
However, IHC remains a cost- and sample-effective method
with quick turnaround times. Moreover, IHC is commonly
used and widely available in most pathology laboratories
and may be an effective initial screening step for TRK fusions
prior to confirmation with a secondary method such as NGS.

NGS and Other Multiplexed Assays

The most comprehensive and inclusive method of identifying
fusions is through NGS assays such as whole genome, targeted
panel, and RNA sequencing (Fig. 4b—d). As the power of NGS
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Fig. 5 Example pan-tropomyosin receptor kinase (TRK) immunohisto-
chemistry (IHC) staining pattern in a patient with colorectal carcinoma
with an LMNA-NTRK1 fusion [28]. A moderately differentiated colorec-
tal carcinoma with conventional histology (hematoxylin and eosin) and
an LMNA exon 12-NTRK1 exon 12 fusion (A) displays diffuse cytoplas-
mic and nuclear membrane staining for pan-TRK IHC (pan-TRK ITHC

technology has increased, the cost of analyzing each sample has
also decreased. However, with all NGS-based assays, the need
for analytic and bioinformatic support may be prohibitive for
many laboratories. Although not primarily used for the detection
of fusions, whole genome studies have led to the discovery of
novel, recurrent, and rare fusions [82]. The usefulness of these
data is limited because, on the genomic level, fusions are often
found as passengers of general genomic instability, a hallmark
of cancer. However, whole genome, in conjunction with RNA
sequencing, has been integral for validating and determining the
biological relevance and potential downstream effects of geno-
mic fusions [82, 83]. Whole-genome sequencing has clear ben-
efits and uses in terms of fusion discovery and basic biology
research, although they are currently not suitable as a universal
method in a clinical setting due to the intensive bioinformatics
required to interpret the data generated.

The most common method of detecting fusion events utiliz-
ing NGS is through analyzing a specific panel of genes. The
genes to be sequenced are isolated by either an amplicon-based
or hybrid capture methodology. Amplicon-based methods en-
rich for target genes by PCR amplification of a distinct set of
genes which requires less input DNA but can only detect fusion
partners that are also included in the panel. In contrast, hybrid

clone EPR17341, Abcam, Cambridge, MA) (B, C). Reproduced with
permission from Hechtman JF, Benayed R, Hyman DM, Drilon A,
Zehir A, Frosina D, et al. Am J Surg Pathol 2017;41(11):1547-51.
URL: https://journals.lww.com/ajsp/Abstract/2017/11000/Pan_Trk
Immunohistochemistry Is_an Efficient and.13.aspx

capture enrichment targets specific genomic regions through
hybridization with a substrate (streptavidin/biotin), and thus
can be used to identify an unknown fusion linked to the target
sequence. Detection can still be challenging with low complex-
ity sequencing, as the breakpoint may be located within a large
intron, with adequate coverage costly and potentially unfeasi-
ble. This is particularly problematic with NTRK2 and NTRK3
fusion testing by DNA sequencing, with the entire intron se-
quence needing to be included in testing panels. Lastly, RNA-
based panel sequencing provides the most utility by enriching
for specific expressed transcripts without the complication of
large introns. These panels, such as the Illumina TruSight 170
panel (TST170) and the Archer FusionPlex assay, are designed
to target and enrich for hundreds of fusions involving specific
genes using hybrid capture and anchored multiplex PCR tech-
nologies, respectively [46]. The advantage of this technology is
that knowledge of only one of the partners is required, allowing
for the potential discovery of novel fusion partners. The use of
messenger RNA (mRNA) also provides confidence that the
fusion is expressed. However, this method is still limited in that
one of the partner genes must be present on the panel.
Although the turnaround time for NGS technology can be
long (6-21 days), it provides an extremely comprehensive,

@ Springer


https://journals.lww.com/ajsp/Abstract/2017/11000/Pan_Trk_Immunohistochemistry_Is_an_Efficient_and.13.aspx
https://journals.lww.com/ajsp/Abstract/2017/11000/Pan_Trk_Immunohistochemistry_Is_an_Efficient_and.13.aspx

1394

D. Wong et al.

specific, and sensitive technique with extensive multiplex capa-
bilities. Many of the larger clinical laboratories have moved
towards integrating NGS testing into routine clinical workups
such as the Memorial Sloan Kettering-Integrated Mutation
Profiling of Actionable Cancer Targets (MSK-IMPACT), which
has been used since 2014 and was approved by the Food and
Drug Administration (FDA) in 2017. The MSK-IMPACT panel
is hybrid-capture-based and includes 341 key cancer genes of
which 14 are recurrently rearranged genes [69]. However, for
many clinical laboratories, the bioinformatics demands, costs,
and availability of NGS facilities/personnel can be prohibitive.

Lastly, although not considered NGS, the Nanostring
nCounter Vantage 3D is an extensively multiplexed
high-throughput hybridization assay that uses target-
specific probes to detect fusion transcripts. Although the
Nanostring platform requires more input RNA (~100—
300 ng) compared to NGS-based panels (~10-100 ng),
this technique does not introduce PCR amplification
biases or sequencing errors since the assay uses native,
unamplified RNA. Instead, the Nanostring platform de-
tects fusions by using probes that are designed to bind
directly to the fusion junction. Therefore, fusions that oc-
cur at non-canonical breakpoints or are not present in the
panel would not be detected. At this point in time, the
existing fusion platform only tests for two specific
NTRK] fusions, although additional assays can be created
to detect the full complement of known NTRK gene
fusions.

Summary of Testing Methods Used to Identify
Patients with TRK Fusion Cancer

Due to the large variability in NTRK gene fusion partners
and the limitations of many of the available testing
methods, testing for NTRK gene fusions often makes use
of two independent testing methods in order to provide a
reliable diagnosis [81]. The method used by nearly all
studies has been RNA-based NGS due to the comprehen-
sive and extensively multiplexed nature of this technolo-
gy. Several studies including the phase I trials for
entrectinib have used RNA-based anchor multiplexed
NGS to identify gene fusion events in patients followed
by FISH confirmation with break-apart probes [84] or
IHC [85]. Other studies including the phase II basket
STARTRK-2 trial have used a two-step [HC-NGS tech-
nique [86]. In this method, ITHC screening is performed
using a cocktail of pan-tyrosine kinase antibodies that
detect expression of TRKA, TRKB, TRKC, ROSI, and
ALK followed by NGS using RNA-based anchored mul-
tiplex PCR to determine the exact fusion, similarly to the
previously mentioned studies. This two-step diagnostic
test using IHC as an initial screen followed by NGS ap-
pears to be a quick and cost-effective method for
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screening out N7RK fusion-negative cases. A caveat is
that strong IHC staining may also indicate overexpression
of wildtype TRK proteins, requiring validation by NGS
[86]. Indeed, strong wildtype TRK protein detection is a
major caveat of using antibodies alone, which do not dis-
cern between wildtype proteins and TRK fusion proteins.
Issues with the scoring methods used by pathologists may
also lead to these discrepancies with IHC alone. However,
if the goal is to solely detect NTRK fusions leading to
enhanced TRK expression, the availability of a reliable
pan-TRK antibody would be a very useful first step for
increasing the detection rate.

NTRK Fusion Testing in Clinical Practice: Challenges
and Future Perspectives

Data from the larotrectinib and entrectinib phase I and II
clinical trials have shown durable benefit and well-
tolerated toxicity, which warrants the introduction of rou-
tine testing for NTRK gene fusions. However, challenges
persist in incorporating these tests into routine laboratory
diagnostics. Notably, oncogenic NTRK gene fusions have
been identified in ~1% of solid tumors [81]. Therefore,
routine testing may be limited to tumors where canonical
driver mutations are not identified. However, in cancers
that are typically driven by oncogenic fusions, including
sarcomas, use of targeted sequencing platforms such as
Childseq [87], or more recently the extensively
multiplexed Nanostring platform, has already been shown
to be more cost-effective and comparably reliable in iden-
tifying the driver fusion compared to more traditional
methods such as THC, FISH, and RT-PCR [88]. Recent
NGS panels such as the Illumina Trusight fusion panel
[89] and MSK-IMPACT [90] have also been found to be
as effective in detecting gene fusion events involving
ROS1, ALK, and RET fusions. These studies provide sup-
port towards using NGS molecular assays as routine di-
agnostic tests in preference to more traditional methods as
the costs become lower and the testing panels become
more inclusive.

Traditional methods often suffer from limitations. THC
relies on the availability and efficacy of antibodies, which
can vary greatly from lot-to-lot and does not conclusively
identify the presence of a fusion protein. However, this var-
iability might be mitigated by the availability of the pan-
TRK IHC assay from Ventana. FISH relies on human inter-
pretation of the fluorescent signals and cannot be
multiplexed, and RT-PCR requires knowledge of the fusion
junction. The greatest barriers to routine use of NGS assays
are the need for stringent validation of results over the tra-
ditional methods and the bioinformatic pipeline/expertise
required for analyzing the data. Many companies and third
parties have begun to address the bioinformatic issue by
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creating user-friendly software to accompany their assays,
allowing for rapid and straightforward analysis of the data
generated. Although globally available, country and region-
al variations in access to NGS testing and the high costs of
testing may pose challenges for ensuring broad patient ac-
cess to these tests.

Conclusions

NTRK gene fusions have garnered much clinical attention re-
cent years due to the efficacy of small molecule inhibitors
such as the recently FDA-approved use of larotrectinib
(Vitrakvi®) and entrectinib in clinical trials. These drugs have
also shown penetrance through the blood-brain barrier which
will provide much-needed therapeutic options to patients with
CNS malignancies, a field which has struggled to find durable
and effective treatment options. NTRK gene fusions have been
identified using several different approaches including FISH,
RT-PCR, and NGS. IHC provides a useful screening tech-
nique to identify tumors with potential NTRK gene fusions
that warrant further confirmation with NGS or other robust
techniques, but there is a need to overcome the lack of sensi-
tivity to detect fusions involving NTRK3. NTRK gene fusions
have been identified in a broad range of cancers and appear to
be tumor agnostic driver events. Although they may only be
present in a small proportion of tumors, identifying these pa-
tients will be crucial for providing precision therapeutic op-
tions going forward. Therefore, robust testing methods are
essential to identify the patients that harbor TRK fusion cancer
in order to provide them with the benefit of precision
medicine.
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