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Abstract

The prediction and correction of systematic errors in direct spectral estimation from irregularly sampled data taken
from a stochastic process is investigated. Different sampling schemes are investigated, which lead to such an irregular
sampling of the observed process. Both kinds of sampling schemes are considered, stochastic sampling with
non-equidistant sampling intervals from a continuous distribution and, on the other hand, nominally equidistant
sampling with missing individual samples yielding a discrete distribution of sampling intervals. For both distributions
of sampling intervals, continuous and discrete, different sampling rules are investigated. On the one hand, purely
random and independent sampling times are considered. This is given only in those cases, where the occurrence of
one sample at a certain time has no influence on other samples in the sequence. This excludes any preferred delay
intervals or external selection processes, which introduce correlations between the sampling instances. On the other
hand, sampling schemes with interdependency and thus correlation between the individual sampling instances are
investigated. This is given whenever the occurrence of one sample in any way influences further sampling instances,
e.g., any recovery times after one instance, any preferences of sampling intervals including, e.g., sampling jitter or any
external source with correlation influencing the validity of samples. A bias-free estimation of the spectral content of
the observed random process from such irregularly sampled data is the goal of this investigation.

Keywords: Bias-free estimation, Spectrum, Random sampling, Missing samples, Data gaps

1 Introduction
Digital signal processing normally implies a time-limited,
non-interrupted sequence of equidistant samples taken
from a signal-generating process under investigation. Var-
ious reasons may lead to a different sampling: (1) the
measurement process may depend on a non-regular, typ-
ically stochastic, sampling process, e.g., laser Doppler
systems [1–3] in burst mode measure arrival times and
velocities of randomly arriving particles carried by a time-
variant flow field. (2) The equidistant measurement may
be disturbed, leading to either individual missing samples
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or longer data gaps. Irregular sampling directly influ-
ences the spectral content of the observation. Spectral
estimators may correctly estimate, e.g., the power spectral
density of the data sequence (the observed signal) from
the measurement. However, the spectrum of the observed
signal will deviate from the spectrum of the process under
investigation. Particularly, the observed signal is the prod-
uct of the process under investigation multiplied with the
sampling function, which is understood as the train of
sampling instances of the observed signal, where all val-
ues of the sampling function are of unit amplitude (see
illustration in Fig. 1). Hence, the spectrum of the observed
signal is the convolution of the spectrum of the process
with the spectrum of the sampling function. The spec-
tral properties of the sampling function thus have a direct
influence on the spectrum of the observed signal. To
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obtain meaningful information about the underlying pro-
cess, appropriate estimators must consider the irregular
sampling process and its spectral composition.
Spectral estimation from randomly sampled signals in

continuous time has been investigated in the past, mainly
in the context of controlled sampling with induced vari-
ation of the sampling times, known as digital alias-free
signal processing or sampling jitter [4–7], in the context
of astrophysical observations [8–11] or in the context of
laser Doppler data processing [12–24] including the spe-
cific role of processor dead times [25–27]. More general
in their application are investigations in [28–32]. All these
estimators are potentially able to handle also equidistant
data with missing samples, and some of the given ref-
erences include this case. However, adaptations are nec-
essary, since random sampling on a continuous domain
has a different spectral composition than equidistant sam-
pling with missing samples. Independent and randomly
distributed missing samples with otherwise equidistant
sampling has also been investigated [31, 33–38]. Corre-
lated data gaps have been investigated only for very spe-
cific cases [31, 39–42], without options for generalization
or without satisfactory bias correction.
In contrast to theoretical investigations or computer

simulations, where purely random sampling can be
assumed or realized, strictly independent sampling is not
possible in technical systems. For stochastic sampling
in continuous time, e.g., laser Doppler systems cannot
deliver successive samples with lag times below a cer-
tain minimum value. Particles with too low distance will
lead to overlapping scatter signals from the measure-
ment volume. The laser Doppler system will remove these
overlapping signals to avoid faulty measurements due to
possible interference between the signals with an unpre-
dictable phase shift. This way, the size of themeasurement
volume defines a minimum distance between successive
particles and finally a certain minimum lag time, below
which the probability of appropriate pairs of measurement
events drops rapidly. The result is a distinct measurement
error of spectral estimates based on algorithms, which
rely on the assumption of purely random and independent
sampling instances as shown in [25–27].
Missing data from equidistantly sampled processes may

occur as individual outliers, which often are independent
from each other. However, if external processes disturb
the process under observation, these impinging processes
may have a certain correlation and generate missing data
samples or gaps, which are not independent. Depending
on the individual reasons for missing data samples or data
gaps, the correlation and the spectral content of the sam-
pling scheme will differ significantly between application
cases. Also here, solutions of bias correction for purely
random and independent occurrence of missing samples
like in [43] will fail with correlated data gaps.

Universal solutions of bias correction for correlated data
gaps with unspecific characteristics are not available so
far, neither for continuous time nor for equidistant time.
The present article investigates systematic errors of spec-
tral estimators processing directly the sequence of data for
different sampling cases with different distributions and
with different spectral characteristics of sampling inter-
vals. In continuous time, random sampling is investigated,
where in one case purely random and independent sam-
pling instances are taken from a linear stochastic process.
For the same process, a minimum time interval between
successive samples leads to correlated sampling inter-
vals in another simulation. For equidistant time, also a
linear stochastic process is observed. Again, a random
occurrence of missing data samples is investigated with
independent individual outliers first. In the last sampling
scheme, also longer sequences of data points are removed
from the original data set, introducing correlation into the
pattern of missing samples.
A common procedure to correct systematic errors of

direct spectral estimation is introduced and proven to be
able to deliver bias-free estimates of the spectra, indepen-
dent of the spectral characteristics of the sampling scheme
or that of the missing data. The required parameters can
be obtained by theoretical investigation for sampling pro-
cesses with a priory known sampling mechanisms. For
unknown relations, an alternative procedure is given to
obtain the correction parameters numerically, straight
from the measured data sequence. The procedures are
available as Python source codes as supplementary mate-
rial to this article together with all data sets under [44].
Note, that the correction procedure is not able to cor-

rect aliasing errors. If any aliasing occurs due to significant
spectral content of the observed process above the tem-
poral resolution of the sampling scheme, then systematic
errors of the estimation will remain. Aliasing has its ori-
gin in an insufficient extraction of information from the
process under observation, which principally cannot be
repaired a posteriori, since the required information is
not available from the observed data set any more. Note
further, that the bias correction may lead to correspond-
ing correlation matrices, which potentially may violate
the non-negative definiteness. As a consequence, negative
values occur in the corresponding estimated power spec-
tral densities. Since the introduced procedures yield bias-
free estimates, averages over multiple estimates of spectra
will converge towards the true spectrum of the under-
lying process. As a common means to reduce the esti-
mation variance, averaging over spectral estimates from
data segments (block averaging) is often applied anyway.
The ultimate solution of course, would be regularization.
Since this inevitably introduces a bias to the spectrum,
regularization is not considered in the present article,
where bias-free estimation has priority. If block averaging
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Fig. 1 Illustration of the irregular sampling process (au, arbitrary amplitude unit)

is applied, bias-free estimates are essential to obtain a
consistent mean spectrum with vanishing systematic and
random errors for an increasing sample size.

2 Methods
2.1 Primary estimates
Let Sp(f ) be the power spectral density of an observed,
time dependent process x(t). The process is sampled at N
ascending time instances ti, with i = 1 . . .N . The entire
duration of the signal is T, where 0 ≤ t1 < tN ≤ T .
The sampling is either at random time instances ti with
real values from a continuous domain or at quantized time
instances with the fundamental time step t, but with
missing samples. Note that T is not determined finally by
a data set with irregular sampling instances. Only T ≥ tN
is fix. The exact duration of the signal can be defined later,
according to post-processing requirements like the spec-
tral resolution desired for the discrete numerical spectral
estimation.
Let Ss(f ) be a bias-free estimate of the power spectral

density of the observed signal. For the random sampling
in continuous time, the observed signal is understood as
the series of measurements xi = x(ti). For nominally reg-
ular sampling with missing samples, the observed signal
is understood as the series of valid values only. Neglect-
ing any possible errors due to a periodic continuation of
the signal, the particular estimate of Ss(f ) can be obtained,
e.g., as the Fourier spectrum

Ss(f ) = T
N2

N

i=1
xie−2π ifti

2

(1)

with the imaginary unit i or with other methods like
Lomb-Scargle’s method [8, 9] or generalized Lomb-
Scargle’s method [45] for data having a non-zero mean
value. Note, that Ss(f ) deviates from Sp(f ) because irregu-
lar sampling influences the spectral content of the obser-
vation as outlined below.
Dissolving the square in Eq. (1) leads to

Ss(f ) = T
N2

⎧

⎨

⎩

N

i=1
xi cos(2π fti)

2

+ −
N

i=1
xi sin(2π fti)

2⎫
⎬

⎭
(2)

= T
N2

⎧

⎨

⎩

N

i=1

N

j=1
xixj cos(2π fti) cos(2π ftj)

+ sin(2π fti) sin(2π ftj)

⎫

⎬

⎭
(3)

= T
N2

⎧

⎨

⎩

N

i=1

N

j=1
xixj cos 2π f (ti − tj)

⎫

⎬

⎭
. (4)
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The last line with the double sum can be rewritten as

= T
N2

⎧

⎪⎪⎨

⎪⎪⎩

N

i=1
x2i +

N

i=1

N

j=1
j=i

xixj cos 2π f (ti − tj)

⎫

⎪⎪⎬

⎪⎪⎭

(5)

with separate summations over self-products x2i on one
side and cross-products xixj with i = j on the other side.
For uninterrupted equidistant sampling, the probability

P(ti) of getting a valid sample at time ti is unity at any sam-
pling instance ti = i t with the sampling interval t and
zero between the samples. Since the self-products x2i in
Eq. (5) can be built directly from the respective samples xi,
the respective probability of such self-products occurring
at time ti is identical to the probability for the occurrence
of the sample itself, namely P(ti). Therefore, the probabil-
ity of self-products also is unity at any sampling instance
ti = i t and zero between the samples.
Cross-products xixj with i = j instead require two sam-

ples at two different times ti and tj. The respective joint
probability of getting such cross-products P(ti, tj) then is
the product of the probability P(ti) of having the first sam-
ple at ti and the conditional probability P(tj|ti) of having
another sample at tj under the condition of having had the
first sample at ti.

P(ti, tj) = P(ti)P(tj|ti) (6)

However, for uninterrupted equidistant sampling, the
probability of having another sample with a delay of tj − ti
that equals an integer multiple of the sampling interval
t is also unity. Hence, with ti = i t and tj = j t,

finally cross-products between different samples and self-
products of single samples have the same probability,
provided the sampling is equidistant and uninterrupted.
With any kind of irregular sampling, the probability

P(ti) of having a valid sample at a sampling time ti = i t
is either less than one for nominally equidistant sampling
with missing samples or it changes its physical dimen-
sion to a probability density for irregular sampling in
a continuous time domain. However, the probability of
self-products at a certain time ti is still identical to that
probability of the sample itself P(ti) and also Eq. (6)
still holds for cross-products. But with irregular sampling
unfortunately, the respective conditional probabilities or
conditional probability densities P(tj|ti) of getting another
sample at time tj after the sample at time ti also differ
from unity and may additionally vary for different delays
tj − ti. Under these conditions, Eq. (5) averages over self-
and cross-products of varying delays, which all have dif-
ferent probabilities or probability densities and contribute
differently to the estimate of the spectrum if applied to

irregularly sampled data. This finally leads to the observed
bias.
Let further be Rs(τ ) the correlation function of the

observed signal. This one corresponds to Ss(f ) via
the Fourier transform incorporating Wiener-Khinchin’s
theorem [46]. For a numerical realization via the discrete
Fourier transform (DFT) resp. the inverse discrete Fourier
transform (IDFT), both Rs and Ss must be sampled reg-
ularly. For that, a fundamental time increment and a
frequency increment f are defined. While can be
chosen arbitrarily for a randomly sampled signal in con-
tinuous time, equals the primary time step t of the
signal for equidistant sampling. For the purpose of bet-
ter clarity, in the following, the time step will be denoted
as commonly, dropping the discrimination between
time series with steps of t and correlation functions
with steps of . The frequency increment in all cases is
f = 1

T , defined by the assumed duration of the signal
T, where T can be chosen either slightly larger than tN
or significantly larger corresponding to an optional zero
padding of the signal. In the present study, T = M is
chosen with an integerM, where T is close to tN , e.g., the
difference is within one time step . That leads to the
correspondences

Ss(fj) = ·DFT {Rs(τk)} = ·
M−1
2

k=− M
2

Rs(τk)e−2π ifjτk

(7)

Rs(τk) = 1 · IDFT Ss(fj) = 1
T

·
M−1
2

j=− M
2

Ss(fj)e2π ifjτk

(8)

with fj = j f , j = − M
2 . . . M−1

2 and τk = k , k =
− M

2 . . . M−1
2 , where x is the largest integer smaller

than or equal x.

2.2 Bias correction
The sampling schemes investigated here yield either a
continuous distribution of sampling intervals (exponen-
tial distribution for purely random sampling times or with
deviations from the exponential distribution for corre-
lated random sampling) or a discrete distribution (unity
at the sampling interval of and zero otherwise for
uninterrupted equidistant sampling or with further inte-
ger multiples of occurring with samples missing). All
investigated sampling schemes have in common, that the
sampling function, which defines the sampling times ti,
has a certain randomness, namely the sampling instances
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occur at random times. For continuously distributed sam-
pling times, the sampling instances themselves are ran-
domly distributed. Regarding equidistant data sets with
missing or invalid samples, the randomness applies to
the availability or validity of the individual samples. In
the following, continuous and discrete distributions of
the respective sampling intervals are distinguished to
ensure a unique discrimination between these two cases of
either sampling in a continuous time domain or nominally
equidistant sampling with missing instances. This is apart
from possible correlations between the sampling instances
resp. between the sampling intervals, which additionally
cause deviations from a purely random sampling in each
of these two cases.
Let the mean sampling rate be α and let the mean num-

ber of samples per time unit be α = . For a
discrete distribution of sampling intervals, α is also the
probability of a sample xi being valid, which complies
with 0 ≤ α ≤ 1. Self-products x2i of samples then
also occur with the probability of α as explained above.
Cross-products xixj can be made only from two different
samples occurring at different time units ti = i and
tj = j with i = j. Assuming independence between
sampling times, the probability of having sampling time tj
after sampling time ti becomes P(tj|ti) = P(tj), namely α .
The probability of getting cross-products P(tj, ti) in Eq. (6)
then finally becomes α 2. For a continuous distribution of
independent sampling intervals with amean sampling rate
of α, the number of samples per time unit is Poisson
distributed with the mean value of α = , where α

can also be larger than one. In this case, the mean number
of self-products x2i per time unit again is α , and the mean
number of cross-products xixj within two different time
units again is α 2 following Eq. (6), provided all sampling
instances within the two time units are independent.
Both of these values, the probability of self-products

α and the probability of cross-products from two differ-
ent time units α 2, are identical for the two cases, that of
discrete distribution of sampling intervals and that of con-
tinuous distribution of sampling intervals for purely ran-
dom occurrence of samples without correlations between
the sampling instances. In contrast to the case of discrete
distribution of sampling intervals, for a continuous distri-
bution of sampling intervals, the occurrence of more than
one sample within one time unit is possible. Therefore,
there also exists a probability of cross-products occurring
from different samples within the same time unit, which
receives further attention at a later point.
Let βk be the mean number of self- and cross-products

per time unit counted in Rs(τk). If only cross-products
from different time units were counted and no correla-
tion between the sampling intervals is assumed, from each
pair of time units, one would obtain α 2 pairs of samples
on average. Within the measurement time T = M one

then hasM − |k| such pairs of time units of lag time τk =
k . For long enough data sets, small enough absolute lag
times |k| M or periodic continuation of the signal, one
can assume a mean number ofM such pairs of time units,
each yielding α 2 pairs of samples on average. Finally, the
expected number Mα 2 of such cross-products counted
in Rs(τk) divided by the length of the data set, which is
M time units long, yields the expected mean number of
cross-products per time unit βk = α 2.
Let further βk be βk normalized by α 2. Then for inde-

pendent sampling and if only cross-products from dif-
ferent time units are counted βk becomes unity. Any
other influence, self-products, correlation between sam-
pling instances, or cross-products within one time unit
causes βk deviating from unity. In any case, βk is the ratio
of the mean number of pairs of samples expected in Rs(τk)
including all effects causing βk deviating from unity and
the expected number of cross-products only from differ-
ent time units and from independent sampling instances.
A prediction of all coefficients βk for a given sampling
scheme then can be used to balance the different probabil-
ities of self- and cross-products for each lag time τk of the
primary estimate of the correlation function Rs(τk) by nor-
malization with βk yielding an improved estimate R̂s(τk)
applying

R̂s(τk) = 1
βk

Rs(τk). (9)

The general procedure for bias correction then requires to
transform the primary estimate of the spectrum into the
appropriate correlation function. The correlation function
then can be corrected for its bias based on appropriate
correction factors βk , followed by another Fourier trans-
form of the improved correlation function back into a
spectrum.
The determination of the values βk depends on the par-

ticular sampling scheme. An analytical derivation requires
a priori knowledge about the specific rules of the partic-
ular sampling process. Purely random sampling without
any correlations between the sampling instances is a dedi-
cated case, where only β0 deviates from unity. This allows
to perform the intended bias correction directly on the
spectrum, as shown in the following subsection. With
correlations between the sampling instances, the correc-
tion of the spectrum is more complicated and all values
βk are required. Analytical derivations for the following
test cases with correlations of the sampling instances are
given later, namely below the introduction of the partic-
ular simulation procedure. These derivations are limited
to the shown test cases and they are no longer valid with
other sampling schemes. As a universal alternative, the
correction coefficients can also be estimated numerically
directly from the data taken, as shown in the next but one
subsection.
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2.3 Purely random sampling with independent sampling
instances

For continuous distribution of sampling intervals and with
independent sampling instances, all cross-products are
independent, which leads to βk = 1 for all k = 0. For
k = 0, a number of n samples in a time unit delivers n2
cross- and self-products, where the number n of samples
in that time unit is Poisson distributed with the probability

P(n) = α n

n!
e−α (10)

and with the mean value of α . Themean number of cross-
and self-products for k = 0 then becomes

β0 =
∞

n=0
n2P(n) = α + α 2, (11)

which, after normalization with α 2, finally leads to

βk = 1 + 1
α

for k = 0
1 otherwise. (12)

For discrete distribution of sampling intervals and with
independent randomly occurring missed samples, again
all cross-products are independent, which leads to βk = 1
for all k = 0 also here. In contrast to the previous case,
where multiple sampling instances were possible within
one time unit, in nominally equidistant sampling, only one
or zero samples can occur per time interval. Therefore,
Rs(0) can include only self-products, which occur with the
mean rate of α . After normalization with α 2, this finally
leads to

βk =
1
α

for k = 0
1 otherwise. (13)

In both cases, continuous and discrete distribution of
sampling intervals without correlations, only β0 deviates
from unity. The corresponding correlation function can
be corrected at lag time zero by

R̂s(0) = 1
β0

Rs(0) (14)

Due to the correspondence between the power spectral
density and the correlation function given in Eq. (7), a cor-
rection of Rs(0) as in Eq. (14) leads to an offset correction
of the power spectral density

Ŝs(fj) = Ss(fj) − 1 − 1
β0

Rs(0) (15)

for all frequencies fj.
Fortunately, the procedure directly corrects the spectral

estimates, which are the focus of this investigation. On
the other hand, the procedure involves the correspond-
ing correlation function. However, only the value Rs(0) is
needed. Since the spectral estimates have been obtained
directly from the data, a procedure without values of the
correlation function would be preferable. In that case, the

transformation of the spectra into corresponding corre-
lation functions could be dropped. For this purpose, the
mean signal power

Ps = 1
N

N

i=1
x2i (16)

is used instead, where R̂s(0) = Rs(0)
β0

≈ Ps. A deviation

results from the fact that in Rs(0) or R̂s(0) in addition to
self-products also cross-products of samples within sin-
gle time units of may occur, while only self-products
are counted in Ps. However, this deviation occurs only
for continuous distributions of sampling intervals, and
it becomes significant only for large values of α above
one. Fortunately, for continuous distributions of sampling
intervals, the interval can be chosen arbitrarily small,
ensuring α to be sufficiently smaller than one. In the limit
of infinitesimal small , Rs(0) and β0Ps become the same
and the correction of the spectrum becomes

Ŝ(f ) = S(f ) − β0 − 1 Ps. (17)

Using the derivation of β0 from above, for random sam-
pling with continuous distribution of sampling intervals
this reduces to

Ŝs(f ) = Ss(f ) − Ps
α

(18)

and for randomly and independent missing samples with
discrete distribution of sampling intervals to

Ŝs(f ) = Ss(f ) − Ps
1
α

− . (19)

2.4 Empirical estimates of the correction coefficients
For unknown spectral composition of the sampling func-
tion or that of the data gaps, the correction procedure with
theoretical values of α and βk is not practicable because
the values βk resp. βk are not known a priori. In that
case, the number of self- and cross-products and finally
βk can be estimated for each lag time τk individually by
directly estimating the correlation function of the sam-
pling function. For that, Eq. (1) for the primary estimate
of the spectrum and Eq. (8) for the appropriate correlation
function can be reused with the sampling times ti from
the observed signal, this time with all values xi replaced
by a constant value of one. Since Lomb-Scargle’s method
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has problems with signals of constant value, instead the
Fourier spectrum is generally used for the empirical esti-
mation of βk , yielding

βk = IDFT

⎧

⎨

⎩

M
N2

N

i=1
e−2π ifjti

2⎫
⎬

⎭

= 1
N2 ·

M−1
2

j=− M
2

N

i=1
e−2π ifjti

2

· e2π ifjτk (20)

again with fj = j f , j = − M
2 . . . M−1

2 and τk = k ,
k = − M

2 . . . M−1
2 .

2.5 Mean value
The procedures given here can be applied with no changes
to data with or without a mean value. However, in con-
trast to equidistant sampling, a non-zero mean value in
combination with irregular sampling increases the estima-
tion variance of the derived spectra. Therefore, a possible
mean value in real data should be estimated and removed
from the data before spectral analysis. Unfortunately, the
estimation and removal of the mean value is another bias
source for the estimated correlation function and finally
for the spectrum, as has been analyzed in [47, 48] includ-
ing appropriate corrections. To avoid interference with
additional bias sources, the following test simulations are
done with mean-free processes only. Accordingly, only
Lomb-Scargle’s method is used for direct comparison with

the Fourier spectrum, while generalized Lomb-Scargle’s
method has not been considered further.

2.6 Simulation
To demonstrate the ability of the estimation routines to
derive bias-free estimates of the power spectral density,
a moving-average stochastic process of order 200 is gen-
erated from white noise, sampled in four different ways
and analyzed in Monte-Carlo simulation runs. The coef-
ficients of the moving-average process are chosen such
that the generated signals have an artificial spectrum with
an exponentially increasing slope and with a distinct dip
in the observed frequency range. Each run of the Monte-
Carlo simulation generates a signal of such spectral char-
acteristics with a total length of 200 tu (time units). To
avoid the influence of further bias sources like incorrect
assumptions of a periodic continuation of the signals, each
signal fits together on both ends, justifying the assump-
tion made above. The signals have no mean value and a
standard deviation of 2 au (amplitude units). Then, four
sampling schemes are applied to the time series: For
the two cases with sampling instances from continuous
time, interpolated values between the discrete samples of
the simulated series are obtained by Whittaker-Shannon
interpolation formula [49, 50]. (a) Purely random samples
are taken from the interpolated time series independent
from each other with a mean rate of α = 0.5 tu−1. (b) Ran-
dom samples are taken from the interpolated time series
including a minimum distance of d = 0.5 tu between suc-
cessive samples roughly mimicking processor dead times
in laser Doppler applications. The mean sampling rate
remains α = 0.5 tu−1. For the two test cases with nomi-

Fig. 2 Illustration of the four test cases of irregular sampling (valid samples denoted by black dots, invalid samples denoted by white dots, times
with forbidden sampling denoted by elongated white spaces in time)
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nally equidistant sampling, each sample of the simulated
time series gets a corresponding weight of either one
or zero from a random process to mimic outliers and
data gaps. (c) Individual samples are taken out indepen-
dently, with a probability of 50%. (d) Series of valid and
invalid samples are specified, where the state of validity
changes with a probability of 20% at each time step. The
last procedure also yields 50% invalid samples on aver-
age, where the length of valid data or that of invalid data
has an exponential distribution with a mean of five sam-
ples and the sequence of weights gets correlated. However,
in all four cases a mean sampling rate of α = 0.5 tu−1

is set. Figure 2 illustrates the sampling schemes for the
four test cases and the appropriate classification accor-
ding to the definition in the abstract. The arrangement of
the four test cases will remain the same for all following
figures in the Section 3.

2.7 Appropriate correction coefficients for the test cases
For the two cases (a) and (c) with purely random sampling

and independent sampling instances, the offset of the
spectrum can be determined from the mean data rate
and the spectrum can be corrected directly by remov-
ing the predicted offset as given in Eqs. (18) resp. (19).
More effort is needed to derive the correction coefficients
βk and βk for the two cases (b) and (d) with correlation
between the sampling intervals. Since all properties of the
signal generation including the rules of the sampling pro-
cess are known, particular bias correction coefficients can
be derived analytically. The following derivations are valid
for the particular sampling schemes used as examples in
the present simulation only. Other sampling schemes need
their own derivations.
For case (b) with random sampling in continuous time

with a continuous distribution of sampling intervals and
with a minimum time d between successive samples, let
P0(n) be the probability to have n samples within one time
unit . For n samples in a time unit, the number of
pairs of samples (self- and cross-products) is n2. Themean
number β0 of pairs between all samples within a time unit

Fig. 3 Single realizations of the signals. a Ideal random and independent samples from continuous time with a continuous distribution of sampling
intervals, b random samples from continuous time with a continuous distribution of sampling intervals with processor dead time, c independent
outliers in equidistant time with a discrete distribution of sampling intervals, and d correlated data gaps in equidistant time with a discrete
distribution of sampling intervals (au, amplitude unit; tu, time unit)
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Fig. 4Mean of the primary estimates (no correction) of the power spectral density from 1000 signals. a Ideal random and independent samples
from continuous time with a continuous distribution of sampling intervals, b random samples from continuous time with a continuous distribution
of sampling intervals with processor dead time, c independent outliers in equidistant time with a discrete distribution of sampling intervals, and d
correlated data gaps in equidistant time with a discrete distribution of sampling intervals (au, amplitude unit; tu, time unit)

is then derived by summation over all possible numbers n
of samples as

β0 =
1
d +1

n=0
n2P0(n) (21)

with the normalized minimum time between samples
d = d . To derive the probabilities P0(n), also sam-
ples before the investigated time unit must be considered,
because their delay times influence the probabilities of fol-
lowing samples within the actually investigated time unit.
The probability to have no preceding sample effecting the
actually investigated time unit is Pe = 1−α d (e - empty).
The probability to have the actually investigated time unit
fully covered by a delay time of a preceding event is Pf =
α max{0, d −1} (f - full). In this case, no events can occur
within the actually investigated time unit. This case occurs
only, if d > 1. The probability to have the actually inves-
tigated time unit partially covered by the delay time from

a preceding sample event is Pp = α min{1, d } (p - par-
tial). The probability to have n samples in a time unit
consists of the sum of these three cases, yielding

P0(n) = Pe(n) + Pf (n) + Pp(n), (22)

where Pe(n), Pf (n), and Pp(n) are the probabilities to
obtain n samples within the investigated time unit with
either no preceding sample to be considered, time unit
fully covered by the delay time of a preceding sample or
partially covered. The probabilities of these three cases
finally are

Pe(n) = 1 − α d P n, 1 − d max {0, n − 1}
−P n + 1, 1 − nd (23)

Pf (n) = α max{0, d − 1} for n = 0
0 otherwise (24)
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Pp(n) =
min{1,d }

0

α P n, x − d max {0, n − 1}

−P n + 1, x − nd dx (25)

where P (n, x) is the probability to have at least n samples
within the (normalized) fraction x of a time unit, which is

P (n, x) = 1 −
n−1

j=0

(α x)j

j!
e−α x (26)

with the normalized rate of further samples α in
the remaining time between dead time intervals after
assumed samples

α = α

1 − α d
(27)

For the mean number βk of pairs of samples between
two different time units (k = 0), only cross-products
between any sample within one time unit and any sam-
ple in the other time unit can contribute. Therefore, one
sample is assumed at time ta in one time unit and another
sample is assumed at time tb in a different time unit, which
is k time units away from the initial one. Because the auto-
correlation is symmetric, only k > 0 is discussed. For
k < 0, |k| can be used instead of k to derive all required
parameters. The sample at ta can occur at any time within
its time unit with a mean rate of α. Normalization with
the time unit yields ta = ta . Then, the sample at ta
occurs with the mean rate of α . The occurrence of the
sample at tb = tb depends on the number n of further
samples between ta and tb. However, reducing the time
to the remaining fraction between all dead times of other
samples, the mean rate of the sample at tb is α as in the
case for k = 0 above. The number of further samples n
between ta and tb and their dead times nd plus the dead
time of the initial sample at ta, finally leads to the depen-
dence between the sampling instances.Without limitation
of generality, ta shall occur in time unit number zero. The
mean number of pairs of samples between the two time
units then becomes

βk =
0.5

−0.5

|k|+0.5

|k|−0.5

dtadtbα α

tb−ta
d −1

n=0

P(n, tb − ta − (n + 1)d ) (28)

where P(n, x) is the probability to have n further samples
within the (normalized) time interval x, which is

P(n, x) = (α x)n

n!
e−α x (29)

From the mean number of pairs of samples βk the cor-
rection coefficients βk (for all k, including k = 0) can be
obtained as

βk = βk
α 2 (30)

For case (d) with correlated data gaps in discrete time
and with a discrete distribution of sampling intervals, the
probability is derived that a valid sample occurs at a given
time unit and another one occurs |k| time units away. The
probability of having a valid sample at the first instance
is α = 0.5 in this simulation. For a given valid sample at
the first instance, the probability of having another valid
sample at the second instance depends on the number of
possible changes n from valid data to invalid data and vice
versa. Between the two instances up to |k| changes can
occur with a mean number of changes per time unit of
c = 0.2 in this simulation. A change occurs at a given time
instance with a probability of c , no change occurs with
a probability of 1 − c . An odd number of changes yields
an invalid sample at the second instance, while an even
number of changes yields a valid sample. The changes can
occur at any time instance between 1 and |k| , where
the result depends on their number but not on their order.
The mean number βk of pairs of samples then becomes

βk = α

|k|
2

n =0

|k|
n

1 − c |k|−n c n

= α

2
1 + 1 − 2c |k| (31)

with n = 2n , which finally leads to the correction coeffi-
cients

βk = βk
α 2 = 1 + 1 − 2c |k| (32)

3 Results and discussion
In Fig. 3, individual realizations of the signals are shown
taken from the same original simulation of the discrete
time series from the moving-average process. Random
sampling at instances from continuous time therefore
involves continuous interpolation of the signal before
sampling. The plots show the valid samples as impulses to
better illustrate the different sampling schemes. In Fig. 3a
and b, the sampling instances are chosen from continuous
time with a continuous distribution of sampling intervals,
where in Fig. 3a the sampling is purely random, while in
Fig. 3b, a minimum distance between consecutive samples
is complied. In Fig. 3c and d, the sampling is nominally
equidistant (with missing samples) yielding a discrete dis-
tribution of sampling intervals. While in Fig. 3c, only
individual samples (outliers) are taken out independently,
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Fig. 5Mean of the power spectral density with correction factors derived theoretically from the sampling models from 1000 signals. a Ideal random
and independent samples from continuous time with a continuous distribution of sampling intervals, b random samples from continuous time with
a continuous distribution of sampling intervals with processor dead time, c independent outliers in equidistant time with a discrete distribution of
sampling intervals, and d correlated data gaps in equidistant time with a discrete distribution of sampling intervals (au, amplitude unit; tu, time unit)

longer sequences of missing samples (data gaps) can be
identified in Fig. 3d. However, in all four cases, a mean
sampling rate of α = 0.5 tu−1 is obtained on average.
From the signals simulated, direct spectral estimates

are derived, based on the Fourier spectrum and based
on Lomb-Scargle’s method. In Fig. 4, the mean spectra
averaged over 1000 realizations of the simulation and
the spectral estimates are shown for the four sampling
schemes. A significant bias can be identified in all four
sampling cases between the estimate of the power spectral
density and the spectrum of the simulated process. Note
that this estimate of the power spectral density, however, is
a bias-free estimate of the observed signal. The deviation
between the estimated spectrum and that of the simu-
lated process is a direct result of the irregular sampling.
The sampling scheme changes the spectral content of the
observed signal in comparison to the spectrum of the
process under observation. Therefore, the spectral com-
position of the primary estimates directly depends on the
characteristics of the sampling scheme. Accordingly, the

four averages of biased primary spectra in Fig. 4a–d also
have different spectral characteristics, while no significant
differences can be observed between the estimates based
on the Fourier spectrum and that based on Lomb-Scargle’s
method.
From the primary estimates of the power spectral den-

sity, the procedures from above are used for bias cor-
rection. For random sampling (no correlation) with a
continuous distribution of sampling intervals (case a) and
for independent individual outliers from equidistant data
(case c), the offset of the spectrum is corrected directly
as in Eq. (18) resp. Eq. (19) using α = 0.5 tu−1. For cor-
related random sampling with a continuous distribution
of sampling intervals and for correlated data gaps with a
discrete distribution of sampling intervals the spectrum
is transformed into the corresponding correlation func-
tion first. The latter one is corrected as in Eq. (9) using
the appropriate coefficients βk , which have been derived
according to the models of the different sampling schemes
in Eqs. (28)–(30) and (32). Finally, the improved estimates
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of the correlation function are transformed back into
the corresponding spectra for comparison. The results in
Fig. 5 show that for all four sampling schemes, the bias
correction succeeds, yielding bias-free estimates of the
power spectral density for the two test cases (c) and (d)
with discrete distribution of sampling intervals. In cases
(a) and (b) with continuous distribution of sampling inter-
vals, the obtained spectra are almost bias-free only. For
the highest frequencies resolved, a small aliasing error
remains, leading to slightly increased values. Due to the
random sampling in continuous time, this alias has no
sharp boundary frequency [4] and it is occurring smeared
over a certain range of frequencies. However, this error is
a result of the insufficient information extraction by the
sampling process from the observed process and the bias
correction introduced here is not able to add this missing
information.
In Fig. 6, the correction coefficients βk are derived

directly from the data sets as in Eq. (20) and the corre-
sponding correlation functions are corrected as in Eq. (9)
and transformed back into the corresponding spectra for

all four sampling schemes. Also, in this case, except for
the small remaining aliasing error in cases (a) and (b), the
correction succeeds for all investigated sampling schemes.

4 Conclusion
Random sampling of time series causes a systematic error
of the spectral estimation compared to the observed pro-
cess. Lomb-Scargle’s method for the spectral estimation of
irregularly sampled time series, often used as a reference,
does not show any advantages in this respect compared to
a direct spectral estimation using the Fourier transform.
The systematic errors caused by the irregular sampling
can be analyzed, predicted, and finally corrected using the
methods presented in this paper. The presented methods
are not limited to certain sampling models. Beyond the
present simulation, this is the possibility to obtain bias-
free direct spectral estimates from irregularly sampled
data, independent of the spectral composition of the sam-
pling scheme. The only requirements for the presented
correction method are that the irregular sampling is inde-
pendent of the values of the observed process and that

Fig. 6Mean of the power spectral density with empirical correction factors from 1000 signals. a Ideal random and independent samples from
continuous time with a continuous distribution of sampling intervals, b random samples from continuous time with a continuous distribution of
sampling intervals with processor dead time, c independent outliers in equidistant time with a discrete distribution of sampling intervals, and d
correlated data gaps in equidistant time with a discrete distribution of sampling intervals (au, amplitude unit; tu, time unit)
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enough pairs of samples can be built for any lag time.
If this is given, even static patterns of the irregular sam-
pling function can be corrected, like periodic drop outs.
Also, data sequences with significant parts missing can
still be processed to appropriate spectra or corresponding
correlation functions. Therefore, this is the first universal
solution of bias-free spectral and correlation estimation
for a broad range of irregular sampling processes.
This work is part of a broader attempt to bias-free esti-

mation of correlation functions and spectra from irregu-
larly sampled data. The authors’ experience from data pro-
cessing in laser Doppler applications inspired to enhance
the methods developed there towards more universality
and towards an extended range of applications. Next steps
are measures to reduce the estimation variance, since the
conservation of information about the spectral content
seems to be less efficient with irregular sampling thanwith
equidistant sampling. Other methods of spectral analy-
sis like quantization of arrival times or slot correlation,
known from laser Doppler applications also are poten-
tial candidates for broader use and are object of further
investigations.
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