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Abstract

Resolution probability is the most important indicator for signal parameter estimator,
including estimating time delay, and joint Doppler shift and time delay. In order to get
high-resolution probability, some procedures have been suggested such as
compressed sensing. Based on the signal’s sparsity, compressed sensing has been used
to estimate signal parameters in recent research. After solving �0 norm Optimization
problem, the methods would achieve high resolution. These methods all require high
SNR. In order to improve the performance in low SNR, a novel implementation is
proposed in this paper. We give a sparsity representation for the generalized matched
filter output, or ambiguity function, while the former methods utilized the sparsity
representation for channel response in time domain. By deconvolving the generalized
matched filter output, 2-dimension estimation for Doppler shift and time delay would
be gotten by greedy method, optimization method based on relaxation, or Bayesian
method. Simulation demonstrates our method has better performance in low SNR
than the method by the channel sparsity representation.
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1 Introduction
Compressed sensing, or compressive sampling, was proposed by David Donoho,
Emmanuel Candès, Terence Tao, and Justin Romberg in the early twenty-first cen-
tury. Compressed sensing started the revolution in sampling theorem and had got
breakthrough applications in image compression, magnetic resonance imaging (MRI),
super-broadband communication.
For signal parameter estimation, the source number is usually limited and the chan-

nel is sparse. Due to sparsity, compressed sensing (CS) can improve the performance
for signal parameters estimation, including time delay, frequency, direction, and multi-
ple parameters. In 2002, Cotter [1] proposed time delay estimation method for sparse
channel by matching pursuit. Considering orthogonality, Karabulut [2] used orthogo-
nal matching pursuit (OMP) to improved convergence speed and accuracy. Addressing
the joint estimation issue, Doppler frequency and time delay were estimated by OMP
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and basis pursuit (BP) algorithms [3]. In [3], Beger also compared compressed sensing
methods with subspace methods, such as MUSIC and ESPRIT, and the former outper-
formed the latter over realistic underwater acoustic channels. For direction estimation,
Malioutov explored second-order cone programming to solve �1 norm problem and
obtained signal’s directions. Combined �1 norm and �2 norm by exploiting orthogonal-
ity between the noise-subspace and the overcomplete basis matrix, Zheng [4] proposed
a weighted �1,2-SVD (singular value decomposition) method to get more sparse solution
for direction. Based on the likelihood ratio test with a sparsity promoting prior, ref [5] and
[6] jointly detect the unknown number of noise-like jammers and angles of arrival. Anal-
ogously, the methods in [4–7] can also be used to estimate time delay and frequency after
signal sparse reconstruction.
Signal parameters estimation by compressed sensing can achieve more excellent res-

olution than conventional methods such as generalized cross correlation methods [8],
WRELAX (weight Fourier transform and relaxation) [9] methods and subspace meth-
ods such as MUSIC [10, 11]. But there are still some current problems: how to construct
the overcomplete basis matrix when the true parameters are not in the finite set; the
computation quantity is too large for high dimension scenario; moreover, the algorithms
performance would be degraded severely in low SNR. Got inspired from image process-
ing, Yang [12] suggested a deconvolvedmethod to estimate direction, which also belonged
to CS methods and obtained gain by beamforming. The method reconstructed sparse
model in beam domain and could achieve better performance in low SNR. Convolution
and deconvolution are common operations for image processing. Richardson and Lucy
[13] proposed a classical deconvolution method, Richardson-Lucy deconvolution. These
methods [14, 15] restore a blurred image to a clear one by deconvolution.
As insights from the operation, time delay estimationmay obtain gain from thematched

filter. Matched filter is an indispensable step for active sonar, radar, and communication.
Many conventional algorithms take advantage of the cross-relation between the trans-
mitted signal and the received signal. Ideally, the peaks should appear in the points that
are corresponding to the true time delays, and matched filter or correlation methods are
usually used to estimate wideband signal’s time delay. However, for narrowband signal,
the matched filter output or correlation function is flat and difficult to search the peak
especially for two close echoes. An ideal matched filter output is expected that nonzeros
only being according to the time delays. According to the sparsity of the ideal matched
filter output, or correlation function, a deconvolved method is suggested in this paper.
Simulation results are provided to compare the methods based on the sparsity of channel
impulse and matched filter output, and the new method has better performance in low
SNR.

2 Signal model
Assume a single receiver, the received signal is

x(t) =
K∑

i=1
ais(t − ti) + n(t), 0 < t < T , (1)

where s(t) is the emitted source signal,T is the observation time and should be larger than
s(t)’s time duration. n(t) is Gaussian white noise. The received signal x(t) is modeled by
a sum of K echoes from multiple paths, with different time delay ti and amplitude varia-
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tion ai. When the targets are nearly immobile, Doppler shifts can be ignored. Otherwise,
Eq. (1) should be written as,

x(t) =
K∑

i=1
ais(ξi(t − ti)) + n(t). (2)

where ξi is Doppler scale, ξi = c+vi
c−vi , and vi is the ith echo’s radial velocity to the platform

(to be positive when closer). Usually, the velocity is far less than acoustic speed c, and
ξi ≈ 1 + 2vi

c . If narrowband hypothesis is satisfied, BT � c/(2vi), where B is bandwidth,
Doppler frequency �fi can take place of Doppler scale. Doppler frequency shift �fi =
(ξi − 1)fc and fc is carrier frequency. Under the condition, Eq. (2) can be simplified as:
x(t) = ∑K

i=1 ais(t − ti) exp(j2π�fit) + n(t). Otherwise, the duration compression cannot
be ignored.

3 Methods
3.1 Previous method by channel estimation

In order to estimate time delay, some researchers have suggested to solve the problem by
CS methods. Most of the methods are based on sparse channel impulse response estima-
tion. In [16], the observed signal is considered as a convolution of the transmitted signal
and channel impulse response.

x(t) = s(t) ⊗ h(t) + n(t), (3)

where the channel impulse response h(t) includes all of the paths: h(t) = ∑K
i aiδ(t − ti).

With a sampling period Ts and N samples, Eq. (1) can be written as discrete form:

x(k) =
K∑

i=1
ais(k − τi) + n(k), n = 0, 1, . . . ,N − 1, (4)

where x(k) = x(t)|t=k/fs , τi = ti/fs. The sampling error is ignored, and the true time delay
must be contained in the set {0,Ts, (N−1)Ts}. Due to Doppler effect, the received signal’s
pulse would be different from the transmitted signal’s. And it cannot be ignored for wide-
band signal or larger Doppler scale. As a result, in order to cover the pulse variation, N
should be larger than the maximum time delay plus duration. Then, the observed signal
can be rewritten as cyclic convolution form.

x = Sh + n (5)

where x =[ x(0) . . . x((N − 1)Ts)]. The cyclic convolution matrix is constructed as 6.

S =

⎡

⎢⎢⎢⎢⎢⎣

s(0) 0 . . . 0

s(Ts) s(0)
. . .

...
...

... . . . 0
s((N − 1)Ts) s((N − 2)Ts) . . . s((N − Nt)Ts)

⎤

⎥⎥⎥⎥⎥⎦
(6)

In time domain, the number of paths is much smaller than that of time samples. As
a result, a sparsity representation of signal is obtained as Eq. (5). The channel impulse
should be sparse and estimated by solving the �0-norm problem:

min
h

‖x − Sh‖2 + λ‖h‖0 (7)
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�0-norm counts the number of the vector’s nonzero components. The other form of �0-
norm minimization is K-sparse approximation,

min
h

‖x − Sh‖2, s.t.‖h‖0 ≤ K (8)

In [16], we suggested to estimate time delays by relaxing �0-norm problem, includ-
ing greedy algorithm and �1-norm problem by convex optimization. The compressed
sensing methods achieved super resolution. However, some pseudo-peaks exist and the
performance would degrade severely in low SNR scenario.

3.2 1D estimation for time delay

Matched filter(MF) is a necessary operation in radar/sonar area to improve SNR. Fur-
thermore, it is also the most conventional method for time delay estimation. The targets’
time delays can be estimated by searching the peaks of matched filter (MF) output or
cross-correlation function. Definite y(τ ) to be “matched filter spectrum,” as the output for
matched filter in time domain:

y(τ ) =
∥∥∥∥
∫

x(t)s∗(t − τ)dt
∥∥∥∥
2
, (9)

where (∗) is complex conjugate symbol. When τ = ti, the output y(τ ) will reach
maximum. The discrete form is:

y(m) =
∥∥∥∥∥
1
N

N−1∑

k=0
s∗(k − m)x(k)

∥∥∥∥∥

2

,m = 0, 1, . . . ,N − 1. (10)

and y =[ y(0), y(1), . . . , y(N − 1)]T.
The resolving probability of time delay by MF depends on waveform’s Rayleigh restric-

tion. For continuous wave (CW), the resolving probability of time delay is 0.6T , while for
linear frequency modulated wave (LFM), it is 0.88/B. The MF output cannot distinguish
the multipath components that are closer than the resolution limit.
Different from the channel estimation by CS, another sparsity presentation could be

gotten after matched filter. For the ideal scenario that only one echo with time delay
q ∗ Ts is received and the noise is absent, the square of MF output should be yq(m) =
‖ 1
N

∑N−1
k=0 s∗(k − m)s(k − q)‖2,m = 0, 1, . . . ,N − 1. Note y(m,q) = yq(m), Y q is the

square vector of the single echo’s MF output, Y q =[ y(0,q), y(1,q), . . . , y(N−1,q)]T. In order
to eliminate the impact of amplitude variation, normalized is suggested here, Cq =
Y q/‖Y q‖1.
In the time delay set of T = {0,Ts, . . . , (N − 1)Ts}, a “matched filter spectrum” matrix

is obtained, C =[C0,C1, . . . ,C(N−1)]. C ∈ C
N×N . Hence, if the ideal echo’s time delay is

in the time delay set, the square vector of the single echo’s MF output must be one of the
matrix C’s column vector. Considering the amplitude variation, y = σ 2

1Ceq. eq is a unit
vector that the qth element is 1 and the others are zero, eq =[ 0, 0 . . . , 1, . . . , o]T.
For the signal as Eq. (4), the square vector of the MF output should be the sum of some

weighted column vector.

y = Cŷ, (11)

where ŷ =[ ŷ(0), ŷ(1) . . . , ŷ(N − 1)]T, and ŷ(m) = ∑K
i=1 a2i δ(m − τi). Therefore, ŷ is a

sparse vector. Accordingly, another sparsity representation is obtained as Eq. (11). C is
the dictionary matrix.
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The computation quantity can be cut down by pre-estimation. For instance, the echoes’
time delays can be restricted in the duration [ 0,Nt − 1] by priori knowledge. Hence, the
dimension of C is reduced to Nt × Nt , while S ∈ C

N×Nt .

3.3 2D estimation for time delay and Doppler

Considering the Doppler scale, a 2-dimension estimation is needed. The finite set of 2-D
parameter (τ , ξ) is defined as

τ ∈ {0,Ts, (Nt − 1)Ts},
ξ ∈ {ξ0, ξ0 + �ξ , . . . , ξ0(Nd − 1)�ξ}, (12)

where ξ is Doppler scale, and ξ0 is the possible minimum, �ξ is the step.
In [16], the channel impulse response h(t, ξ) on the Doppler-time plane can be

formulated as:

h(t, ξ) =
K∑

i=1
aiδ(t − τi)δ(ξ − ξi) = ai, t = τi, andξ = ξi

0, else
(13)

Then, the 2D channel impulse ĥ can be estimated by compressed sensing, and

min
ĥ

‖x − Ŝĥ‖2 + λ‖ĥ‖0 (14)

The dictionary matrix Ŝ is expanded to aN × (NtNd) matrix, Ŝ =[ S1 . . . SNd ], where

Si =

⎡

⎢⎢⎢⎢⎢⎣

s(0) 0 . . . 0

s(ξiTs) s(0)
. . .

...
...

... . . . 0
s(ξi(N − 1)Ts) s(ξi(N − 2)Ts) . . . s(ξi(N − Nt)Ts)

⎤

⎥⎥⎥⎥⎥⎦
(15)

The 2D channel estimation by CS has similar problem as 1-dimension (1D) estimation
in low SNR. Similar to the deconvolution of matched filter output, the deconvolution on
the Doppler-time plane could be expanded by a generalized matched filter or ambiguity
function. The generalized matched filter output is:

y(τ , ξ) =
∥∥∥∥
∫

s∗[ ξ(t − τ)] x(t)dt
∥∥∥∥
2
, (16)

Ideally, we suppose the true time delays and Doppler scales are in the set of 2-D param-
eter as Eq. (12). Naturally, time delay and Doppler scale can be estimated jointly by
deconvolution, which can be also achieved by compressed sensing. The dictionary matrix
must be expanded to high dimension, Ĉ =[Y 0,0,Y 1,0, . . . ,YNt−1,0,Y 0,1, . . . ,YNt−1,Nd−1].
Y q,p is the generalized matched filter output vector when x(t) = s(ξp(t − τq)). Hence,
Ĉ ∈ C

(Nd∗Nt)×(Nd∗Nt), while Ŝ ∈ C
N×(Nd∗Nt).

After sparsity presentation is accomplished through channel impulse or generalized
matched filter output, joint time delay and Doppler can be estimated by solving �0 norm
optimization problem. In order to seeking solutions to NP (nondeterministic polynom-
inal) hard problem, there are three categories of approaches, including optimization
methods based on relaxation, greedy algorithms, or Bayesian methods. The methods
by using convex optimization have stable calculation accuracy but large computation
quantity. Furthermore, it is difficult to choose the relax factor. MFCUSS (multiple focal
underdetermined system solver) in [17] solves an underdetermined system of equations
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Fig. 1 Time delay estimation in time-domain

Fig. 2 Time delay estimation in MF-domain
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Fig. 3 Resolution probability by different methods vs. SNR

and obtains similar precision as convex method. Greedy algorithms, such as basis pursuit,
matching pursuit [1], and orthogonal matching pursuit [18], can get faster computation
speed but lower resolving power. Based on the statistical properties of received signal,
such as Laplace prior [19] or Gaussian prior [20], sparse Bayesian methods can com-
plement �0 problem by linear programming or greedy algorithms. Without the need
for sparsity in iterative process, Bayesian methods have better universality, but higher
computation complexity.

4 Result and discussion
To demonstrate the algorithm, 1D and 2D estimation simulation are both designed. The
CS methods based on channel impulse response and matched filter output(generalized
matched filter output) are illustrated and compared.

4.1 1D estimation for time delay

Considering the target stable. The transmitted signal is CW signal and has duration
T = 200 with normalized sampling frequency; the center frequency is 0.2. The received

Table 1 Computation time of the methods

Method GOMP GOMPMF SDP SDPmf SBL SBLmf

Computation time/s 0.0103 0.0033 0.08 0.09 2.98 1.29
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Fig. 4 Resolution probabilities by different methods vs. SNR

signal length is 300, composed of two echoes with time delays as 40 and 45. When
SNR = 5dB, the time delays are estimated by channel impulse presentation and MF pre-
sentation as in Figs. 1 and 2. In the numerical simulation, time delays are estimated
by several CS tools that have been introduced in the last section, including orthogonal
matching pursuit [21] (GOMP), optimization method based on relaxation [22] (SDP),
and sparse Bayesian learning [23] (SBL). The methods with sparsity representation for
matched filter output are short as MF-domain methods, and a subscript “mf ” will be used
to identify themethods. Meanwhile, themethods with sparsity representation for channel
impulse response are short as time-domain methods (Fig. 3).

Table 2 Directions and SNR of the signals

Simulation 1 Simulation 2

Signal 1 Signal 2 Signal 1 Signal 2

Wave type CW CW LFM LFM

Frequency 0.2 0.2 0.1-0.2 0.1-0.2

Doppler shift scale 0.004 0.005 0.005 0.005

Time delay 40 45 40 40

SNR /dB 5 5 5 5
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Fig. 5 2D estimation for CW

Comparative values of various methods of computation time is as demonstrated in
Table 1. SNR is set as 18 dB to ensure the two echoes can be distinguished, and aver-
age computation time is obtained through 200 times simulations. Optimization methods
based on relaxation (SDP) are solved by quadratic programming, and get similar compu-
tation time. Other than that, the computation time of MF-domain methods are smaller
than those of time-domain methods. The advantage is due to the smaller dimension of
dictionary matrix in MF-domain methods.
Change SNR to observe different probability. τ1 and τ2 are the true time delays, while τ̂1

and τ̂2 are the estimated ones. In a single trial, if |τ̂i − τi| ≤ ζ , and |τ̂1 − τ1| + |τ̂2 − τ2| <

|τ̂1 − τ̂2|, we consider the two echoes are distinguished successfully; otherwise, they are
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Fig. 6 2d estimation for LFM

distinguished unsuccessfully. ζ denotes error threshold to determine weather the echo
estimated exactly, and it should be a small positive. It is set as 1 herein. Nest experiments
are done and Nsucess ones are successful. Then, Nsucess/Nest is resolution probability. For
different SNRs, 200 times Monte Carlo simulation are operated to get resolution prob-
ability as in Fig. 4a. SBL gains the optimal resolution especially by MF-domain method.
In fact, evidently, resolution probabilities of MF-domain methods are all better than
those of the corresponding time-domain methods, especially in the scenario of low SNR.
SBL requires largest computation quantity, and the convergence index must be set prop-
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erly. Otherwise, some convergence problem may be occurred. GOMP is an iterative
method with the minimal computation requirement, and the resolution is worst. SDP’s
performance is between the two.
The result in Fig. 4a is in scenario of CW signal. More illustration will be analyzed

for LFM signal. For matched filter, large bandwidth would improve the resolving ability
deservedly. Simulated results demonstrate that the methods will also get gain from band-
width both in time domain andMF domain. Illustrated in Fig. 4b, c, and d, the normalized
bandwidth are 0.05, 0.1, and 0.2 respectively. The resolution probability is increased with
the bandwidth.

4.2 2D estimation for time delay and Doppler

Considering the Doppler scale, the 2D estimation are shown in this subsection. The
simulation conditions are listed in Table 2.
The super resolution estimations are obtained after sparsity representation in Figs. 5

and 6, when the transmitted pulses are CW and LFM respectively. SNR is set as 5 dB, and
both of the methods can separate the two echoes in the two simulations. Moreover, MF-
domain method gives more “clear” results than time-domain method as shown in the two
figures.

5 Conclusion
In this paper, time delay estimation by compressed sensing has been studied. Besides
the sparsity representation for channel impulse response, a novel sparsity representa-
tion for the matched filter output or correlation function is proposed. According to the
matched filter output deconvolution, super resolution results would be obtained. For
joint Doppler shift and time delay estimation, the method could be expanded by the
generalized matched filter or ambiguity function. Compared to the channel sparsity rep-
resentation, our method has better performance especially in low SNR scenario and
smaller computation quantity for 1D estimation.
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