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Abstract
Amathematical model for the dynamic systems of SMA involving theABC-fractional
derivative is considered in this manuscript. We examine the basic reproduction
number and analyze the stability of the equilibrium points. We prove the theoretical
results of the existence and Ulam’s stability of the solutions for the proposed model
using fixed point theory and nonlinear analytic techniques. Using the Adams type
predictor–corrector rule for theABC-fractional integral operator, a numerical scheme
is devised for obtaining the approximate solution of the proposed model. Different
numerical plots corresponding to various fractional orders are presented. In addition,
we demonstrate a numerical simulation for the transmission of social media addiction
in two cases with the basic reproduction numbers greater than and less than one.
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1 Introduction
During the last decade, social media (SM) has plentifully influenced the world. SM is the
most popular technology which collects the wide knowledge of all attention and makes
up the society or the individual who interacts with communication. People use SM ad-
vantage via internet access in many parts such as business, education, health, science, and
amusement [1, 2]. Some of them access information of their curious attention from SM

platforms such as Google. Some find old or new friends, earn money, present work, make
advertising products, buy or sell their goods via Facebook, Instagram, and Youtube. Some
make a money transaction via bank applications. Some share information via Twitter and
play games from various applications [3–5]. Although SM has become a part of our daily
lives, it can negatively cause or affect people’s daily lives or relatives in families. One of
the significant causes of more serious negative impacts does the social media addiction
(SMA). SMA is a state that is used to refer to people who spend so much time in their
daily life on SM and feel anxious when they cannot make a visit to a SM platform [6, 7].
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In fact, SMA is a kind of addictive problem, the same as in psychology alcoholism, smok-
ing, game addiction, etc. Mathematical models play an important role in the construction
to study the dynamic behavior of these problems. For instance, Nyabadza and co-workers
[8, 9] formulated methamphetamine transmission in South Africa by building an appro-
priate mathematical model. In 2018, Ma and co-workers [10] have studied the stability
of the synthetic drugs transmission epidemic models with psychological addicts. In 2019,
Liu et al. [11] have analyzed a synthetic drug transmission model with treatment and dis-
cussed global stability and backward bifurcation of the model. Huo and co-workers [12]
introduced a new alcoholism model with treatment and effect of Twitter. The stability of
the equilibrium point is determined by using the basic reproductive number and numer-
ical results are conducted. Li and Guo [13] constructed an online game addiction model.
They used the basic reproduction number to obtain some properties and analyzed the sta-
bility of the equilibria. Pontriagin’s maximum principle was employed to solve the optimal
control strategy and numerical simulations are presented in their work. In 2020, Samad et
al. [14] presented and analyzed a mathematical model of the smoking tobacco epidemic
in Bangladesh. They derived the basic reproduction number and established the stability
theorem for all equilibria. In 2021, Alemneh and Alemu [15] formulated and analyzed a
mathematical model for the transmission dynamics of SMA in the human population as
follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = π + γ ηR – βσAS – (κ + μ)S ,
dE
dt = βσAS – (δ + μ)E ,
dA
dt = αδE – (μ + ε + ρ)A,

dR
dt = (1 – α)δE + εA – (μ + η)R,

dQ
dt = κS + (1 – γ )ηR – μQ.

(1.1)

For system (1.1), the human population is divided into five groups representing addic-
tion status. Group 1: the people who are not addicted but susceptible to SMA are de-
noted by susceptible populations; S(t). Group 2: the people who use SM less frequently
but do not grow to the addicted stage are denoted by exposed populations; E(t). Group
3: the people who are addicted to SM and spent most of their time on it are denoted by
addicted populations; A(t). Group 4: the people who recovered from SMA are denoted
by recovered populations; R(t). Group 5: the people who permanently do not use and
quit using SM are denoted by Q(t). The total number of members of the population is
N = S + E + A + R + Q. The assumptions of the system are the following: the spread of
the problem of SMA happens within a closed environment, and it does not depend on
sex, race, and human social state, members mix homogeneously, and the social media ad-
dictive people will transmit to non-addictive people when they are in connecting with the
pressure of addictive. Moreover, the differential equations of this system are integrated by
using the social media addictive cycle, which starts from entering susceptible individuals
into the population with a rate of π . They are motivated by addictive people with the pres-
sure contact rate of β and the probability transmission rate of σ and move to the exposed
state. Some susceptible individuals move to a group of people who permanently do not
use social media at a rate of κ . The exposed individuals are separated into two groups,
one becomes addicted and moves to the addicted group at rate αδ, and another recovered
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with treatment at a rate (1 – α)δ. Some addicted individuals move to the recovered group
at a rate of ε or died due to the overusing of addiction on social media at a rate of ρ . The
recovered individuals become again susceptible individuals at a rate of γ η or permanently
stop using social media at a rate (1 – γ )η. Finally, all the people in every compartment
have a natural death rate of μ. Alemneh and Alemu also investigated the stability of the
equilibrium points and employed Pontryagin’s maximum principle for the optimal control
system.

More than three centuries have passed, fractional-order derivative models have been ap-
plied in several areas of real-world problems such as science, economics, engineering, bi-
ology, and epidemiology with various types of fractional calculus such as Liouville–Caputo
(LC), Caputo–Katugumpola (CK), Caputo–Fabrizio (CF), and fractal–fractional (FF);
see [16–26]. In addition, some of the authors incorporated the fractional-order deriva-
tive to addictive problems. In 2017, Singh et al. [27] studied and analyzed the existence
and uniqueness of the smoking model under the CF sense. In 2019, Dokuyucu [28] pre-
sented a fractional order of an alcoholism model with CF type and investigated the ex-
istence and uniqueness of the model by using a fixed-point theorem. In 2021, Alraba-
iah and co-workers [29] have formulated and analyzed a new mathematical model for
LC-fractional tobacco smoking with snuffing class. They accomplished a numerical so-
lution of the proposed model via the generalized Adams–Bashforth–Moulton method.
The Atangana–Baleanu–Caputo (ABC) fractional derivative operator is one of the most
popular fractional derivative operators. A fractional-order derivative was first roused into
operation by Atangana and Baleanu [30] under the rule of a generalized Mittag-Leffler
function in the part of a non-singular and non-local kernel. In many real-world problems,
the ABC-fractional derivative produces better results [31–41].

Based on the best of our knowledge of previous research, no manuscripts have looked
into the mathematical model of SMA with various fractional derivatives. We initiated the
ABC-fractional derivative to the SMA model which is the creativity of this manuscript.
Consequently, we are interested in filling this gap by considering the SMA model studied
by [15] under the ABC-fractional derivative with order φ. We replace the integer order
of model (1.1) with a fractional-order system. Therefore, the classical model (1.1) extend
to fractional-order system by replacing the ordinary time derivative d/dt to the ABC-
fractional derivative ABC

t D
φ

0 . It is remarkable that in the classical model (1.1), the dimen-
sion of the right-hand side of fractional model has dimensions (time)–1, but the dimensions
of the left-hand side of ABC-fractional model equal to (time)–φ . In addition, when we
convert an integer order system into fractional-order φ, we also have to consider all non-
negative parameters in the term of φ-exponent for making the equal dimensions of the
differential equations. The modified SMA transmission model with the ABC-fractional
derivative suggested a model as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABC

t D
φ

0S(t) = πφ + γ φηφR – βφσφAS – (κφ + μφ)S ,
ABC

t D
φ

0E(t) = βφσφAS – (δφ + μφ)E ,
ABC

t D
φ

0A(t) = αφδφE – (μφ + εφ + ρφ)A,
ABC

t D
φ

0R(t) = (1 – αφ)δφE + εφA – (μφ + ηφ)R,
ABC

t D
φ

0Q(t) = κφS + (1 – γ φ)ηφR – μφQ,

(1.2)
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with the initial conditions (S ,E ,A,R,Q) = (S0,E0,A0,R0,Q0). The descriptions of all pa-
rameters are shown in Table 1. The main aim of this manuscript is to analyze the con-
ditions that influence the transmission of this addiction to cease or, opposite, turn into
epidemic, based on the number of reproductions. We establish the existence and unique-
ness of the solutions for the proposed model via the famous fixed point theorems. The
context of various Ulam’s stability is provided to discuss the stability analysis. Finally, we
use the novel numerical method represented by Alkahtani et al. [42] to find the approxi-
mated solutions of the SMA for different fractional orders.

This paper is organized as follows: in Sect. 2, we present definitions and basic concepts
of ABC-fractional differential and integral operators after that we provide fixed point in-
struments to proof the our existence results. We computed the equilibrium points, the
basic reproduction numbers, and established the stability analysis of the proposed model
in Sect. 3. In Sect. 4, the uniqueness of the solution for the ABC-fractional SMA system
(1.2) is examined by employing Banach’s fixed point theorem and the existence result is
proved by Krasnoselskii’s fixed point theorem. In Sect. 5, the four types of Ulam’s sta-
bility concepts of the model (1.2) are investigated. Numerical simulations to support the
theoretical results are provided in Sect. 6. Finally, the discussion and conclusion of the
proposed model are presented in Sect. 7.

2 Preliminaries
This section presents relevant and necessary essential concepts used in this manuscript.

Definition 2.1 ([30]) Let f ∈ C1[a, b], a < b, be a function, and 0 ≤ φ ≤ 1. Then the ABC-
fractional derivative of a function f of order φ is defined as follows:

ABC

t D
φ
a f (t) =

AB(φ)
1 – φ

∫ t

a
Eφ

[

–
φ

1 – φ
(t – s)φ

]
d
dt

f (s) ds, t > a > 0, (2.1)

whereAB(φ) = 1–φ+φ/
(φ) is normalization function, characterized byAB(0) = AB(1) =
1, and the Mittag-Leffler function Eφ is given as

Eφ(z) =
∞∑

k=0

zk


(φk + 1)
, z,φ ∈C, Re(φ) > 0,

with C the set of complex numbers.

Definition 2.2 ([30]) The ABC-fractional integral of a function f ∈ C1(a, b) is defined as
follows:

AB

t Iφ
a f (t) =

1 – φ

AB(φ)
f (t) +

φ

AB(φ)
(φ)

∫ t

a
(t – s)φ–1f (s) ds, t > a > 0.

Clearly, if φ = 0 and φ = 1 then we get the initial function and the ordinary integral,
respectively. Furthermore, we can calculate the Laplace transform of (2.1) and obtain the
following result:

L
{
ABC

t D
φ
a f (t)

}
(p) =

AB(φ)pφL{f (t)}(p) – pφ–1f (a)
(1 – φ)(pφ + φ

1–φ
)

. (2.2)



Kongson et al. Advances in Difference Equations        (2021) 2021:356 Page 5 of 29

Lemma 2.3 ([30]) The AB-fractional derivative and AB-fractional integral of a functions
f ∈ C1(a, b) satisfies the Newton–Leibniz equality

AB

t Iφ
a
(
ABC

t D
φ
a f (t)

)
= f (t) – f (a).

Lemma 2.4 ([43]) For two functions, f , g ∈H1(a, b), a < b, the AB-fractional derivative of
a function f and g satisfies the following inequality:

∥
∥ABC

t D
φ
a f (t) – ABC

t D
φ
a g(t)

∥
∥ ≤H

∥
∥f (t) – g(t)

∥
∥.

Lemma 2.5 (Generalized mean value theorem [44]). Let g(t) ∈ C[a, b], and let ABC

t D
φ
a g(t) ∈

C[a, b] when φ ∈ (0, 1]. Then we have g(t) = g(a) + 1

(φ)

ABC

t D
φ
a g(ξ )(t – a)φ , when ξ ∈ [a, t],

∀t ∈ (a, b].

It is easy to see by Lemma 2.5 that, if g(t) ∈ [a, b], ABCt D
φ
a g(t) ∈ [a, b], and ABC

t D
φ
a g(t) ≥ 0,

∀t ∈ (a, b] when φ ∈ (0, 1], then the function g(t) is nondecreasing, and if ABC

t D
φ
a g(t) ≤ 0,

∀t ∈ (a, b], then the function g(t) is nonincreasing ∀t ∈ [a, b].

Definition 2.6 (Contraction mapping [45]) Let X be a Banach space. Then the operator
T : X → X is a contraction if

‖T x – T y‖ ≤ L‖x – y‖, ∀x, y,∈ X, 0 < L < 1.

Lemma 2.7 (Banach’s fixed point theorem [45]) Let D be a non-empty closed subset of a
Banach space E. Then any contraction mapping Q from D into itself has a unique fixed
point.

Lemma 2.8 (Krasnoselskii’s fixed point theorem [45]) Let D be a non-empty, closed, con-
vex subset of a Banach space E. Let T1, T2 be two operators such that (i) T1x + T2y ∈ D,
∀x, y ∈ D; (ii) T1 is compact and continuous; (iii) T2 is a contraction mapping. Then there
exists z ∈ D such that T1z + T2z = z.

3 Model analysis
3.1 Positivity invariant region
Now, we will discuss the positivity invariant region and steady states of theABC-fractional
SMA model (1.2).

The following lemma guarantees the boundedness of the ABC-fractional SMA model
(1.2).

Lemma 3.1 The closed set

� :=
{

(S ,E ,A,R,Q) ∈ R
5
+ : 0 < N (t) ≤ πφ

μφ

}

, N (t) = S(t)+E(t)+A(t)+R(t)+Q(t),

is positively invariant with regard to the ABC-fractional SMA model (1.2).
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Proof Assume that the set (S ,E ,A,R,Q) with any solution of the ABC-fractional SMA

model (1.2), and N (t) = S(t) +E(t) +A(t) +R(t) +Q(t) represents the total population. By
applying Lemma 2.5, we obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ABC

t D
φ

0S(t) = πφ + γ φηφR≥ 0,
ABC

t D
φ

0E(t) = βφσφAS ≥ 0,
ABC

t D
φ

0A(t) = αφδφE ≥ 0,
ABC

t D
φ

0R(t) = (1 – αφ)δφE + εφA≥ 0,
ABC

t D
φ

0Q(t) = κφS + (1 – γ φ)ηφR≥ 0.

(3.1)

It follows from (3.1) that any of the solutions of (1.2) is nonnegative and remains in R
5
+.

Taking into account that all the parameters are positive, by all the equations of the model,

ABC

t D
φ
0N (t) = πφ – μφN – ρφA≤ πφ – μφN (t). (3.2)

Taking the Laplace transform into (3.2), we obtain

N (t) ≤
(

AB(φ)
AB(φ) + (1 – φ)μφ

N (0) +
(1 – φ)πφ

AB + (1 – φ)μφ

)

Eφ,1

(

–
φμφ

AB(φ) + (1 – φ)μφ
tφ

)

+
φπφ

AB(φ) + (1 – φ)μφ
Eφ,φ+1

(

–
φμφ

AB(φ) + (1 – φ)μφ
tφ

)

,

where Eφ1,φ2 is the two parameter Mittag-Leffler function, defined by

Eφ1,φ2 (z) =
∞∑

k=0

zk


(φ1k + φ2)
.

Taking into account the asymptotic behavior of the Mittag-Leffler function, we have

Eφ1,φ2 (z) ≈
ω∑

K=1

z–K


(φ2 – φ1K)
+ O

(|z|–1–ω
)
, |z| → ∞,

φ1π

2
<

∣
∣arg(z)

∣
∣ ≤ π .

It is easily to observe that N (t) → πφ/μφ as t → ∞. Then the solution of the ABC-
fractional SMA model (1.2) for initial conditions in � stays in � for every t > 0. Hence, �
is positively invariant region with regard to the ABC-fractional SMA model (1.2). �

All solutions which begin at the boundary of the positivity invariant region � converge
to this region. We can analyze the flow generated by the ABC-fractional SMA model (1.2)
for consideration because it is biologically and epidemiologically significant.

3.2 Equilibrium points and reproduction numbers
In this subsection, we are going to obtain the equilibrium points of the ABC-fractional
SMA model (1.2). We are to find equilibrium points and the basic reproduction num-
ber of the considered model. There are two species of probable equilibrium points of the
model. The primary one is the point where no disease in the group is called the disease-
free equilibrium point. For the process of finding the equilibrium point, we will be setting
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the right-hand side of the ABC-fractional SMA model (1.2) is equal to zero. Hence, the
disease-free equilibrium point of the ABC-fractional SMA model (1.2) with E = A = 0 is
given by

E0 =
(
S0,E0,A0,R0,Q0) =

(
πφ

κφ + μφ
, 0, 0, 0,

κφπφ

μφ(μφ + κφ)

)

.

For analyzing the stability of the equilibrium points, the basic reproduction number R0

of the ABC-fractional SMA model (1.2) is very important. To find R0, we only focus on
the infectious classes of the ABC-fractional SMA model (1.2). The transmission matrix F
and transition matrix V for the next-generation matrix method [46, 47] are obtained as

F =

⎛

⎜
⎝

0 βφπφσφ

κφ+μφ 0
0 0 0
0 0 0

⎞

⎟
⎠ , V =

⎛

⎜
⎝

δφ + μφ 0 0
–αφδφ μφ + εφ + ρφ 0

–(1 – αφ)δφ –εφ ηφ + μφ

⎞

⎟
⎠ .

Then the next-generation matrix is given by

FV –1 =

⎛

⎜
⎝

βφσφπφαφδφ

(κφ+μφ )(δφ+μφ )(μφ+εφ+ρφ )
βφσφπφ

(κφ+μφ )(μφ+εφ+ρφ ) 0
0 0 0
0 0 0

⎞

⎟
⎠ . (3.3)

Therefore, the spectral radius of the next-generation matrix (3.3) provides the number
of the basic reproduction number (R0). Hence,

R0 = r
(
FV –1) =

βφπφαφδφσφ

(κφ + μφ)(δφ + μφ)(μφ + εφ + ρφ)
,

where r denotes the spectral radius. As we know, R0 is the information for measuring an
infectious disease transmission potential over time. When R0 > 1, then theABC-fractional
SMA model (1.2) has an endemic equilibrium point E∗. For finding E∗, we will be setting
this fact that all variables S(t), E(t), A(t), R(t), and Q(t) of (1.2) are nonnegative. It can
be calculated by equating each equation of (1.2) equal to zero as follows:

ABC

t D
φ

0S(t) = ABC

t D
φ

0E(t) = ABC

t D
φ

0A(t) = ABC

t D
φ

0R(t) = ABC

t D
φ

0Q(t) = 0.

Then we obtain E∗ = (S∗,E∗,A∗,R∗,Q∗), where

S∗ =
(μφ + δφ)(μφ + εφ + ρφ)

αφβφδφσφ
,

E∗ =
ξ2

ξ1
,

A∗ =
αφδφE∗

μφ + εφ + ρφ
,

R∗ =
ξ2 + (δφ + μφ)E∗

γ φηφ
,

Q∗ =
κφS∗ + (1 – γ φ)ηφR∗

μφ
.
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Here

ξ1 =
γ φηφδφ

μφ + ηφ

(

1 – αφ +
εφαφ

μφ + εφ + ρφ

)

– δφ – μφ ,

ξ2 =
(κφ + μφ)(δφ + μφ)(μφ + εφ + ρφ)

βφσφαφδφ
– πφ .

Next, we will state the theorem and guarantee thatE0 of theABC-fractional SMAmodel
(1.2) is locally asymptotically stable.

Theorem 3.2 The disease-free equilibrium point E0 of the ABC-fractional SMA model
(1.2) is locally asymptotically stable if R0 < 1 and unstable otherwise.

Proof We omit the details of the proof. See Theorem 3.3 in [15]. �

4 Existence results of SMA transmission mathematical model
In this section, we examine the existence and uniqueness of solutions for the fractional
SMA model with the help of Banach’s and Krasnoselskii’s fixed point theorems.

For the sake of simplicity, we rewrite the ABC-fractional SMA model (1.2) as follows:

⎧
⎨

⎩

ABC

t D
φ
0 �(t) = �(t,�(t)),

�(0) = �0 ≥ 0, 0 < t < T < ∞,
(4.1)

where the vector �(t) = (G1,G2,G3,G4,G5) represents the state variables and � is a con-
tinuous vector function such that

� =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

G1

G2

G3

G4

G5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

πφ + γ φηφR – βφσφAS – (κφ + μφ)S
βφσφAS – (δφ + μφ)E

αφδφE – (μφ + εφ + ρφ)A
(1 – αφ)δφE + εφA – (μφ + ηφ)

κφS + (1 – γ φ)ηφR – μφQ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (4.2)

with the initial conditions �0 = (S0,E0,A0,R0,Q0). Applying the fractional integral of
ABC to both sides of (4.1), we get the integral equation:

�(t) = �0 +
1 – φ

AB(φ)
�

(
t,�(t)

)
+

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1�

(
s,�(s)

)
ds,

where AB(φ) is defined as in Definition 2.1. Let us define a Banach space by using J =
[0, T] as W = C(J ,R5

+) under the norm defined as ‖�‖ = ‖S‖ + ‖E‖ + ‖A‖ + ‖R‖ + ‖Q‖
where

sup
t∈J

{∣
∣�(t)

∣
∣
}

= sup
t∈J

{∣
∣S(t)

∣
∣
}

+ sup
t∈J

{∣
∣E(t)

∣
∣
}

+ sup
t∈J

{∣
∣A(t)

∣
∣
}

+ sup
t∈J

{∣
∣R(t)

∣
∣
}

+ sup
t∈J

{∣
∣Q(t)

∣
∣
}

.

4.1 Uniqueness result via Banach’s fixed point theorem
The existence and uniqueness result of the ABC-fractional SMA system (1.2) will be in-
vestigated by using Banach’s fixed point theorem.
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Theorem 4.1 Assume that a quadratic vector function � : J ×R
5 →R is continuous such

that:
(H1) there exists a positive constant L� > 0 such that

∣
∣�

(
t,�1(t)

)
– �

(
t,�2(t)

)∣
∣ ≤ L�

∣
∣�1(t) – �2(t)

∣
∣,

for any �1, �2 ∈W and for all t ∈ J .
If

(
1 – φ

AB(φ)
+

Tφ

AB(φ)
(φ)

)

L� < 1, (4.3)

then the ABC-fractional SMA model (1.2) has a unique solution on J .

Proof Earlier, we converted the initial value problem (4.1) (which is equivalent to the
ABC-fractional SMA model (1.2)) into a fixed point problem � = T �. We consider an
operator T : W →W that is defined by

(T �)(t) = �0 +
1 – φ

AB(φ)
�

(
t,�(t)

)
+

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1�

(
s,�(s)

)
ds. (4.4)

Clearly, the initial value problem (4.1) has a solution if and only if the operator T has fixed
points.

Suppose that K1 is a nonnegative constant such that supt∈J |�(t, 0)| = K1 < +∞. Define
a bounded, closed, and convex subset Br1 of W , where Br1 = {� ∈W : ‖�‖ ≤ r1}, where r1

is chosen such that

r1 ≥ ‖�0‖ + ( 1–φ

AB(φ) + Tφ
max

AB(φ)
(φ) )K1

1 – ( 1–φ

AB(φ) + Tφ
max

AB(φ)
(φ) )L�

.

The proof proceeds in two steps.
Step I. We show that T Br1 ⊂ Br1 .
For any � ∈ Br1 , we have

∣
∣(T �)(t)

∣
∣ ≤ ‖�0‖ +

1 – φ

AB(φ)
∣
∣�

(
t,�(t)

)∣
∣ +

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1∣∣�

(
s,�(s)

)∣
∣ds

≤ ‖�0‖ +
1 – φ

AB(φ)
[∣
∣�

(
t,�(t)

)
– �(t, 0)

∣
∣ +

∣
∣�(t, 0)

∣
∣
]

+
φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1[∣∣�

(
s,�(s)

)
– �(s, 0)

∣
∣ +

∣
∣�(s, 0)

∣
∣
]

ds

≤ ‖�0‖ +
1 – φ

AB(φ)
[L�r1 + K1] +

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1 ds[L�r1 + K1]

≤ ‖�0‖ +
(

1 – φ

AB(φ)
+

Tφ
max

AB(φ)
(φ)

)

[L�r1 + K1] ≤ r1,

which implies that T Br1 ⊂ Br1 .
Step II. We show that T is a contraction.



Kongson et al. Advances in Difference Equations        (2021) 2021:356 Page 10 of 29

For each �1, �2 ∈ Br1 and for any t ∈ J , we obtain

∣
∣(T �1)(t) – (T �2)(t)

∣
∣

≤ 1 – φ

AB(φ)
∣
∣�

(
t,�1(t)

)
– �

(
t,�2(t)

)∣
∣

+
φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1∣∣�

(
s,�1(s)

)
– �

(
s,�2(s)

)∣
∣ds

≤ (1 – φ)L�

AB(φ)
∣
∣�1(t) – �2(t)

∣
∣ +

φL�

AB(φ)
(φ)

∫ t

0
(t – s)φ–1∣∣�1(s) – �2(s)

∣
∣ds

≤
(

1 – φ

AB(φ)
+

Tφ
max

AB(φ)
(φ)

)

L�‖�1 – �2‖,

which implies that

‖T �1 – T �2‖ ≤
(

1 – φ

AB(φ)
+

Tφ
max

AB(φ)
(φ)

)

L�‖�1 – �2‖.

Since [(1 – φ)/AB(φ) + Tφ
max/(AB(φ)
(φ))] < 1, by the conclusion of Banach’s fixed point

theorem (Lemma 2.7), T is called a contraction. Hence, T has a unique fixed point that is
a unique solution of the ABC-fractional SMA model (1.2) on J . �

4.2 Existence result via Krasnoselskii’s fixed point theorem
Theorem 4.2 Assume that (H1) holds and

(H2) there exists positive constant M�, N� such that

∣
∣�

(
t,�(t)

)∣
∣ ≤ M�

∣
∣�(t)

∣
∣ + N�,

for any � ∈W and for all t ∈ J .
Then there exists at least one solution of the ABC-fractional SMA model (1.2), provided
that (1 – φ)L�/AB(φ) < 1.

Proof Consider T : W → W defined by (T �)(t) = (T1�)(t) + (T2�)(t), � ∈ W , t ∈ J ,
where

(T1�)(t) = �0 +
1 – φ

AB(φ)
�

(
t,�(t)

)
, (4.5)

(T2�)(t) =
φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1�

(
s,�(s)

)
ds. (4.6)

Let Br2 = {� ∈W : ‖�‖ ≤ r2} be a closed convex set with the radius

r2 ≥ ‖�0‖ + ( 1–φ

AB(φ) + Tφ
max

AB(φ)
(φ) )N�

1 – ( 1–φ

AB(φ) + Tφ
max

AB(φ)
(φ) )M�

. (4.7)

The proof is divided into the following four steps.
Step I. We show that T1�1 + T2�2 ∈ Br2 for all �1, �2 ∈ Br2 .
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By the operator (4.5), we get

∣
∣(T1�1)(t) + (T2�2)(t)

∣
∣

≤ ‖�0‖ +
1 – φ

AB(φ)
∣
∣�

(
t,�1(t)

)∣
∣ +

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1∣∣�

(
s,�2(s)

)∣
∣ds

≤ ‖�0‖ +
1 – φ

AB(φ)
[M�r2 + N�] +

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1 ds[M�r2 + N�]

≤ ‖�0‖ +
(

1 – φ

AB(φ)
+

Tφ
max

AB(φ)
(φ)

)

N� +
(

1 – φ

AB(φ)
+

Tφ
max

AB(φ)
(φ)

)

M�r2

≤ r2,

which yields ‖T1�1 + T2�2‖ ≤ r2. Then T1�1 + T2�2 ∈ Br2 for all �1, �2 ∈ Br2 .
Step II. We show that T1 is a contraction.
For any �1, �2 ∈ Br2 , we have

∣
∣(T1�1)(t) – (T1�2)(t)

∣
∣ ≤ 1 – φ

AB(φ)
∣
∣�

(
t,�1(t)

)
– �

(
t,�2(t)

)∣
∣

≤ (1 – φ)L�

AB(φ)
∣
∣�1(t) – �2(t)

∣
∣,

which implies that ‖T1�1 – T1�2(t)‖ ≤ [(1 – φ)L�/(AB(φ))]‖�1 – �2‖. Since (1 –
φ)L�/AB(φ) < 1, T1 is contraction.

Step III. We show that T2 is continuous and compact.
Let �n be a sequence such that �n → � ∈W . Then, for any t ∈ J , we have

∣
∣(T2�n)(t) – (T2�)(t)

∣
∣ ≤ φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1∣∣�

(
s,�n(s)

)
– �

(
s,�(s)

)∣
∣ds

≤ Tφ
max

AB(φ)
(φ)
∥
∥�

(·,�n(·)) – �
(·,�(·))∥∥.

Since � is continuous, T2 is also continuous. Then we get ‖T2�n – T2�‖ → 0, as n → ∞.
Next, T2 is uniformly bounded on Br2 (T2 is relatively compact). For any � ∈ Br2 and t ∈ J ,
one has

∣
∣(T2�)(t)

∣
∣ ≤ φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1∣∣�

(
s,�(s)

)∣
∣ds ≤ Tφ

max

AB(φ)
(φ)
[M�r2 + N�].

This shows that T2 is uniformly bounded on Br2 .
Step IV. We show that T2 is equicontinuous.
Assume that τ1, τ2 ∈ J with 0 ≤ τ1 < τ2 ≤ T and � ∈ Br2 . Then we have

∣
∣(T2�)(τ2) – (T2�)(τ1)

∣
∣

≤ φ

AB(φ)
(φ)

∣
∣
∣
∣

∫ τ2

0
(τ2 – s)φ–1�

(
s,�(s)

)
ds –

∫ τ1

0
(τ1 – s)φ–1�

(
s,�(s)

)
ds

∣
∣
∣
∣
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≤ φ[M�r2 + N�]
AB(φ)
(φ)

∣
∣
∣
∣

∫ τ2

τ1

(τ2 – s)φ–1 ds +
∫ τ1

0

[
(τ2 – s)φ–1 – (τ1 – s)φ–1]ds

∣
∣
∣
∣

≤ M�r2 + N�

AB(φ)
(φ)
(
2|τ2 – τ1|φ

)
. (4.8)

Clearly, this being independent of � ∈ Br2 , the right-hand side of (4.8) tends to zero as
τ2 → τ1. Therefore, by the Arzelá–Ascoli theorem, T2Br2 is relatively compact and T2 is
completely continuous. Hence, by Krasnoselskii’s fixed point theorem (Lemma 2.8), which
implies that the ABC-fractional SMA model (1.2) has at least one solution on J . �

5 Ulam’s stability analysis of SMA transmission mathematical model
This section is discussing some sufficient conditions for the ABC-fractional SMA model
(1.2) that will correspond to the assumptions of the four types of Ulam’s stability as UH
stability, generalized UH stability, UHR stability, and generalized UHR stability.

Firstly, we will state Ulam’s stability theorem, which will be used in this section. Let ϕ > 0
be a positive real number and F� : J →R

+ be a continuous function. We consider

∣
∣ABC
t D

φ
0 ξ (t) – �

(
t, ξ (t)

)∣
∣ ≤ ϕ, ∀t ∈ J , (5.1)

∣
∣ABC
t D

φ
0 ξ (t) – �

(
t, ξ (t)

)∣
∣ ≤ ϕF�(t), ∀t ∈ J , (5.2)

∣
∣ABC
t D

φ
0 ξ (t) – �

(
t, ξ (t)

)∣
∣ ≤F�(t), ∀t ∈ J , (5.3)

where ϕ = max(ϕj)T for j = 1, 2, 3, 4, 5.

Definition 5.1 (UH Stability) The ABC-fractional SMA model (1.2) is called UHR stable
if there exists a real number C� > 0 such that, for every ϕ > 0 and for each solution ξ ∈W
of (5.1), there exists a solution � ∈W of the ABC-fractional SMA model (1.2) with

∣
∣ξ (t) – �(t)

∣
∣ ≤ C�ϕ, t ∈ J , (5.4)

where ϕ = max(ϕj)T and C� = max(C�j )T for j = 1, 2, 3, 4, 5.

Definition 5.2 (Generalized UH Stability) The ABC-fractional SMA model (1.2) is called
generalized UH stable if there exists a function F� ∈ C(R+,R+) with F�(0) = 0 such that,
for each solution ξ ∈W of (5.2), there exists a solution � ∈W of theABC-fractional SMA

model (1.2) such that

∣
∣ξ (t) – �(t)

∣
∣ ≤F�(ϕ), t ∈ J , (5.5)

where ϕ = max(ϕj)T and F� = max(F�j )T for j = 1, 2, 3, 4, 5.

Definition 5.3 (UHR Stability) The ABC-fractional SMA model (1.2) is called UHR sta-
ble with respect to F� ∈ C(J ,R+) if there exists a real number KF�

> 0 such that for each
ϕ > 0 and for each solution ξ ∈ W of (5.2) there exists a solution � ∈ W of the ABC-
fractional SMA model (1.2) with

∣
∣ξ (t) – �(t)

∣
∣ ≤ KF�

ϕF�(t), t ∈ J , (5.6)

where ϕ = max(ϕj)T, KF�
= max(KF�j

)T, and F� = max(F�j )T for j = 1, 2, 3, 4, 5.
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Definition 5.4 (Generalized UHR Stability) The ABC-fractional SMA model (1.2) is
called generalized UHR stable with respect to F� ∈ C(J ,R+) if there exists a real number
KF�

> 0 such that, for each solution ξ ∈ W of (5.3), there exists a solution � ∈ W of the
ABC-fractional SMA model (1.2) with

∣
∣ξ (t) – �(t)

∣
∣ ≤ KF�

F�(t), t ∈ J , (5.7)

where KF�
= max(KF�j

)T and F� = max(F�j )T for j = 1, 2, 3, 4, 5.

Remark 5.5 It is easy to see that (1) Def. 5.1 ⇒ Def. 5.2; (2) Def. 5.3 ⇒ Def. 5.4; (3) Def. 5.3
for F�(·) = 1 ⇒ Def. 5.1.

Remark 5.6 A function ξ ∈W is a solution of (5.1) if and only if there exists a function w ∈
W (which depends on ξ ) such that the following properties: (i) |w(t)| ≤ ϕ, w = max(wj)T,
∀t ∈ J . (ii) ABC

t D
φ
0 ξ (t) = �(t, ξ (t)) + w(t), ∀t ∈ J .

Remark 5.7 A function ξ ∈ W is a solution of (5.2) if and only if there exists a function
v ∈W (which depends on ξ ) such that we have the following properties: (i) |v(t)| ≤ ϕF�(t),
v = max(vj)T, ∀t ∈ J . (ii) ABC

t D
φ
0 ξ (t) = �(t, ξ (t)) + v(t), ∀t ∈ J .

5.1 The UH stability and generalized UH stability results
Lemma 5.8 Let φ ∈ (0, 1]. If ξ ∈W is a solution of (5.1), then ξ is a solution of the following
inequality:

∣
∣
∣
∣ξ (t) – Rξ (t) –

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1�

(
s, ξ (s)

)
ds

∣
∣
∣
∣

≤
(

1 – φ

AB(φ)
+

Tφ
max

AB(φ)
(φ)

)

ϕ, (5.8)

where Rξ (t) = ξ0 + 1–φ

AB(φ)�(t, ξ (t)).

Proof Let ξ be a solution of (5.1). In view of Remark 5.6 (2), we have

⎧
⎨

⎩

ABC

t D
φ
0 ξ (t) = �(t, ξ (t)) + w(t), t ∈ J ,

ξ (0) = ξ0 ≥ 0.
(5.9)

Then the approximate solution of (5.9) can be written

ξ (t) = ξ0 +
1 – φ

AB(φ)
�

(
t, ξ (t)

)
+

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1�

(
s, ξ (s)

)
ds

+
1 – φ

AB(φ)
w(t) +

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1w(s) ds.



Kongson et al. Advances in Difference Equations        (2021) 2021:356 Page 14 of 29

By using Remark 5.6(i),

∣
∣
∣
∣ξ (t) – Rξ (t) –

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1�

(
s, ξ (s)

)
ds

∣
∣
∣
∣

≤ 1 – φ

AB(φ)
∣
∣w(t)

∣
∣ +

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1∣∣w(s)

∣
∣ds

≤
(

1 – φ

AB(φ)
+

Tφ
max

AB(φ)
(φ)

)

ϕ.

Therefore, the inequality (5.8) is obtained. �

Theorem 5.9 Assume that � : J × R → R is continuous for every � ∈ W . If (H1) and
(4.3) are fulfilled, then the ABC-fractional SMA model (1.2) is UH stable on J .

Proof Suppose that ϕ > 0 and let ξ ∈W be any solution of (5.1). Let � ∈W be the unique
solution of the model (4.1),

⎧
⎨

⎩

ABC

t D
φ
0 �(t) = �(t,�(t)), t ∈ J ,

�(0) = �0,

where

�(t) = �0 +
1 – φ

AB(φ)
�

(
t,�(t)

)
+

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1�

(
s,�(s)

)
ds.

By using Lemma 5.8 with (H1), we have

∣
∣ξ (t) – �(t)

∣
∣ ≤

∣
∣
∣
∣ξ (t) – R�(t) –

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1�

(
s,�(s)

)
ds

∣
∣
∣
∣

≤
∣
∣
∣
∣ξ (t) – Rξ (t) –

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1�

(
s, ξ (s)

)
ds

∣
∣
∣
∣

+
φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1∣∣�

(
s, ξ (s)

)
ds – �

(
s,�(s)

)∣
∣ds

≤
(

1 – φ

AB(φ)
+

Tφ
max

AB(φ)
(φ)

)

ϕ +
φL�

AB(φ)
(φ)

∫ t

0
(t – s)φ–1∣∣ξ (s) – �(s)

∣
∣ds

≤
(

1 – φ

AB(φ)
+

Tφ
max

AB(φ)
(φ)

)

ϕ +
Tφ

maxL�

AB(φ)
(φ)
∣
∣ξ (t) – �(t)

∣
∣.

This implies that |ξ (t) – �(t)| ≤ C�ϕ, where

C� =
1–φ

AB(φ) + Tφ
max

AB(φ)
(φ)

1 – Tφ
maxL�

AB(φ)
(φ)

.

Hence, the ABC-fractional SMA model (1.2) is UH stable. �

Corollary 5.10 In Theorem 5.9, if we set F�(ϕ) = C�ϕ such that F�(0) = 0, then the ABC-
fractional SMA model (1.2) is generalized UH stable.
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5.2 The UHR stability and generalized UHR stability results
Before proving, we give the following assumption:

(H3) There exists an increasing function F� ∈W and there exists λF�
> 0, such that, for

any t ∈ J , we have the following integral inequality:

AB

0 Iφ
t F�(t) ≤ λF�

F�(t). (5.10)

Lemma 5.11 Let φ ∈ (0, 1]. If ξ ∈ W is a solution of (5.2), then ξ is a solution of the fol-
lowing inequality:

∣
∣
∣
∣ξ (t) – Rξ (t) –

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1�

(
s, ξ (s)

)
ds

∣
∣
∣
∣ ≤ ϕλF�

F�(t), (5.11)

where Rξ (t) = ξ0 + 1–φ

AB(φ)�(t, ξ (t)).

Proof Let ξ be a solution of (5.2). In view of Remark 5.7(ii), we have

⎧
⎨

⎩

ABC

t D
φ
0 ξ (t) = �(t, ξ (t)) + v(t), t ∈ J ,

ξ (0) = ξ0 ≥ 0.
(5.12)

Then the solution of (5.12) can be written

ξ (t) = ξ0 +
1 – φ

AB(φ)
�

(
t, ξ (t)

)
+

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1�

(
s, ξ (s)

)
ds

+
1 – φ

AB(φ)
v(t) +

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1v(s) ds.

By using Remark 5.7(i), we have

∣
∣
∣
∣ξ (t) – Rξ (t) –

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1�

(
s, ξ (s)

)
ds

∣
∣
∣
∣

≤ 1 – φ

AB(φ)
∣
∣v(t)

∣
∣ +

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1∣∣v(s)

∣
∣ds

≤ ϕλF�
F�(t).

Hence, the inequality (5.8) is obtained. �

Theorem 5.12 Assume that � : J ×R → R is continuous for every � ∈ W . If (H1), (H3)
and (4.3) are fulfilled, then the ABC-fractional SMA model (1.2) is UHR stable on J .

Proof Let ϕ > 0 and ξ ∈ W be the solution of (5.3). Let � ∈ W be the unique solution of
the model (4.1). By using Lemma 5.11, (H1), and (H3), we have

∣
∣ξ (t) – �(t)

∣
∣ ≤

∣
∣
∣
∣ξ (t) – R�(t) –

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1�

(
s,�(s)

)
ds

∣
∣
∣
∣

≤
∣
∣
∣
∣ξ (t) – Rξ (t) –

φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1�

(
s, ξ (s)

)
ds

∣
∣
∣
∣
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+
φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1∣∣�

(
s, ξ (s)

)
ds – �

(
s,�(s)

)∣
∣ds

≤ ϕλF�
F�(t) +

φL�

AB(φ)
(φ)

∫ t

0
(t – s)φ–1∣∣ξ (s) – �(s)

∣
∣ds

≤ ϕλF�
F�(t) +

Tφ
maxL�

AB(φ)
(φ)
∣
∣ξ (t) – �(t)

∣
∣.

This yields the inequality |ξ (t) – �(t)| ≤ KF�
ϕF�(t), where

KF�
=

λF�

1 – Tφ
maxL�

AB(φ)
(φ)

.

Therefore, the ABC-fractional SMA model (1.2) is UHR stable. �

Corollary 5.13 In Theorem 5.12, if we set ϕ = 1 into |ξ (t) – �(t)| ≤ KF�
ϕF�, then the

ABC-fractional SMA model (1.2) is generalized UHR stable.

6 Numberical results
In this section, we introduce a numerical solution scheme for the ABC-fractional SMA

model (1.2) and apply it to obtain a numerical simulation.

6.1 Numerical method
The SMA model under consideration via ABC-fractional derivative is numerically sim-
ulated by using the novel numerical method as proposed in [42]. For this purpose, we
look again at the SMA model in the form of (4.1) and (4.2). Employing the AB-fractional
integral operator on both sides of (4.1), we get

S(t) = S0 +
1 – φ

AB(φ)
G1(t,S ,E ,A,R,Q)

+
φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1

G1(s,S ,E ,A,R,Q) ds,

E(t) = E0 +
1 – φ

AB(φ)
G2(t,S ,E ,A,R,Q)

+
φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1

G2(s,S ,E ,A,R,Q) ds,

A(t) = A0 +
1 – φ

AB(φ)
G3(t,S ,E ,A,R,Q)

+
φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1

G3(s,S ,E ,A,R,Q) ds,

R(t) = R0 +
1 – φ

AB(φ)
G4(t,S ,E ,A,R,Q)

+
φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1

G4(s,S ,E ,A,R,Q) ds,

Q(t) = Q0 +
1 – φ

AB(φ)
G5(t,S ,E ,A,R,Q)

+
φ

AB(φ)
(φ)

∫ t

0
(t – s)φ–1

G5(s,S ,E ,A,R,Q) ds.
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Adapting the Adams type predictor–corrector tool represented by [42] to obtain the
numerical approximation of the right-hand side of the system. The first step of the algo-
rithm, under the assumption that the solution is in the closed interval [0, T], this inter-
val addressed by setting h = T/N , tk = hk (k = 0, 1, 2, . . ., N ). Consequently, the corrector
schemes of variable order integral form of ABC-fractional derivative are given as follows:

Sk+1 = S0 +
(1 – φ)hφ

AB(φ)
(φ + 2)
G1

(
tk+1,Sp

k+1,Ep
k+1,Ap

k+1,Rp
k+1,Qp

k+1
)

+
φhφ

AB(φ)
(φ + 2)

k∑

j=0

�j,k+1G1(tj,Sj,Ej,Aj,Rj,Qj),

Ek+1 = E0 +
(1 – φ)hφ

AB(φ)
(φ + 2)
G2

(
tk+1,Sp

k+1,Ep
k+1,Ap

k+1,Rp
k+1,Qp

k+1
)

+
φhφ

AB(φ)
(φ + 2)

k∑

j=0

�j,k+1G2(tj,Sj,Ej,Aj,Rj,Qj),

Ak+1 = A0 +
(1 – φ)hφ

AB(φ)
(φ + 2)
G3

(
tk+1,Sp

k+1,Ep
k+1,Ap

k+1,Rp
k+1,Qp

k+1
)

+
φhφ

AB(φ)
(φ + 2)

k∑

j=0

�j,k+1G3(tj,Sj,Ej,Aj,Rj,Qj),

Rk+1 = R0 +
(1 – φ)hφ

AB(φ)
(φ + 2)
G4

(
tk+1,Sp

k+1,Ep
k+1,Ap

k+1,Rp
k+1,Qp

k+1
)

+
φhφ

AB(φ)
(φ + 2)

k∑

j=0

�j,k+1G4(tj,Sj,Ej,Aj,Rj,Qj),

Qk+1 = Q0 +
(1 – φ)hφ

AB(φ)
(φ + 2)
G5

(
tk+1,Sp

k+1,Ep
k+1,Ap

k+1,Rp
k+1,Qp

k+1
)

+
φhφ

AB(φ)
(φ + 2)

k∑

j=0

�j,k+1G5(tj,Sj,Ej,Aj,Rj,Qj),

where

�j,k+1 =

⎧
⎨

⎩

kφ+1 – (k – φ)(k + 1)φ , if j = 0,

(k – j + 2)φ+1 + (k – j)φ+1 – 2(k – j + 1)φ+1, if 1 ≤ j ≤ k.

Further, the predictor terms Sp
k+1, Ep

k+1, Ap
k+1, Rp

k+1, Qp
k+1 are described as

Sp
k+1 = S0 +

1 – φ

AB(φ)
G1(tk ,Sk ,Ek ,Ak ,Rk ,Qk)

+
φ

AB(φ)
2(φ)

k∑

j=0

ωj,k+1G1(tj,Sj,Ej,Aj,Rj,Qj),

Ep
k+1 = E0 +

1 – φ

AB(φ)
G2(tk ,Sk ,Ek ,Ak ,Rk ,Qk)

+
φ

AB(φ)
2(φ)

k∑

j=0

ωj,k+1G2(tj,Sj,Ej,Aj,Rj,Qj),
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Ap
k+1 = A0 +

1 – φ

AB(φ)
G3(tk ,Sk ,Ek ,Ak ,Rk ,Qk)

+
φ

AB(φ)
2(φ)

k∑

j=0

ωj,k+1G3(tj,Sj,Ej,Aj,Rj,Qj),

Rp
k+1 = R0 +

1 – φ

AB(φ)
G4(tk ,Sk ,Ek ,Ak ,Rk ,Qk)

+
φ

AB(φ)
2(φ)

k∑

j=0

ωj,k+1G4(tj,Sj,Ej,Aj,Rj,Qj),

Qp
k+1 = Q0 +

1 – φ

AB(φ)
G5(tk ,Sk ,Ek ,Ak ,Rk ,Qk)

+
φ

AB(φ)
2(φ)

k∑

j=0

ωj,k+1G5(tj,Sj,Ej,Aj,Rj,Qj),

where

ωj,k+1 =
hφ

φ

(
(k + 1 – j)φ – (k – j)φ

)
, 0 ≤ j ≤ k.

6.2 Numerical simulations
In this subsection, we demonstrate numerical simulations for the ABC-fractional SMA

model (1.2) by using the Adam type predictor–corrector rule for the ABC-fractional op-
erator [42] as said in the earlier subsection. We use nonnegative parameters to obtain these
numerical results as shown in Table 1.

If we set β = 0.30 and φ = 0.998, then R0 = 0.3836 < 1 is obtained and the transmission of
the addiction to cease stops, which is the result of the numerical simulation of the ABC-
fractional SMA model (1.2) as shown in Fig. 1 with N = 2000, and (S0,E0,A0,R0,Q0) =
(100, 1, 5, 0, 10). The disease-free equilibrium point E0 = (8.2906, 0, 0, 0, 1.6635) in this
case. We notice that the number of exposed and addicted populations rapidly increases
and decreases to zero over time, since when exposed and addicted populations recover,
the number of recovering populations increases, and when the addict’s transmission is
stopped, the number of recovered populations decreases to zero. Moreover, the number
of people who permanently do not use and quit using social media population rapidly
increases and decreases to zero over time, because when susceptible and recovered pop-

Table 1 The description of parameters of the SMAmodel (1.2)

Parameter Description of the parameter Value Source

π Recruitment rate of susceptible individuals 0.5 Assumed
μ Natural death rate 0.05 [48]
β Transmission rate of addiction to the susceptible individuals 0.1–0.8 [48]
σ Contact rate of susceptible individuals with addicted individuals 0.2 [48]
α Proportion of exposed individuals that join addicted class 0.7 [48]
ρ Induce death rate 0.01 Assumed
δ Individuals that leave exposed class 0.25 [48]
ε Addicted individuals that join recovered class due to the treatment 0.7 [49]
κ Susceptible individuals that don’t use and/or quit from using SM 0.01 Assumed
γ Proportion of recovered individuals susceptible to SMA 0.35 [50]
η Individuals that leave recoverd class 0.4 [49]
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Figure 1 Plots of the result of the model (1.2) for φ = 0.998 in the case R0 < 1

Figure 2 Plots of the result of the model (1.2) for φ = 0.998 in the case R0 > 1

ulations with the decrease in the number of addicts again increased the number of people
who permanently do not use and quit using social media population is balanced stable at
1.6635. On the other hand, the susceptible population with the addiction decreased, which
with the decrease in the number of people who are exposed and permanently do not use
and quit using social media populations again increased the number of the good-quality
population and is balanced stable at 8.2906.

Furthermore, if we set β = 0.80 and φ = 0.998, then R0 = 1.0209 > 1. The endemic equi-
librium point is E∗ = (8.1212, 0.0450, 0.0104, 0.0236, 1.7517). The numerical results of the
ABC-fractional SMA model (1.2) in this case are shown in Fig. 2. This figure shows that
when R0 > 1 the number of the exposed and addicted populations primarily increase rad-
ically after passing the highest point of the addiction with the transmission of the ad-
diction continues to stabilize at 0.0450 and 0.0104, respectively. Moreover, as the num-
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ber of exposed and addicted populations decreases, the number of the recovered pop-
ulation increases, then decreases and stabilizes at 0.0236. With the recovery of exposed
and addicted populations, the number of people who permanently do not use and quit
using social media population also increases and eventually decreases tend to a stable
point of 1.7517. On the other hand, as the number of the people who are exposed and
permanently do not use and quit using social media populations increases, the num-
ber of the susceptible population decreases and then stabilizes with a little increase at
8.1212.

6.3 The effect of fractional derivative orders
In this subsection, we consider the effect of fractional derivative orders on the results of
the ABC-fractional SMA model (1.2). For this simulation, we apply the numerical scheme
stated in Sect. 6.1 Numerical Method and the parameters as given in Table 1 with β =
0.80. The numerical simulations of the system (1.2) are shown in Fig. 3–Fig. 7 for different
fractional orders φ = {0.94, 0.96, 0.98, 0.998, 1.00}.

As we can see from Fig. 3 the susceptible population decreases with various fractional or-
ders φ increasing and approaching 1 and then it becomes stable for all fractional orders at
S∗ = 8.1212. Fig. 4–Fig. 5 show that the exposed and addicted populations rapidly increase
and decrease to E∗ = 0.0450 and A∗ = 0.0104 with various fractional orders φ decreasing
and approaching 1. Fig. 6–Fig. 7 show that the number of people who are recovered and
permanently do not use and quit using SM population rapidly increases and decreases
to R∗ = 0.0236 and Q∗ = 1.7517 with various fractional orders φ increases approaching 1.
The main point of this manuscript is that tiny changes in the fractional derivative order do
not affect the overall behavior of the resultant functions; only the numerical simulations
are affected. In addition, the absolute errors of the numerical results of the population in
five groups for all fractional orders comparing with φ = 1 in the case of β = 0.30 are shown
in Table 2–Table 6 and in the case of β = 0.80 are shown in Table 7–Table 11.

Figure 3 The quantity of S(t) via φ = 0.94, 0.96, 0.98, 0.998, 1.00
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Figure 4 The quantity of E (t) via φ = 0.94, 0.96, 0.98, 0.998, 1.00

Figure 5 The quantity ofA(t) via φ = 0.94, 0.96, 0.98, 0.998, 1.00

Figure 6 The quantity ofR(t) via φ = 0.94, 0.96, 0.98, 0.998, 1.00
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Figure 7 The quantity ofQ(t) with φ = 0.94, 0.96, 0.98, 0.998, 1.00

Table 2 The values of |S1 – Sφ | for φ = {0.94, 0.96, 0.98, 0.998}
n× 100 t |S1 – S0.94| |S1 – S0.96| |S1 – S0.98| |S1 – S0.998|
0 0 0.0000 0.0000 0.0000 0.0000
1 10 0.7861 0.5441 0.2809 0.0287
2 20 0.7332 0.5485 0.3071 0.0339
3 30 0.8142 0.6232 0.3560 0.0399
4 40 0.8049 0.6112 0.3452 0.0383
5 50 0.7067 0.5238 0.2879 0.0311
6 60 0.5638 0.4032 0.2132 0.0222
7 70 0.4087 0.2778 0.1387 0.0136
8 80 0.2593 0.1614 0.0719 0.0061
9 90 0.1236 0.0591 0.0150 0.0000
10 100 0.0041 0.0287 0.0326 0.0051
11 110 0.0999 0.1033 0.0722 0.0092
12 120 0.1898 0.1666 0.1051 0.0126
13 130 0.2675 0.2205 0.1327 0.0154
14 140 0.3350 0.2666 0.1560 0.0177
15 150 0.3939 0.3063 0.1759 0.0197
16 160 0.4454 0.3408 0.1930 0.0214
17 170 0.4909 0.3709 0.2079 0.0228
18 180 0.5313 0.3975 0.2209 0.0241
19 190 0.5673 0.4211 0.2323 0.0252
20 200 0.5996 0.4421 0.2425 0.0262

7 Conclusion
In this manuscript, we considered a fractional-order SMA model in the ABC-derivative
sense. The equilibrium points and the system’s basic reproduction number (1.2) have been
determined, and the necessary circumstances for the system’s stability at the equilibrium
points have been examined. The existence results of the solutions for the proposed model
(1.2) were investigated by applying Banach’s and Krasnoselskii’s fixed point theorems. The
stability of the solutions was established by employing the various versions of Ulam’s sta-
bility, such as UH stability, generalized UH stability, UHR stability, and generalized UHR

stability. The novel numerical method, especially the Adams-type predictor–corrector
technique, illustrates the approximate solutions for the different fractional order φ. A nu-
merical simulation for transmission of addiction in the cases R0 < 1 and R0 > 1 is demon-
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Table 3 The values of |E1 – Eφ | for φ = {0.94, 0.96, 0.98, 0.998}
n× 100 t |E1 – E0.94| |E1 – E0.96| |E1 – E0.98| |E1 – E0.998|
0 0 0.0000 0.0000 0.0000 0.0000
1 10 0.7769 0.4692 0.2087 0.0184
2 20 1.8557 1.2096 0.5902 0.0576
3 30 1.1562 0.7214 0.3354 0.0312
4 40 0.6322 0.3730 0.1632 0.0143
5 50 0.3540 0.1990 0.0828 0.0070
6 60 0.2137 0.1166 0.0473 0.0039
7 70 0.1406 0.0759 0.0307 0.0025
8 80 0.0999 0.0541 0.0221 0.0019
9 90 0.0755 0.0411 0.0170 0.0014
10 100 0.0597 0.0328 0.0137 0.0012
11 110 0.0489 0.0271 0.0114 0.0010
12 120 0.0411 0.0230 0.0097 0.0008
13 130 0.0353 0.0198 0.0085 0.0007
14 140 0.0309 0.0174 0.0075 0.0007
15 150 0.0273 0.0155 0.0067 0.0006
16 160 0.0245 0.0139 0.0060 0.0005
17 170 0.0221 0.0126 0.0055 0.0005
18 180 0.0201 0.0115 0.0050 0.0004
19 190 0.0185 0.0106 0.0046 0.0004
20 200 0.0171 0.0098 0.0043 0.0004

Table 4 The values of |A1 –Aφ | for φ = {0.94, 0.96, 0.98, 0.998}
n× 100 t |A1 –A0.94| |A1 –A0.96| |A1 –A0.98| |A1 –A0.998|
0 0 0.0000 0.0000 0.0000 0.0000
1 10 0.4406 0.2808 0.1338 0.0128
2 20 0.6111 0.3939 0.1900 0.0184
3 30 0.3656 0.2257 0.1039 0.0096
4 40 0.1999 0.1171 0.0509 0.0044
5 50 0.1139 0.0638 0.0265 0.0022
6 60 0.0706 0.0386 0.0157 0.0013
7 70 0.0479 0.0260 0.0106 0.0009
8 80 0.0351 0.0191 0.0079 0.0007
9 90 0.0273 0.0150 0.0062 0.0005
10 100 0.0222 0.0123 0.0051 0.0004
11 110 0.0186 0.0104 0.0044 0.0004
12 120 0.0160 0.0090 0.0038 0.0003
13 130 0.0140 0.0079 0.0034 0.0003
14 140 0.0124 0.0070 0.0030 0.0003
15 150 0.0112 0.0063 0.0027 0.0002
16 160 0.0101 0.0058 0.0025 0.0002
17 170 0.0093 0.0053 0.0023 0.0002
18 180 0.0086 0.0049 0.0021 0.0002
19 190 0.0079 0.0045 0.0020 0.0002
20 200 0.0074 0.0042 0.0018 0.0002

strated and the results display that in two cases the system is stable at its equilibrium
points. We analyzed the dynamic behavior of the SMA system with φ approaching 1. Fi-
nally, the system responses were predicted for various fractional derivative orders, demon-
strating that a few changes in the fractional derivative order did not affect the overall be-
havior of the function, just the numerical simulations that occur.

This study would be a new way to explore the mathematical model of SMA with ABC-
fractional derivative. For extension of this work, the researcher may develop and apply this
SMA model with the other types of fractional-order derivative operators.
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Table 5 The values of |R1 –Rφ | for φ = {0.94, 0.96, 0.98, 0.998}
n× 100 t |R1 –R0.94| |R1 –R0.96| |R1 –R0.98| |R1 –R0.998|
0 0 0.0000 0.0000 0.0000 0.0000
1 10 0.3700 0.2530 0.1293 0.0131
2 20 1.2369 0.8260 0.4129 0.0412
3 30 0.9083 0.5816 0.2778 0.0265
4 40 0.5125 0.3109 0.1399 0.0126
5 50 0.2899 0.1675 0.0717 0.0062
6 60 0.1759 0.0986 0.0411 0.0035
7 70 0.1164 0.0644 0.0267 0.0023
8 80 0.0832 0.0460 0.0192 0.0016
9 90 0.0632 0.0352 0.0148 0.0013
10 100 0.0504 0.0282 0.0120 0.0010
11 110 0.0415 0.0235 0.0100 0.0009
12 120 0.0352 0.0200 0.0086 0.0008
13 130 0.0304 0.0174 0.0075 0.0007
14 140 0.0267 0.0153 0.0066 0.0006
15 150 0.0238 0.0137 0.0059 0.0005
16 160 0.0214 0.0123 0.0054 0.0005
17 170 0.0194 0.0112 0.0049 0.0004
18 180 0.0178 0.0103 0.0045 0.0004
19 190 0.0164 0.0095 0.0042 0.0004
20 200 0.0152 0.0088 0.0039 0.0003

Table 6 The values of |Q1 –Qφ | for φ = {0.94, 0.96, 0.98, 0.998}
n× 100 t |Q1 –Q0.94| |Q1 –Q0.96| |Q1 –Q0.98| |Q1 –Q0.998|
0 0 0.0000 0.0000 0.0000 0.0000
1 10 2.9460 1.9437 0.9588 0.0944
2 20 3.8530 2.6189 1.3357 0.1360
3 30 1.3208 0.8887 0.4509 0.0459
4 40 0.4132 0.2819 0.1407 0.0137
5 50 1.2436 0.8329 0.4154 0.0412
6 60 1.5414 1.0256 0.5100 0.0506
7 70 1.5670 1.0373 0.5142 0.0510
8 80 1.4662 0.9655 0.4768 0.0472
9 90 1.3159 0.8615 0.4231 0.0417
10 100 1.1551 0.7511 0.3665 0.0359
11 110 1.0025 0.6471 0.3134 0.0305
12 120 0.8661 0.5547 0.2663 0.0257
13 130 0.7480 0.4751 0.2261 0.0216
14 140 0.6476 0.4079 0.1924 0.0182
15 150 0.5630 0.3517 0.1644 0.0154
16 160 0.4921 0.3049 0.1412 0.0131
17 170 0.4326 0.2659 0.1221 0.0113
18 180 0.3825 0.2334 0.1063 0.0097
19 190 0.3402 0.2060 0.0931 0.0085
20 200 0.3042 0.1830 0.0820 0.0074
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Table 7 The values of |S1 – Sφ | for φ = {0.94, 0.96, 0.98, 0.998}
n× 100 t |S1 – S0.94| |S1 – S0.96| |S1 – S0.98| |S1 – S0.998|
0 0 0.0000 0.0000 0.0000 0.0000
1 10 0.3407 0.2299 0.1164 0.0118
2 20 0.1893 0.1422 0.0813 0.0093
3 30 0.1010 0.0570 0.0198 0.0008
4 40 0.4687 0.3241 0.1652 0.0164
5 50 0.7818 0.5588 0.2982 0.0313
6 60 1.0055 0.7317 0.4008 0.0435
7 70 1.1503 0.8474 0.4738 0.0529
8 80 1.2366 0.9190 0.5227 0.0601
9 90 1.2832 0.9595 0.5535 0.0654
10 100 1.3043 0.9790 0.5712 0.0693
11 110 1.3099 0.9851 0.5795 0.0721
12 120 1.3064 0.9828 0.5814 0.0740
13 130 1.2981 0.9759 0.5792 0.0753
14 140 1.2874 0.9664 0.5743 0.0759
15 150 1.2758 0.9558 0.5679 0.0761
16 160 1.2643 0.9449 0.5607 0.0760
17 170 1.2532 0.9342 0.5532 0.0757
18 180 1.2427 0.9241 0.5457 0.0752
19 190 1.2330 0.9145 0.5384 0.0745
20 200 1.2240 0.9056 0.5313 0.0738

Table 8 The values of |E1 – Eφ | for φ = {0.94, 0.96, 0.98, 0.998}
n× 100 t |E1 – E0.94| |E1 – E0.96| |E1 – E0.98| |E1 – E0.998|
0 0 0.0000 0.0000 0.0000 0.0000
1 10 2.3330 1.5683 0.7911 0.0798
2 20 2.3304 1.5394 0.7615 0.0753
3 30 1.6432 1.0617 0.5124 0.0494
4 40 1.1764 0.7514 0.3586 0.0342
5 50 0.9012 0.5763 0.2766 0.0266
6 60 0.7311 0.4719 0.2306 0.0228
7 70 0.6169 0.4034 0.2019 0.0207
8 80 0.5343 0.3540 0.1818 0.0194
9 90 0.4711 0.3159 0.1663 0.0186
10 100 0.4206 0.2850 0.1533 0.0179
11 110 0.3792 0.2591 0.1421 0.0174
12 120 0.3446 0.2370 0.1320 0.0168
13 130 0.3153 0.2180 0.1230 0.0163
14 140 0.2900 0.2014 0.1149 0.0157
15 150 0.2681 0.1869 0.1076 0.0152
16 160 0.2490 0.1740 0.1009 0.0147
17 170 0.2321 0.1626 0.0949 0.0142
18 180 0.2170 0.1524 0.0894 0.0136
19 190 0.2036 0.1433 0.0844 0.0132
20 200 0.1915 0.1350 0.0798 0.0127
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Table 9 The values of |A1 –Aφ | for φ = {0.94, 0.96, 0.98, 0.998}
n× 100 t |A1 –A0.94| |A1 –A0.96| |A1 –A0.98| |A1 –A0.998|
0 0 0.0000 0.0000 0.0000 0.0000
1 10 0.8805 0.5864 0.2929 0.0293
2 20 0.7437 0.4835 0.2354 0.0229
3 30 0.4924 0.3122 0.1479 0.0140
4 40 0.3401 0.2125 0.0991 0.0093
5 50 0.2546 0.1587 0.0742 0.0070
6 60 0.2034 0.1277 0.0606 0.0058
7 70 0.1700 0.1080 0.0523 0.0052
8 80 0.1463 0.0941 0.0467 0.0048
9 90 0.1285 0.0836 0.0425 0.0046
10 100 0.1144 0.0751 0.0390 0.0044
11 110 0.1030 0.0682 0.0360 0.0042
12 120 0.0935 0.0623 0.0334 0.0041
13 130 0.0855 0.0572 0.0311 0.0039
14 140 0.0786 0.0529 0.0290 0.0038
15 150 0.0727 0.0490 0.0272 0.0037
16 160 0.0675 0.0457 0.0255 0.0035
17 170 0.0629 0.0427 0.0240 0.0034
18 180 0.0589 0.0400 0.0226 0.0033
19 190 0.0553 0.0376 0.0213 0.0032
20 200 0.0521 0.0355 0.0202 0.0031

Table 10 The values of |R1 –Rφ | for φ = {0.94, 0.96, 0.98, 0.998}
n× 100 t |R1 –R0.94| |R1 –R0.96| |R1 –R0.98| |R1 –R0.998|
0 0 0.0000 0.0000 0.0000 0.0000
1 10 0.2888 0.2104 0.1142 0.0122
2 20 1.5940 1.0751 0.5428 0.0547
3 30 1.1569 0.7549 0.3678 0.0357
4 40 0.7942 0.5076 0.2421 0.0230
5 50 0.5826 0.3703 0.1761 0.0168
6 60 0.4574 0.2922 0.1407 0.0137
7 70 0.3772 0.2435 0.1197 0.0120
8 80 0.3215 0.2102 0.1059 0.0110
9 90 0.2802 0.1854 0.0957 0.0104
10 100 0.2481 0.1659 0.0875 0.0100
11 110 0.2223 0.1499 0.0806 0.0096
12 120 0.2010 0.1365 0.0746 0.0092
13 130 0.1831 0.1250 0.0693 0.0089
14 140 0.1679 0.1152 0.0646 0.0086
15 150 0.1548 0.1066 0.0603 0.0083
16 160 0.1434 0.0990 0.0565 0.0080
17 170 0.1334 0.0924 0.0530 0.0077
18 180 0.1245 0.0864 0.0499 0.0074
19 190 0.1166 0.0811 0.0470 0.0072
20 200 0.1096 0.0764 0.0444 0.0069
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Table 11 The values of |Q1 –Qφ | for φ = {0.94, 0.96, 0.98, 0.998}
n× 100 t |Q1 –Q0.94| |Q1 –Q0.96| |Q1 –Q0.98| |Q1 –Q0.998|
0 0 0.0000 0.0000 0.0000 0.0000
1 10 5.1605 3.5009 1.7808 0.1808
2 20 4.2916 2.8933 1.4625 0.1477
3 30 1.2904 0.8236 0.3936 0.0378
4 40 0.6949 0.5294 0.2967 0.0323
5 50 1.7232 1.2216 0.6462 0.0676
6 60 2.1497 1.5028 0.7865 0.0817
7 70 2.2375 1.5545 0.8111 0.0844
8 80 2.1499 1.4882 0.7768 0.0813
9 90 1.9822 1.3688 0.7163 0.0758
10 100 1.7875 1.2322 0.6476 0.0696
11 110 1.5938 1.0972 0.5798 0.0636
12 120 1.4144 0.9727 0.5172 0.0581
13 130 1.2545 0.8621 0.4615 0.0532
14 140 1.1150 0.7658 0.4127 0.0490
15 150 0.9946 0.6828 0.3706 0.0453
16 160 0.8912 0.6118 0.3342 0.0421
17 170 0.8025 0.5509 0.3029 0.0393
18 180 0.7262 0.4986 0.2759 0.0368
19 190 0.6603 0.4535 0.2524 0.0346
20 200 0.6030 0.4144 0.2319 0.0326
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